
Supervisory control synthesis for
mobile agent system

Intermediate Project - final report

Paulina Porczyńska
4 February 2019

Tutor: PhD Witold Paluszyński

Faculty of Electornics
Embedded Robotics



1 Introduction

1.1 Problem description

The main objective of this project is to develop a controller able to administrate
group of autonomous robots in such a way that no collisions would occur and move-
ment would be smooth, without unnecessary delays. This controller (called later
Supervisory or Main Controller) should be above all robots, should know each robot
path and position and be able to detect potential collisions and prevent them. We
can say that Main Controller does not have the direct power over any of the robots
but rather gives permission for movement when robots ask for it.

Each robot should be an individual, autonomous entity and have it’s own task -
it’s own route to follow. This paths can overlap and intersect. Robots inform the
Controller about their next move and wait for appropriate responses. As the result,
every robot should be able to fulfil it’s individual task as smoothly as possible and
without any collisions. Ideally, robot movement could be random, however here, for
the sake of the simplicity, each robot has a predefined path and moves like on rails.
Also because this reason, the robots are represented by discs with known radius.

Developing a simulation of movement of several robots, each following it’s own path
and avoiding collisions, was the desired result of this project. In addition, there
should be room for future development and upgrade of this system, so the whole
project could be easily expanded. All code that was develop for this project is avail-
able here (6).

1.2 Assumptions

This project is based on a Engineering Thesis(5) in which similar problem was im-
plemented in Matlab. Here, the whole final system was written in ROS environment,
as independent package, written in Python. Main idea that stays behind developing
such system is to base the architecture on state machines. The controlling parts of
both robots and supervisory controller could be implemented as event-based system
(DES). As explained in next parts, this assumption was only partially satisfied but
for good reasons.

1



1.3 Programming Environment and other tools

Project was implemented as ROS Kinetic package(2) with use of Smach automaton
library(3). In addition, for better result presentation the python Matplotlib library
examples was used (4).

2 Implementation

2.1 System architecture

Using the benefits that ROS architecture provides, the whole system consists of
several nodes:

• Time generator try clock.py providing simulation time for continuous part of
the robot.

• Position estimator get coord server.py that computes robot position on XY
plane. One node of this type should be provided for each robot.

• Logger plot server.py that saves one robot results in .txt file. One node of this
type should be provided for each robot.

• Supervisory Controller main controller server3.py (for 3 robots) that provides
collision-free movement.

• Robot node DummyRobotPath.py which connects all of the above parts into
one system.

Time generator, position estimator and logger are self-explanatory nodes without
any tricky parts. While setting up the time generator, the ∆t value can be chosen
(default value if 0.05). It determines the execution time and accuracy. Position es-
timator takes the distance traveled by robot and returns it’s position on XY plane
according to provided path.

The Main Controller node is more interesting as it basically is the main functionality
of this whole system. While solving the analogical problem in Matlab (shown in (5))
the architecture of Supervisory Controller was based on DES and was controlled by
an automaton. The initial idea here was to do it under the same principles. However,
after rethinking the architecture and getting to know the ROS better it was clear
that Main Controller can work even better as Ros Service. That means, giving orders
to robots only when robots wants it (we assume that robots want the best for the
whole system so they are politely asking for permission when they should). This

2



solution can be treated as event-based because Main Controller is driven by the
event ”obtain question from robot”.
Main Controller knows the routes of each robot as well as it’s size. On this basis
it computes the collision matrix for these paths. Collision matrix is kind of look-
up table that tells in which sectors the robots could be without having a collision
or deadlock. If sector n on path P1 and sector m on path P2 are closer to each
other than the sum of radiuses of the robots going along this paths, then of course,
these two robots cannot be in this sectors at once. Other problem is the deadlock
avoidance. The formation of deadlock is shown on picture 1. The simplest solution
of this problem is by analysing the collision matrix and expand the forbidden states
by possible pre-deadlock arrangements.

