
Linux on embedded systems

Author: Mateusz Urbaniak
Class: Intermediate Project
Supervisor: Ph.D. Witold Paluszyński
Date: January 22, 2022
Embedded Robotics,
Chair of Cybernetics and Robotics,
Faculty of Electronics, Photonics and Microsystems,
Wroc law University of Technology

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License.

Abstract

One of the project goals was to get familiar with building Linux system using different tools(Buildroot,
Yocto Project) for multiple embedded devices(like Raspberry pi 4B and STM). This goal was slightly
changed after talks with the supervisor. It was agreed that it is better to focus on one board and
build a simple application that would use, for example, I2C communication to get some information
from some peripherals.

The main objective of the project was achieved. Linux distributes were successfully built and ran
using both Buildroot and Yocto Project. Custom application that read temperature of the room
using I2C temperature sensor was also successfully built and ran.

1 Introduction

Linux on embedded system is standard in industrial applications. Linux is the most widely used
operating system on embedded devices.It is also worth to emphasize that the issues raised here
are not limited to hobby projects and academic research, but they are essential for industrial and
multimedia applications.

1.1 Tools

Figure 1: Different options for building Linux distribution

Many users are familiar with a single board computer (e.g., Raspberry Pi) and they are probably
familiar with the easiest method of loading an operating system onto the board: downloading a
pre-made image (usually a .img file) from the Internet and copy it to an SD card.

Using option 2 or 3 allows for customization of the Linux distribution to the exact needs of
the user(such as disabling a user interface and enabling networking). This customized distribution
can reduce boot time, save on power, and reduce possible attack vectors for hackers. Then the
manufacturer can copy the image to entire production line of single board computers or systems on
a module (SOMs) during manufacturing.

Second option for creating such a customized distribution includes finding or writing the nec-
essary drivers and libraries by the user, compiling them, and creating an image. This is a difficult
and time-consuming task.

The final option is to use a tool like Buildroot, OpenWRT, or the Yocto Project to help script
the entire process of finding the required source code and building an image. These are likely the
three most popular embedded Linux build tools.

1

2 Goals of the project

The project goal is to get familiar with building Linux system using different tools for multiple
embedded devices.
Must do:

• build Linux on Raspberry Pi 4 using Buildroot and Yocto project,

• build Linux on one different board (example: BeagleBone, Nvidia, Odyssey, STM),

• compare building process (how easy it is, how quick it is),

• show examples of usage.

3 Results

3.1 Building with Buildroot

Building a custom Linux distribution with Buildroot is much simpler than with Yocto Project. It
can be recommended for new users, but with its simplicity comes two significant cons. The first is
that user loses out some customization options. The second is that user have to build the image
from scratch every time you make a change and it can take hours.

Figure 2: Boot process and a login prompt

3.2 Building with Yocto Project

Yocto project is a powerful tool for building customized Linux images, but it has a steep learning
curve. Terminology in the Yocto Project can be confusing. These definitions are the most important:

• OpenEmbedded– build system and community

• The Yocto Project– umbrella project and community

2

• Metadata– files containing information about how to build an image

• Recipe– file with instructions to build one or more packages

• Layer– directory containing grouped metadata (start with “meta-”)

• Board support package (BSP)– layer that defines how to build for board (usually main-
tained by vendor)

• Distribution– specific implementation of Linux (kernel version, rootfs, etc.)

• Machine– defines the architecture, pins, buses, BSP, etc.

• Image– output of build process (bootable and executable Linux OS)

3.3 Custom application to get temperature

To get the temperature from TMP102[2] sensor, the simple program that reads the correct memory
addresses was written. Next step was to add it to custom image Linux and rebuild this image.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t d i n t . h>
#include <uni s td . h>
#include <l i nux / i2c−dev . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>

int main ()
{

// S e t t i n g s
const unsigned char tmp102 addr = 0x48 ; // I2C address o f the TMP102
const unsigned char reg temp = 0x00 ; // Address o f temperature r e g i s t e r
const char f i l ename [] = ”/dev/ i2c−1” ; // Locat ion o f I2C dev i c e f i l e
int f i l e ;
char buf [5] ;
i n t 1 6 t temp buf ;
f loat temp c ;
// Open the dev i c e f i l e f o r read/ wr i t e
i f ((f i l e = open (f i l ename , ORDWR)) < 0)
{

p r i n t f (” Fa i l ed to open the bus .\n”) ;
e x i t (1) ;

