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Abstract

The proposed project is set with the goal of achieving a functional object detection
application with the usage of deep learning methods basing on the MS Coco dataset

[4].
Moreover it is presented an approach for custom object detection, which relies on

transfer learning from the coco dataset pretrained model. The custom dataset chosen
for this purpose is a collection of road signs [9] of four different classes. The proposed

approach has been tested for different CNN architecture parameters and the
generated results are described and analyzed in the results section.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.



1 Introduction

Object detection is a computer vision technique that allows to identify and locate certain objects in
an image or a video. Object detection techniques are widely adopted in many fields, some of which are
surveillance and security, traffic monitoring, video communication and robot vision. Object detection
can be broken down into machine learning-based approaches and deep-learning based approaches.
The project report will be focused on the second category approach, deep learning which employs
convolutional neural networks (CNN).

2 Assumptions

2.1 Object detection

Object detection, regardless of whether performed via deep learning or other computer vision tech-
niques, has three primary goals. Given as input an image or frame (for videos) it is expected to
obtain:

1. A set of cordinates (xmin, ymin, xmax, ymax) forming a bounding box around the interested
object

2. A class label associated with the bounding box

3. The confidence score associated with the bounding box and class label.

An example of the expected output is presented below:

Figure 1: An output image of two detected objects (animals) with the drowned bounding boxes,
associated labels (”dog”,”horse”) and the respective detection accuracy (0.95, 0.98)

2.2 Deep learning detection methods

The set of methods used for object detection is categorized in two main types:

• Two-stage
The process relies on two tasks:

1. Find the number of objects on the scene

2. Classify every single object by estimating its shape with a bounding box

In such approach the approximate object regions are proposed using deep features before these
features are used for the classification. The first category achieves the highest detection accuracy
but is typically slower than one-stage type. Algorithms identified in such subset are RCNN,
Fast RCNN and Faster RCNN among others.
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• One-stage
The second category methods predict the bounding boxes over the images without the regional
proposal step. Such process consumes less time at the cost of accuracy, which is a good solution
in case of real-time applications. Some popular algorithms of that set are YOLO (You Only
Look Once) and SSD (Single Shot Detector) among others.

In this project the one-stage detectors will be taken into consideration for the transfer learning
task, which are structurally simpler.

2.3 Transfer learning

In an ordinary approach training an object detection model may take long times, however the transfer
learning technique allows to take a model which has been already trained (pretrained) and be used
as a starting point to create a new model. In the following project this technique will be applied to
the already pretrained models (on COCO dataset) in order to re-use the base learning process for the
custom objects detection.

3 Constraints

Object detection comes with multiple challenges.

1. The first major complication of object detection is the speed for real time detection. The
applied algorithms need to not only accurately classify and localize important objects, they also
need incredibly fast prediction time in order to meet the real-time demands of video processing.

2. When training a custom object detector the accuracy of the predicted bounding boxes-
Intersection of union (IoU) plays a crucial role. The convolution neural network, when
trained, generates thousands of anchor boxes for each predictor that represents the ideal location
of the object(s). For each predicted anchor box the intersection over union metrics is applied,
which consist on determining the area of union between the real bounding box (also called
ground truth) and the predicted anchor box by the equation:

IoU =
Areaofoverlap

AreaofUnion
(1)

If the IoU value is low, it means that the predicted anchor box does not fit the real object and
the estimation is poor. In case of a high IoU value (+ 90%) then the estimation is good or
excellent. An example has been presented below from [10]:

Figure 2: An example of computing Intersection over Unions for various bounding boxes
An evaluation of the Intersection over Union for the custom object detection has been presented

further in the document.

3. Dataset labelling
A limited amount of annotated data available for object detection can be a big issue when the
goal is to obtain a good estimator. Object detection datasets typically contain ground truth
examples. When such data is not available gathering ground truth labels can be a tedious work.
For the purpose of the project a dataset of traffic signs has been chosen from Kaggle [9] with
already labeled images (.xml files).
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4. Training - computational requirements Training models is a hardware intensive task, and
in order to obtain good results in a short time a decent GPU is required. Having the possibility
of running the training step using a GPU will make sure that the computation of the neural
network goes smoothly. For this reason the Google Colab platform has been utilized which
offers, among others, GPU like Nvidia Tesla P100, T4 and K80 with 16GB,16GB and 12GB
RAM respectively.

4 Summary

The project idea has been developed and extended through the whole mainly in three milestones:

1. Firstly the topics related to computer vision, in particular OpenCV [5] and basic neural networks
applications have been gathered and analyzed. A first version of object detection for images
basing on YOLO has been developed for the first milestone.

2. In the next months various methods, models and dataset have been analyzed and applied
for practical experiments (such as Tensorflow, Caffe and DarkNet models). Such experiments
included also the processing of video frames, where it was necessary to optimize the time
delay between each video frame in order to obtain sufficient estimation results as reduced
computational time. An object detection application for images and videos basing on pre-
trained models, at that time was, already developed.

3. Finally, after a review of state of the art solutions for object detection, a few papers [1],[2]
have been taken into consideration for an additional project expansion - transfer learning im-
plementation for custom object detection. This final expansion gave the ability to train a
custom dataset and most important evaluate different models and neural network architecture
parameters.