The last and most important part of this project is the Robot part. The Robot node
consists of two parts - discreet and continuous. Discreet path is the less complex one.
It is based on a simple automaton that has three states: Moving, Idle and Action.
The Action state is not used here and is a seed for future development. The Moving
state checks if robot can keep moving. If not (when robot needs obtain permission),
the Idle state occurs. In the Idle state, the robot asks Main Controller for permission
until it is given and Moving state can occur again. Both states can transit to ’quit’
when simulation time is up. This simple automaton was developed using Stage(? )
and is shown below on 2.
Finally, the continuous part of the robot has all of it’s variables defined (size, ve-
locity, path...), is connected to Time Generator, Position Estimator and Logger and
update it’s own position with every clock tick. At this point of development of this
system, the robots don’t have an acceleration but an easy way of implementing it
was provided here.

As stated before, source code for this project is available (6).

Figure 1: Deadlock

3



Figure 2: Robot basic automaton

2.2 Start-up

The whole simulation can be start with two launch files: one for starting the services
and publishers, one for starting the robots. All important variables describing the
simulation can be set in the launch files. It is extremely important to make sure
that values set in this files are compatible (e.g. robots sizes and velocities...). After
starting roscore node, launch services.launch and launch three robots can be run,
possibly with the −− screen−−wait option just to know when simulation can be
ended. It is important to close simulation manually as it is the only way of saving
the log files.

2.3 Possible paths

For purpose of this project several possible paths was made. They were designed
to have multiple intersections and bottlenecks that could lead to collisions or dead-
locks. Figure 3 presents paths used in experiments. Each path is read from text file
containing consecutive points of robots route. Between every two points the robot

4



moves in straight line and space between this points is treated as one sector. Be-
cause of this, defined points shouldn’t be too far apart and too close to each other.
The general rule of thumb would be that the sectors should be longer than robot
diameter and shorter than three diameters. The content of path file containing blue
path from picture 3 is shown below:

0 -3
1 -3
2 -2
3 -1
3 0
3 1
2 2
1 3
0 3
-1 3
-2 2
-3 1
-3 0
-3 -1
-2 -2
-1 -3

2.4 Animation

Simulation results are saved by plot server.py node under name specified in launch
file. This log contains five columns of data: simulation time, x position, y posi-
tion, sector number, velocity and distance since start of new lap. Then, this can be
plot with provided plot position2.py or plot position3.py scripts working for two and
three robots consecutively. Results are presented in form of graphs of sector number
in time, velocity in time, distance in time and also as simple animation of robot
movement on XY plane.

WARNING: Animation runs in a loop, starts over after it ends. Unfortunately during
restart is can slightly shift some data caused it to go out of sync. Results can be
presented correctly for first few loops, but later the cumulative error will cause the
false view on system and can lead to false observation that robots do have collisions.
It is recommended to restart animation after 2-5 loops.

5



Figure 3: Designed paths

3 Results

Result presented here was obtained for simulating movement of three robots follow-
ing paths visible on 3. Simulation parameters:

Robot 1 Robot 2 Robot 3
path blue red green

velocity 0.2 0.2 0.2
size 0.5 0.5 0.5

sim time 800
∆t 0.005

Since it is impossible to include animation in this report, it is recommended to
download the results and run it locally. All files together with example results can
be download from ??. Meanwhile the static plots are shown below on figure 4. First
column shows sectors, second distance and the last one - velocity. From the first two

6



sets of plots it can be seen that each robot indeed have a moment of waiting for
clear path. The last set of plots (velocity) shows that overall movement was quite
continuous, without longer breaks.

This results combined with animated movement of robots shows that the system
designed during this project works well and is good base for future expansions.

7



F
ig

ur
e

4:
R

es
ul

t
of

ex
am

pl
e

si
m

ul
at

io
n

8



References

[1] http://wiki.ros.org/Robots/TurtleBot

[2] http://www.ros.org/

[3] http://wiki.ros.org/smach

[4] https://matplotlib.org/2.1.2/gallery/animation/basic example.html

[5] Paulina Porczyńska ”Synteza sterowania systemu agentów mobilnych”, 2017, en-
gineering thesis

[6] Source code of this project available here:
https://drive.google.com/open?id=1FqytDwp8MZY462hxFcFQBOFKz 1YQHK7

9