}
// Change to I2C address o f TMP102
i f (i o c t l (f i l e , I2C SLAVE , tmp102 addr) < 0) {

p r i n t f (” Fa i l ed to acqu i r e bus a c c e s s or t a l k to dev i c e .\n”) ;
e x i t (1) ;

}

3

// S ta r t read by wr i t i n g l o c a t i o n o f temperature r e g i s t e r
buf [0] = 0x00 ;
i f (wr i t e (f i l e , buf , 1) != 1)
{

p r i n t f (”Could not wr i t e to I2C dev i c e .\n”) ;
e x i t (1) ;

}
// Read temperature
i f (read (f i l e , buf , 2) != 2)
{

p r i n t f (”Could not read from I2C dev i c e .\n”) ;
e x i t (1) ;

}
// Combine r e c e i v ed by t e s to s i n g l e 16− b i t va lue
temp buf = (buf [0] << 4) | (buf [1] >> 4) ;
// I f va lue i s nega t i v e (2 s complement) , pad empty 4 b i t s wi th 1 s
i f (temp buf > 0x7FF)
{

temp buf |= 0xF000 ;
}
// Convert sensor read ing to temperature (Ce l s i u s)
temp c = temp buf ∗ 0 . 0 625 ;
// Print r e s u l t s
p r i n t f (”%.2 f deg C\n” , temp c) ;

return 0 ;
}

Figure 3: Result from the gettemp application

4

4 Summary

Creating a custom distribution is not an easy task. To configure a kernel for custom needs, user
needs to have good knowledge about various topics(e.g., power management, drivers, buses) to
properly setup needed functions without enabling functions that one does not need. Also working
with custom distributions might be hard for some people because it is common to work many hours,
checking the documentation[4] and not get visible results.

Figure 4: Main window of kernel configuration

Overall, the most important goals were achieved and the project was a success.

5

5 References

References

[1] Digi-Key. Intro to Embedded Linux. https://www.digikey.com/en/maker/projects/intro-
to- embedded- linux- part- 1- buildroot/a73a56de62444610a2187cd9e681c3f2. Access:
January 2022.

[2] Texas Instruments. TMP102 Temperature Sensor. https://www.ti.com/lit/ds/symlink/
tmp102.pdf?ts=1642845287112&ref_url=https%253A%252F%252Fwww.google.de%252F.
Access: January 2022.

[3] Jay Carlson. So you want to build an embedded Linux system? https://jaycarlson.net/

embedded-linux/#1602627646244-26484bfd-5515. Access: January 2022.

[4] ST. STM32MP157 reference manual. https://www.st.com/resource/en/reference_
manual/dm00327659-stm32mp157-advanced-arm-based-32-bit-mpus-stmicroelectronics.

pdf. Access: January 2022.

6

https://www.digikey.com/en/maker/projects/intro-to-embedded-linux-part-1-buildroot/a73a56de62444610a2187cd9e681c3f2
https://www.digikey.com/en/maker/projects/intro-to-embedded-linux-part-1-buildroot/a73a56de62444610a2187cd9e681c3f2
https://www.ti.com/lit/ds/symlink/tmp102.pdf?ts=1642845287112&ref_url=https%253A%252F%252Fwww.google.de%252F
https://www.ti.com/lit/ds/symlink/tmp102.pdf?ts=1642845287112&ref_url=https%253A%252F%252Fwww.google.de%252F
https://jaycarlson.net/embedded-linux/##1602627646244-26484bfd-5515
https://jaycarlson.net/embedded-linux/##1602627646244-26484bfd-5515
https://www.st.com/resource/en/reference_manual/dm00327659-stm32mp157-advanced-arm-based-32-bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00327659-stm32mp157-advanced-arm-based-32-bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00327659-stm32mp157-advanced-arm-based-32-bit-mpus-stmicroelectronics.pdf

	Introduction
	Tools

	Goals of the project
	Results
	Building with Buildroot
	Building with Yocto Project
	Custom application to get temperature

	Summary
	References

