
Low Power Sensor Station Datalogger

Rui Carapinha
Witold Paluszynski

Wroclaw Univesity of Technology
Politechnika Wroclawska

22/01/2019

1 Introduction
My project proposal is a Low Power Sensor Station Datalogger, this project is based on an
ATmega328 processor and the goal is to last the most time possible with a battery.

The program collects data every 10 minutes from two thermistor and from a real-time clock
and saves it to a SD Card. The Arduino is sleeping the most part of the time, it only wakes up
to collect the data then go backs to sleep, this way the program can lasts longer with a battery.

2 Hardware and Software
The hardware I used was the following:

• Arduino Uno

• Real Time Clock DS3231

• Micro SD Card Adapter

• 2 Thermistors

• Resistors

• Battery Adapter

The software I used was the following:

• C++

• Matlab

• Fritzing

1



3 Functionality

3.1 Real Time Clock DS3231
A Real-Time clock is a computer clock that keeps track of the current time. The DS3231 is a
Real-Time Clock with high accuracy, this module is powered by its own 3V battery. I choosed
this Real-Time Clock because it has the funcionality of alarms that can be used as interrupts.
Those interrupts will ”wake up” the Arduino every 10 minutes to save the data.

Figure 1: DS3231 - Real-Time Clock

3.2 Micro SD Card Adapter
This module, called Micro SD Card Adapter allows for the Arduino to access the data in the
SD Card. This adapter is the only hardware that can’t work natively with 3.3V. To make it work
with 3.3V the only change it needs is to bypass the 5V to 3.3V voltage regulator, if we do that
we can work with this module at 3.3V.

Figure 2: Micro SD Adapter

2



3.3 Thermistor
The thermistor (thermal + resistor) is a resistance that depends on the temperature. In my case
I’m using a NTC Thermistor (Negative Temperature Coefficient) this means that the resistance
of the thermistor decreases when the temperature rises.

Figure 3: Thermistor

4 Mounting and Coding

4.1 Mounting
The first working mounting I made has in a breadboard and has like the following:

Figure 4: Breadboard Mounting

4.2 Coding
In this part of the report I’ll explain, part by part, how the Arduino code works. First, I’ll start
with the initializations, which are the following:

3



Listing 1: Initializations

//Libraries
#include <Wire.h>
#include <RTClibExtended.h>
#include <LowPower.h>
#include <SPI.h>
#include <SD.h>

//Pins
File dataFile;
RTC_DS3231 rtc;

int SDPin = 4;
int T1Pin = 0;
int T2Pin = 1;
int V1, V2;
float R1 = 10000;
float R2 = 10000;
float logR2_T1 , R2_T1 , T1, Tc1;
float logR2_T2 , R2_T2 , T2, Tc2;
float c1 = 1.009249522e-03;
float c2 = 2.378405444e-04;
float c3 = 2.019202697e-07;

//Variables
int NowHour; //Interrupt
int NowMinute; //Interrupt
String dataString = ""; //SdCard

void setup() {
SD.begin(4);
Wire.begin();
rtc.begin();
rtc.armAlarm(1, false);
rtc.clearAlarm (1);
rtc.alarmInterrupt(1, false);
rtc.armAlarm(2, false);
rtc.clearAlarm (2);
rtc.alarmInterrupt(2, false);
rtc.writeSqwPinMode(DS3231_OFF);
Interrupt();

}

This code starts all the libraries (Wire, RTCLibExtended, LowPower, SPI and SD) and all
the libraries necessary for the program to work. The most important part of this code is the last
part, the setup part. This part of the code initalizes the communication with the clock and clears
any pending alarms the clock can have.

The next part of the code, is the functions. The first function I’ll explain is the function that
reads the values from the thermistors and from the real-time clock and saves it to the SD Card.

4



The function, with the name Datalog, is the following:

Listing 2: Datalog

void DataLog() {
//Reading Thermistor 1
V1 = analogRead(T1Pin);
R2_T1 = R1 * (1023.0 / (float)V1 - 1.0);
logR2_T1 = log(R2_T1);
T1 = (1/(c1+c2*logR2_T1+c3*logR2_T1*logR2_T1*logR2_T1));
Tc1 = T1 - 273.15;

//Reading Thermistor 2
V2 = analogRead(T2Pin);
R2_T2 = R2 * (1023.0 / (float)V2 - 1.0);
logR2_T2 = log(R2_T2);
T2 = (1/(c1+c2*logR2_T2+c3*logR2_T2*logR2_T2*logR2_T2));
Tc2 = T2 - 273.15;

DateTime now = rtc.now();
dataString += String(now.year(), DEC);
dataString += ",";
dataString += String(now.month(), DEC);
dataString += ",";
dataString += String(now.day(), DEC);
dataString += ",";
dataString += String(now.hour(), DEC);
dataString += ",";
dataString += String(now.minute(), DEC);
dataString += ",";
dataString += String(Tc1);
dataString += ",";
dataString += String(Tc2);

File dataFile = SD.open("datalog.txt", FILE_WRITE);
if (dataFile) {

dataFile.println(dataString);
dataFile.close();
dataFile.println();

