
Wrocław University of Science and Technology
Faculty of Electronics

Image processing based line follower

Author: Kamil Goś
Class: Intermediate Project
Supervisor: Ph.D. Witold Paluszyński
Date: January 31, 2021

Abstract

The project involved developing a line tracking algorithm based on image processing algorithms.
It was aimed to replace the commonly used reflection sensors in favour of a camera. In order to
test the algorithms, the project also assumed the creation of a mobile platform. Project assumed
to create the final system using Python language and Robot Operating System (ROS).

The project was a success. Image processing algorithms, regulator algorithms, as well as a
test platform, were prepared and robot successfully followed the line. The whole system was
implemented independently using both raw Python language and ROS. The system has been
successfully tested. There was also no discrepancy between the two implementations (Python
and ROS).

This work is licensed under a Attribution-NonCommercial 4.0 International
license.

1 Introduction
Line followers are robots that follow the line that marks the track. Often there are competitions
for which people can submit their robots and the constructor of the fastest vehicle wins. The
route on which the races take place is usually marked by a black line (15 to 20 mm wide), which
is placed on a white ground. The most common approach to build a line-following robot is to
build construction with reflection sensors on the board. Such sensors can successfully detect the
black line and send their output to some regulator, that process it to control signal. Example of
such construction can be found in Pakdaman and Sanaatiyan [2009].

This project assumes that such sensors can be replaced by a camera. Having camera on board,
frames can be read and using the image processing algorithm the black line can be detected
similar to reflection sensors. Similar approach was introduced in Kondakor et al. [2018].

1.1 Assumptions

This project aimed to create the following parts:

• building a fully operational mobile platform, that can follow the line using developed
algorithms,

• developing the image processing algorithms for line detection and error extraction,

• creating a closed-loop control system based on PD regulator,

• developing the drivers for PWM generators to control motors and servo,

• developing the whole system using raw Python code and Robot Operating System as two
independent systems and compare them,

• building a custommap (track), that can be used to test the created platform and algorithms.

2 Summary
The following sections describe the most important components of the system. The software
part of system was implemented using the following tools:

• Python (version: 3.9.1)

• ROS (version: melodic with Python3)

• OpenCV (version: 4.5.1)

2.1 Mobile platform

This part of the project involved creating a four-wheeled vehicle with a front steering axle and
a rear driving axle. Figure 1 and figure 2 shows the created platform front and back side. The
platform consist of the following elements:

2

Figure 1 – Font side Figure 2 – Back side

• four-wheel chassis with rear wheels driven by two independent 5V DC motors and front
axle controlled by one servo,

• motors controller,

• 2 PWM signal generators,

• Li-Po battery for powering both DC motors,

• DC-DC converter,

• Jetson Nano Developer Kit,

• Uninterruptible Power Supply UPS T-208 for powering Jetson Nano,

• Wi-Fi card with antennas,

• RGB camera.

Connections between those elements are presented in figure 3.

Figure 3 – Signals flow graph

The main processing unit is Jetson Nano Developer Kit. It is powering by an independent
uninterruptible power supply that delivers enough power to run Jetson in high power mode.

3

It is connected with Jetson using a delivered coupler. Directly to Jetson the WiFi network
card is connected so it is passable to establish wireless connection between Jetson and any
other computer. To increase the signal strength, two additional antennas were attached to the
network card. Next element is the camera. It is connected with Jetson nano through MIPI CSI-2
interface. This type of connection gives very fast data transmission which is extremely useful for
image processing applications. To control engines the Pulse Width Modulation signal generator
and motors controller (h-bridge) were used. Jetson Nano is connected with PWM generator
(adjusted to 1kHz) using the I2C interface. The PWM signal then goes to the H-bridge, is
processed (amplified) and goes to the motors’ clamps, so they rotate in the expected direction
and at the expected speed. To control servo motor another PWM signal generator is used.
This one is adjusted to work wich 50Hz frequency which is needed to control servo. It is also
connected to Jetson Nano using the I2C interface. The generated PWM signal goes directly to
the servo, so one can control its rotation. The whole system (excluding Jetson Nano) is powering
by Li-Po battery through DC/DC converter.

2.2 Structure of system

The whole system consist of several dependent parts that communicate together. It was divided
into 5 modules. First one is the image processing module, whose job is to extract the line from
picture and calculate the error (described in details in section 2.3). Next module is the regulator.
It transform error signal to control signal (described in section 2.4). Two modules supporting
PWM generators were also created. One is designed to control DC motors and the other to
control the servo deflection. The final executor of all modules function is main loop, which
performs the superior function in the system. It continuously executes the algorithm thanks to
which the robot is able to follow the line. Figure 4 presents the general idea of working system.

Figure 4 – System flow

4

Figure 5 – Original frame Figure 6 – Line extraction

Figure 7 – Feature extraction Figure 8 – Error calculation

2.3 Image processing module

The image processing module is responsible for extracting line form pictures. First of all, it
reads the new frame from the camera. As the frames are quite large and no full area processing
is required, each image is cropped. Figure 5 shows the original size frame. The red lines visible
in the picture are related to a cropped area. In the next step, the colour space transformation
from RGB to grayscale is performed. It reduces the image from 3 dimensions to only one,
where all pixels are in grayscale. The next four steps are Gaussian blur, thresholding, erosion
and dilation. The output of those algorithms is presented in figure 6. At that moment, the frame
consists of a filtered white line and black background. The next phase is to extract the position
of the line. For this purpose, the contours finding algorithm is used. Found contours are visible
in the figure 7. Then, the idea is to find the centroid of the area defined by the contours. This
goal can be achieved by using the method of moments. Figure 8 shows found centroid marked
as a green dot. Also, it presents the methodology of error calculation. The error is calculated as
the difference between the centre of contours area and the middle point of a considered frame.
In this case, the error is +156. In the next phase, this value is sent to the controller module.

