WROCLEAW UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF ELECTRONICS, PHOTONICS AND MICROSYSTEMS

INTERMEDIATE PROJECT

Final Report

Drone Flight Controller

Author:
Patryk NOwIK

Date: 8th February 2022

Instructor:
dr inz. Witold PALUSZYNSKI

Main Goals:
e Must do Goals

Working flight algorithm programmed in Python programming language
Reading Data from IMU orientation sensor and altitude from pressure senor
Connecting BLDC motors with ESC drivers and microcontroller

Frame design in CAD software and connecting all parts

A

Performing simple flight tests (During flight or on special testing platform -
depending on current time frame)

e Hope to do Goals

1. Adding RC controller for remote control

1 Introduction

The main goal of this project is to create working flight controller and to demonstrate its
behaviour during quadcopter flight test. Schema which presents quadcopter in popular "X"
configuration can be seen in figure 1.

“X" Configuration

Figure 1: Quadcopter motors and orientation configuration

Project consists of mechanical, hardware and software stages. Mechanical part consists of
designing a 3D model of drone frame and assembling all the elements necessary to connect
parts and create a drone. During software part, there was coded flight algorithm including
control algorithms. Final, hardware part, which purpose was to implement created algorithm
on computer and assembling another necessary electronic parts like IMU sensor, was allowed to
test software and created mechanics.

11
12
13
14

2 Description of the project stages

In this section there is described every project stage with work what was done in it.

2.1 Software section

First, the Raspbian operating system was installed on Raspberry Pi 4B computer, which
allowed to properly program algorithm on this device. After setting up operating system early
configuration was performed. At this stage was turned on I2C communication protocol, which
is used to connect to IMU sensor.

For reading data from BNOO055 sensor separate module was created, which includes class
with all registers declaration and needed methods for reading orientation data. Reading data
is possible with using SMbus module, which is responsible for handling connection with 12C
protocole. Below is the fragment of the code which initialize connection with sensor and is
setting up correct operation modes.

def begin(self):
#Initialize I2C connection

self. bus = smbus.SMBus(1)

#Get into config mode

self. bus.write byte data(self. address,BNO055.BNO055 OPR_MODE ADDR ,0
x00)

time.sleep (0.03)

#Set up normal power mode

self. bus.write byte data(self. address, BNOO055.BNOG5 PWR_MODE ADDR, 0
x00)

time.sleep (0.03)

#Set up NDOF operating mode

self. bus.write byte data(self. address, BNOO055.BNO055 OPR_MODE ADDR, 0
x0C)

time.sleep (0.03)

Operation mode of the BNO055 is the NDOF mode, which according to the documentation 2|
calculates absolute orientation of the sensor from the accelerometer, gyroscope and magnetometer
data. In the class there is also a method which allow to read gyroscope data. This allowed to
create control algorithm for all drone directions excluding height control [4]. Schematic diagram
of this algorithm can be seen in figure 2.

19
20

Current Gyro Data

Current Angle
R

Set Angle Stabilise PID ——» RatePID —» BLDC Motor
e

Figure 2: Drone motion control algorithm

This algorithm is using two PID controllers. First is called stabilise PID and it is responsible
to control angles and return rotation speed. Second is called rate PID and uses gyroscope data
and previous PID output. Thanks to it, algorithm is able to quickly react to changes in the
error.