}
dataString = "";

}

This function reads the values from the thermistors by using the following formula:

R2 = R1 ·
Vin

Vout

It works like a voltage divider between the resistance of the thermistor and a known resis-
tance (10kΩ, in this case). Then we get the temperature in Kelvin using:

T [K] =
1

A+B · ln(R)+C · [ln(R)]3

5



Then we just need to make a simple conversion from Kelvin to Celsius.
This function retrieves the data from the thermistors and from the real-time clock and saves

it to the SD Card. The data is saved in the following format:

Year,Month,Day,Hour,Minute,Temperature1,Temperature2

The next function handles the interrupt and the alarms. The code is the following:

6



Listing 3: Interrupt - Part 1

rtc.clearAlarm (1);
rtc.clearAlarm (2);
DateTime now = rtc.now();
NowHour = String(now.hour(), DEC).toInt();
NowMinute = String(now.minute(), DEC).toInt();
if (NowMinute <= 10) {

rtc.setAlarm(ALM1_MATCH_HOURS , 10, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 20, NowHour , 0);
rtc.alarmInterrupt(2, true);

}
else if (NowMinute > 10 && NowMinute <= 20) {

rtc.setAlarm(ALM1_MATCH_HOURS , 20, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 30, NowHour , 0);
rtc.alarmInterrupt(2, true);

}
else if (NowMinute > 20 && NowMinute <= 30) {

rtc.setAlarm(ALM1_MATCH_HOURS , 30, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 40, NowHour , 0);
rtc.alarmInterrupt(2, true);

}
else if (NowMinute > 30 && NowMinute <= 40) {

rtc.setAlarm(ALM1_MATCH_HOURS , 40, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 50, NowHour , 0);
rtc.alarmInterrupt(2, true);

}
else if (NowMinute > 40 && NowMinute <= 50) {

if(NowHour < 23){
rtc.setAlarm(ALM1_MATCH_HOURS , 50, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 0, NowHour+1, 0);
rtc.alarmInterrupt(2, true);

}
else if(NowHour >= 23){

rtc.setAlarm(ALM1_MATCH_HOURS , 50, NowHour , 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 0, 0, 0);
rtc.alarmInterrupt(2, true);

}
}

7



Listing 4: Interrupt - Part 2

else {
if(NowHour < 23){

rtc.setAlarm(ALM1_MATCH_HOURS , 0, NowHour+1, 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 10, NowHour+1, 0);
rtc.alarmInterrupt(2, true);

}
else if(NowHour >= 23){

rtc.setAlarm(ALM1_MATCH_HOURS , 0, 0, 0);
rtc.alarmInterrupt(1, true);
rtc.setAlarm(ALM2_MATCH_HOURS , 10, 0, 0);
rtc.alarmInterrupt(2, true);

}
}

}

This code clears any pending alarm and implements an alarm every 10 minutes. The final
function is the one that executes when an interrupt is triggered, the function is the following:

Listing 5: Time Function

void TimeHandler() {}

void TimeFunction(){
DataLog();
Interrupt();

}

This set of two functions are the ones that handle with the interrupt and call the other two
functions: Interrupt and Datalog. The last piece of code that implements every thing is the
following:

Listing 6: Time Function

void loop() {
attachInterrupt(digitalPinToInterrupt(2),TimeHandler ,LOW);
LowPower.powerDown(SLEEP_FOREVER , ADC_OFF , BOD_OFF);
detachInterrupt(digitalPinToInterrupt (2));
TimeFunction();

}

This code attaches the alarm to the interrupt and sets on the LowPower mode for the Ar-
duino, this will make the Arduino go to ”sleep” and only executes the next lines of code when
the interrupt is triggered.

8



5 Results
The data I collected after I was running the program a few hours was the following:

Figure 5: Data Collected from the SD Card after running a few hours

After that we can easily analyze the data in the MATLAB script:

Figure 6: MATLAB analysis of the results

The results I had where pretty staisfactory and we can easily analyze them with the MAT-
LAB program I developed.

9



6 Conclusion
In this project I was able to work with interrupts and low power modes of the processor, this
was very interesting and with has a great experience. I learned that we can extend the batteries
life without afecting the processor and the program capabilities. It was also very interesting
working with the Real-Time Clock (a really useful module to keep track of the time and to
generate alarms) and with the SD Card Adapter so we can move data to wherever we want.

The results I had were very interesting, we could easily get the results from the SD Card
and analyze them in the MATLAB.

This project can still be upgraded a lot by, for example, by removing the Arduino and just
using the processor because the Arduino has a lot of features (for example, USB connection)
that aren’t necessary in this project.

7 References

References
[1] Voltage Regulator,

http://www.advanced-monolithic.com/pdf/ds1117.pdf

[2] Real-Time Clock DS3231,
https://www.robotics.org.za/DS3231-MOD

[3] Low Power,
https://www.gammon.com.au/power

[4] Thermistors,
https://www.bcmsensor.com/ntc-thermistors-from-bcm-sensor/

[5] Low Power Library,
https://github.com/rocketscream/Low-Power

10