2.4 Control module

Control module is responsible for transforming error signal cumming from the image processing
module to signal that control servo tilt. Developed control loop is closed-loop system (with
feedback from camera) with PD controller. The structure of such system is shown in the figure 9.

Setpoint is related to the expected position of the robot. The error signal is higher than zero
when a robot is on the right side of the line and lower than zero when a robot is on the left
side, so the setpoint is zero. This is related to a robot position in the middle of the line. Then,
the error signal is sent to the PD regulator. Term P is proportional to the current value of the
error when term D is the best estimate of the future trend of error, based on its current rate of
change. To achieve high-performance controller the balance of P and D part of the regulator is
needed. To adjust the impact on the control signal of each part the ? and 3 amplifiers are

5

Figure 9 – Control system structure

used. As light (the random factor) has a large influence on the entire control system, the factors
 ? and 3 can be selected manually by the user. Figure ?? shows the prepared, user-friendly
Graphical User Interface for values adjustment. Besides the sliders for setting the values of ?

Figure 10 – Graphical User Interface

and 3 coefficients in the GUI, one can set whether the windows with the camera image should
be displayed (SHOW), the motors speed (MOTORS) and the LOWER and UPPER threshold for
image binarization.

2.5 Robot Operating System

This project also assumed the construction of the entire system using the Robot Operating
System 1. ROS is a flexible framework for writing robot software. It is a collection of tools,
libraries, and conventions that aim to simplify the task of creating complex and robust robot
behaviour across a wide variety of robotic platforms.
Figure 11 shows the structure of developed system 2. The main elements of ROS system are
nodes. Nodes are executive parts of system structure. They communicate together thorough
topics using messages. This project consist of four nodes. First node is /camera node, that run
the image processing algorithms and reads values from GUI sliders. It publish message with
error to /cam_error topic and message with sliders readings to /trackback topic. The next node

1The idea of using ROS in this project was to learn ROS. The system implemented using Python modules is fully
functional and does not require ROS to run. Generally speaking, the system created with ROS is reconstruction of
Pyhton system using tools and structures delivered by ROS.

2This graph was generated using rqt_graph ROS tool

6

is /controller. It subscribe the /trackbars and /cam_error topics. It transform error signal to
control signal and publish it to /tiltPub topic. Node /tilt subscribe /tiltPub topic and send the
proper (mapped) signal to PWM generator, that control the servo motor. There is also /motors
node that subscribe both /trackbars and /cam_error topics. /trackbars topic deliver message
with motors speed adjusted by user. /cam_error topic deliver message with camera error. The
system is created in such a way that if no line is found in the image, the error is infinite and
/motors node interpret is as "stop" signal.

Figure 11 – ROS structure

2.6 Custom track

To test the robot the custom track was made. Picture of this track is shown in the figure 12. This
is a close loop with some impediments. An "hdf" board with dimensions 2500G2070<< was
used to build this track. The line was designated using 15mm black tape.

Figure 12 – ROS structure

7

3 Results
The designed and developed system met all assumptions. The project was a complete success.
The created robot successfully followed the line with both algorithms implementation. It easily
overcame all the difficulties on the track. Thanks to the use of JetsonNano andGPU acceleration,
it was possible to achieve a system that processes data 50 times per second, which is largely
sufficient for line tracking. Movies presenting the working system are available on the YouTube
platform:

• https://youtu.be/YFPQv9tbDRQ

• https://youtu.be/4GpwnwSXacw

3.1 Python and ROS systems comparison

Therewere no differences observed between the system implementedwith Python and the system
implemented with ROS. In both cases, an algorithm speed of about 50 loops per second was
obtained.

References
Andras Kondakor, Zsombor Törcsvari, Akos Nagy, and István Vajk. A line tracking algo-
rithm based on image processing. In 2018 IEEE 12th International Symposium on Applied
Computational Intelligence and Informatics (SACI), pages 000039–000044. IEEE, 2018.

Mehran Pakdaman and MMehdi Sanaatiyan. Design and implementation of line follower robot.
In 2009 second international conference on computer and electrical engineering, volume 2,
pages 585–590. IEEE, 2009.

8

https://youtu.be/YFPQv9tbDRQ
https://youtu.be/4GpwnwSXacw

A Appendix

Figure 13 – Robot following line 1 Figure 14 – Robot following line 2

Figure 15 – Screenshot of entire GUI

Figure 16 – Robot following line with lights turned on. The idea of mounting lights was to use them to
illuminate the track in case of poor lighting conditions. This idea was not developed because the mounted
lighting generated point light that interfered with the image processing algorithm.

9

	Introduction
	Assumptions

	Summary
	Mobile platform
	Structure of system
	Image processing module
	Control module
	Robot Operating System
	Custom track

	Results
	Python and ROS systems comparison

	References
	Appendix