Second created class was made for reading pressure data from BMP280 sensor. Below are
presented three main functions which are used to calculate data, according to the sensor datasheet
[1]. With the pressure data, current altitude can be calculated with accuracy to 1 meter. This
allowed to monitor height of the drone, above the sea level and can be used in some future
development of the project.

def read raw(self):
data = self .read B(self .RAW DATA, 6)
_out = ((data[0] << 16 | data[l] << 8 | data[2]) /16, (data[3] << 16 |
data[4] << 8 | data[5]) /16)

return tuple(out)

def calculate temp(self):
adc_t = self.read raw()[1]

data = self.read B(self .DIGITAL TEMPERATURE, 6)
dig T = struct.unpack('hhh', struct.pack('BBBBBB', data[0], data[l],
data[2], data[3], data[4], data[5]))

varl = ((adc_t) / 16384.0 — (dig T[0]) / 1024.0) «

var2 = (((adc_t) / 131072.0 — (dig T[0]) / 8192.0)
— (dig_T[0])/8192.0)) * (dig_T[2])

self.t_ fine = int(varl + var2)

cTemp = (varl + var2) / 5120.0

(dig_T[1])
* ((adc_t)/131072.0

return cTemp

def calculate pressure(self):
temp = self.calculate temp ()
adc_p = self.read raw () [0]
data = self.read B(self .DIGITAL PRESSURE, 18)
dig P = struct.unpack('hhhhhhhhh' struct.pack('BBBBBBBBBBBBBBBBBB',

data[0], data[l], data[2], data[3], data[4], data[5], data[6], data
[7], data[8], data[9], data[10]|, data[l1l], data[l2], data[l3], data
[14], data[15], data[l6], data[l7]))

varl = (self.t fine/ 2.0) — 64000.0

var2 = varl * varl x (dig P[5]) / 32768.0
var2 = var2 + varl * (dig _P[4]) * 2.0

var2 = (var2 / 4.0) + ((dig_P[3]) * 65536.0)

varl = ((dig_P[2]) = varl = varl / 524288.0 + (dig_P[1l]) * varl) /
524288.0

varl = (1.0 + varl / 32768.0) = (dig P[0])

if (varl = 0.0): return 0 #avoid division by zero

p — 1048576.0 — adc_p

p=(p— (var2 / 4096.0)) * 6250.0 / varl
varl = (dig P[8]) = p * p / 2147483648.0
var2 = p * (dig P[7]) / 32768.0;

return (p + (varl + var2 + (dig P[6])) / 16.0) / 100 # pressure in hPa

Next module was created to implement algorithm, which is responsible for calculating thrust
value for each motor, for certain directions. Equations for calculating motor mixing algorithm is
presented below.

e Motor 1 (CW - front left) = Thrust - Yaw + Pitch - Roll
e Motor 2 (CCW - front right) = Thrust + Yaw + Pitch + Roll
e Motor 3 (CCW - back left) = Thrust + Yaw - Pitch - Roll

e Motor 4 (CW - back right) = Thrust - Yaw - Pitch + Roll

where,
CW - move clockwise
CCW - counter clockwise

Method created in that module, takes the orientation and gyroscope readings given by
BNOO055 class and calculates thrusts for each of the motors, following equation from the motor
mixing algorithm. After that certain function passes thrust values to PWM Pin in RPI. Such
operation is presented in the figure 3.

Figure 3: PWM calculating sequence for motor mixing algorithm

2.2 Mechanical section

To properly mount all the parts needed for drone motion, special frame was designed using Inventor 2021 software provided by AUTODESK
company. Designed frame was sliced using Cura program. This allowed to print this frame using 3D printer ENDER 3 with PLA material. Model of
the frame is presented in the figure 4.

Figure 4: Project of drone frame

2.3 Hardware section

Main hardware components which was used to create a quadcopter are listed below.

e BLDC motors - EMAX ECO II 2306 2400kV

e ESC drivers for motors - LittleBee - Spring 20A

Computer for algorithm calculations and hardware tasks - Raspberry Pi 4B - 4GB version

Li-Po battery - 3S 3600mAh

Orientation Sensor - BNO055 Bosch Aboslute Orientation Sensor

e Pressure sensor - BMP280 Pressure Sensor

Connection to Raspberry Pi computer was done by "headless mode". This solution allow to
program computer remotely through ssh connection.