5 Implementation

In the following section the custom object detection proposed approach will be presented in N sections

5.1 Preparation of the dataset

The dataset chosen for this task is the Road Signs Object Detection dataset [9] (example images
represented below) and it contains:

• 877 .png images of 4 classes:

1. traffic light

2. stop sign

3. speedlimit sign

4. crosswalk sign

• 877 .xml annotations containing:

1. bounding box coordinates

2. class name

Figure 3: Sample images from the Road Signs object detection dataset

Next the dataset has been divided into two sections:
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• Training set
The set used for training the model containing 702 images and corresponding labels (80%)

• Test set
The set used for testing the model containing 175 images and corresponding labels (20%)

5.2 Preparation of Tensorflow models files

Tensorflow models, which are used to train a model, require the .csv file format of the labels and for
this cause the .xml labels files have been exported to the .csv format. Additionally a separate source
of record for class annotations is required and for this the label map is generated. The label map is
an annotation of the number of class with its respective label name. For this case, the file looks like:

item {

id:1

name: ’trafficlight’

}

item {

id:2

name: ’stop’

}

item {

id:3

name: ’speedlimit’

}

item {

id:4

name: ’crosswalk’

}

Finally having the files exported, in order to meet the requirements of Tensorflow, the TFRecords
have been generated. The TFRecord file stores the data of images and annotations as a sequence of
binary strings readable by Tensorflow models and it has been generated one for each section: training
TFRecord and testing TFRecord.

5.3 Configuration of the pre-trained model

In order to apply the transfer learning technique it is required to have a pre-trained model, of which
the learning process is deducted from the neural network layers skipping the last layers of the network.
The pretrained model used for the task is

• Single Shot Detector applied to Mobilenet CNN version 1.0 for COCO dataset (ssd mobilenet v1 coco)

The evaluation metrics published by Tensorflow regarding to the model proposed have been presented
below:

Model name Speed (ms) COCO mAP Outputs

ssd mobilenet v1 coco 30 21 boxes

Where Speed reports the model speed running time in ms for a 600x600 image and COCO mAP
is the detector performance on the subset of the COCO validation set.

5.4 Parametrization of the neural network

In the next step different configurations of the underlying neural network have been applied, mostly
the changes are related to the batch size (number of training examples utilized in one iteration)
and the number of training steps. The chosen parameters and the corresponding values have been
represented below:

Model name Number of steps Batch size

ssd mobilenet v1 coco 50.000 8
ssd mobilenet v1 coco 50.000 16
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Once the network configuration has been modified accordingly, the training process has started. The
accuracy metrics obtained from each model on the dataset have been added in the next sections.

5.5 Object detection algorithm implementation

The final step of the project recalls the first one deployed, which is the algorithm for object detection.
The main steps of the algorithm are represented below:

1. Load the classes names (from COCO dataset or from the Traffic Signs dataset)

2. Load the model configuration and the corresponding weights (available pre trained models or
generated from custom)

3. Read the input image and convert it into a blob data in order to feed the blob variable into the
network.

4. Evaluate the output layer names

5. Remove the bounding boxes with low confidence (lower than a provided threshold value)

6. Draw prediction bounding boxes and the corresponding label name.

6 Results

6.1 Training results

As described in section 5.4 different batch sizes have been chosen in order to evaluate the trained
models. Those values will be recapped just below updated with the results obtained. The training
process has been performed on a Google Colab instance machine having provided GPU Tesla P100
16GB RAM. Below the results have been published in form of a table and graphs for intuition.

n Number of steps Batch size ttraining[h : mm] Lossfinalstep mAP

1 50.000 8 1:51 1.5790558 47.54
2 50.000 16 3:14 1.3244216 49.56

6.2 Object detection results

In the final step the generated models have been implemented in the object detection algorithm and
tested for an efficiency evaluation. For the purpose of find the differences between the two models
(if any) two different images have been taken and processed by the object detection algorithm. The
output images results have been added below.

In the first model output image for traffic light the detected objects are three on five with a
probability of 0.78, 0.68, 0.69, while for the second model output the traffic lights detected are five
on five with probabilities 0.47, 0.86, 0.71, 0.51, 0.46. For the second image the signs are detected for
both the models. However in case of the first model the speed sign was detected as a traffic light
(0.52) and the cross walk with 0.95 accuracy, but with an additional false positive (traffic light) in
the air. While for the second model the speed limit sign is detected with an accuracy of 0.99 and the
crosswalk 0.48.

7 Conclusion

Both the models were trained with the same amount of images (same ratio for training and testing)
and samples. The batch size change of the neural network did impact on the mAP value of the model
as well on the final loss value. It has to be said that in case of a twice bigger batch size the training
time as well increases almost twice. The obtained results confirm, in part, that a model trained on a
higher number of training examples in one iteration (batch size) give usually better results when it
comes to localization. Further analysis could be done trying to increase the number of steps and for
other methods.
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(a) mAP in accordance to sample value
iteration

(b) total loss in accordance to sample
value iteration

(c) localization loss in accordance to
sample value iteration

(d) classification loss in accordance to
sample value iteration

Figure 4: Tensorboard graph metrics values for the first network configuration (batch size 8)
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(a) mAP in accordance to sample value
iteration

(b) total loss in accordance to sample
value iteration

(c) localization loss in accordance to
sample value iteration

(d) classification loss in accordance to
sample value iteration

Figure 5: Tensorboard graph metrics values for the second network configuration (batch size 16)

(a) traffic lights detected by first model
iteration

(b) traffic lights detected by second model

(c) traffic signs detected by first model
iteration

(d) traffic signs detected by first model

Figure 6: Output images from object detection algorithm for two trained models: batch size 8 on the
left, 16 batch size on the right
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