Both BNOO055 and BMP280 sensors are mounted on single PCB board made by DFrobot |3|
and allow to transfer data by I2C communication protocol which was enabled on Raspberry Pi.
Description of the connection of DFrobot device to computer is in the table below.

DFrobot Pin | Raspberry Pi 4B Pin
Power 1 (3V3)
GND 6 (GND)
Data Line 3 (I2C1 SDA)
Clock Line 5 (I2C1 SCL)

ESC Drivers was mounted to RPI proper signal and ground pins. Also they were powered
from Li-Po battery directly. Description of this connection can be seen below.

ESC Pin | Raspberry Pi 4B Pin
ESC1 GND 34 (GND)
ESC1 PWM 33 (PWM1)
ESC2 GND 30 (GND)
ESC2 PWM 35 (PWM1)
ESC3 GND 20 (GND)
ESC3 PWM 32 (PWMO)
ESC4 GND 14 (GND)
ESC4 PWM 12 (PWMO)

BLDC motors was connected to ESC output pins. Simple connection ensure rotation with
clockwise direction. By replacing order of the random two wires, was obtained counterclockwise
direction. Motors first and third have clockwise direction of rotation, while motors second and
fourth counterclockwise. Such connection prevents quadcopter from twirling around its own z
axis and meant to ensure stable position.

Power supply was ensured by soldering special breadboard, connected to Li-Po battery. Rasp-
berry Pi was powered up by connecting voltage stabilizer and some capacitors to clear the signal.

3 Final Assembly

Finally parts from previous described stages was mounted together. In that way obtained
quadcopter was ready to test and first flight. Picture taken of drone is presented in the figure 5.

Figure 5: Picture of mounted quadcopter

After powering up, it was impossible to connect to Raspberry Pi in headless mode, probably
due to some disturbances in signal coming out from linear stabilizer. It was decided to power up
computer with external power source After that calibration of ESC drivers was performed. Flight
was very unstable due to uncalibrated PID controllers and still some ESC signal issues. Due to
lack of RC remote controller it was difficult to adjust thrust which is needed for quadcopter to
lift its own weight in air only from system console. To correctly test algorithm and tune PID
controllers remote controller would be needed, which may be added in some future development
of this project.

4 Summary

Quadcopter was mounted successfully. Whole project allowed to learn the principle which are
standing behind the drone physics. Unfortunately not everything is working as it was expected.
Due to lack of the remote controller, adjusting thrust was difficult and was not finished, therefore
more advanced flight test could not also be performed. Unstable power supply to Raspberry Pi
computer did not allow to connecting it from Li-Po battery. However, the whole drone is able to
fly. In the future development of this project it may be possible to properly test the algorithm
and adjust thrust of the quadcopter.

References

[1] Bosch Sensortec GmbH. BMP280 Digital Pressure Sensor. 2014.
[2] Bosch Sensortec GmbH. BNO055 Intelligent 9-axis absolute orientation sensor. 2014.

[3] DFrobot. Gravity 10dof ahrs user manual. https://wiki.dfrobot.com/Gravity_BN0055_
+_BMP280%20intelligent_10DOF_AHRS_SKU_SEN0253.

[4] D. Such. Writing your own flight controller. https://reefwing.medium.com/
how-to-write-your-own-flight-controller-software-part-1-ac08b6eccOle, 2020.

https://wiki.dfrobot.com/Gravity_BNO055_+_BMP280%20intelligent_10DOF_AHRS_SKU_SEN0253
https://wiki.dfrobot.com/Gravity_BNO055_+_BMP280%20intelligent_10DOF_AHRS_SKU_SEN0253
https://reefwing.medium.com/how-to-write-your-own-flight-controller-software-part-1-ac08b6ecc01e
https://reefwing.medium.com/how-to-write-your-own-flight-controller-software-part-1-ac08b6ecc01e

	Introduction
	Description of the project stages
	Software section
	Mechanical section
	Hardware section

	Final Assembly
	Summary
	Bibilografia

