
IoT system for sensors data acquisition and
controlling devices via Web

Dominik Kędzierski, Piotr Matuszak

Intermediate Project under supervision of Witold Paluszyński Ph.D.
Embedded Robotics, Faculty of Electronics

Wrocław University of Science and Technology

January 30, 2019

Abstract

The report summarises works on event-based system which monitors a state of a
room being opened or closed by detecting a key being hanged on or hanged up from an
intelligent key hanger equipped with Wi-Fi module and informs users about these events
via website. Additionally, system allows to control a light source in a room via Wi-Fi
control module with minimal delay. The result of this project is a stack of services and
embedded systems to control and acquire data with almost imperceptible delay via the
Internet, using modern protocols and frameworks.



1 Introduction

1.1 Background of the project
Student organisations have their workshops in buildings of the university. Due to university’s
regulations, only a few of members of an organisation have necessary permission to get a key
to their workshop from a concierge desk. Other members of student organisation would like to
have an ability to check whether their organisation’s workshop is open.

An ability to control a device from any location is a key part of all Internet of Things systems.
A control part would prove a two-way nature of the proposed architecture by expanding its
capabilities.

1.2 Assumptions and goals of the project
Project aims to solve a problem described in section 1.1 by creating an architecture for near real-
time web-based system which gives a possibility to control and gather data from IoT modules.
For the data acquisition part, a key module was designed and created, and for the control part
of the project – a Wi-Fi controller for a LED strip.

2 Architecture and project design

Figure 1: An architecture of the system

The whole system consists of the following parts:

• a website front-end, based on Angular framework,

• a server back-end, based on Django framework,

• an asynchronous engine based on twisted, autobahn and paho-mqtt libraries which
extends the back-end capabilities to use MQTT protocol,

• IoT modules with ESP8266 Wi-Fi module: LED strip controller and Key module for
control and data acquisition, able to communicate usingWi-Fi IEEE 802.11 LAN protocol.

Communication within a system is based on MQTT and Websocket protocols. All modules
of the server use Docker containers.

2.1 Communication protocols
The choice of communication protocols was driven by their ability to facilitate real-time data
transfer with low overheads.

1



2.1.1 Websocket

Websocket is a full-duplex protocol over a single TCP connection. It is a popular web protocol
supported by all modern browsers and backend frameworks.

When the connection is first established between a server and a client, the protocol allows
messages to be passed back and forth without client requesting for the data, while keeping the
connection active. This ability makes Websocket a preferred protocol over HTTP, where a data
packet from the server has to be requested by a client.

Websocket allows the server to push a message to all connected clients when an event occurs,
for example a new data from a module appeared on the server.

Websocket was also used in communication between server back-end parts.

2.1.2 MQTT

MQTT is a publish-subscribe based protocol designed to operate in systems where a small code
footprint is required and/or network bandwidth is at a premium [1]. For the proposed system,
it is a preferred communication protocol between a web server and IoT modules. It allows to
maintain an open full-duplex communication channel between modules and server and can be
used to detect when an IoT module is offline. Its implementation is lightweight which makes it
ideal for embedded systems.

2.2 Docker
The project is using Docker Containers to logically divide different system elements. Such
approach enable programmers to easily create distributed system where most of functions are
not assigned to hardware, but can run anywhere.

Docker containers wrap a piece of software in a complete filesystem that contains everything
needed to run: code, runtime, system tools, system libraries – anything that can be installed on a
server. This guarantees that the software will always run the same, regardless of its environment.

Docker containers running on a single machine share that machine’s operating system ker-
nel; they start instantly and use less compute and RAM. Images are constructed from filesystem
layers and share common files. This minimizes disk usage and image downloads are much faster
[2].

2.3 Website front-end
Angular is a TypeScript-based front-end framework used to build websites. It was chosen due
to its simple-to-use two-way data binding mechanism [3].

Two way data binding allows the webpage to alter its DOM immediately when a data
structure is updated. In case of this project, data is being sent to the front-end client via
Websocket connection. Arriving data update the data structure on the client side. Two way
binding then immediately updates the view presented in the browser (Figure 2).

When a new module starts to communicate with the server, it automatically appears on a
website. No additional configuration on a website is needed.

2.4 Server back-end
Django is a Python back-end framework which allows to easily design a website back-end, create
a database model, set an API and many other. Additionally, Django Channels extension was
used to extend Django abilities to use Websocket protocol.

2



Figure 2: Website front-end

A key part of a quick webpage-side data update is a Django signals mechanism. It is a set
of implementable events which are executed before or after a certain operation on a database
occurs. In the project, when a new data on module appears in the database, a correct signal
is triggered and data is pushed to clients. This is necessary for a quick data update on client
side (either website or a module).

2.5 Asynchronous engine
This part of back-end is necessary to use MQTT protocol – front-end (browsers) and Django
framework do not support MQTT protocol in easy way. Moreover it is worth to reduce a number
of activities performed in the worker container with Django and database. It was decided to
create a separate container with asynchronous engine to translate requests from Websocket to
MQTT and vice versa. This solution works very well and relieves container with Django.

2.6 IoT modules
There are two types of modules in the system:

• Key module, which acquire data like: key hanged on / hanged up, temperature,

• LED controller module, which allows to control five-channel LED strip.

Both types of modules are based on ESP8266WiFi module programmed using Arduino ESP8266
library.

Modules connect to WiFi network selected by user, react to events (hanging a key, pressing
a button) by sending data using MQTT protocol to correct MQTT topics. LED controller
subscribes necessary topics for control purposes and react on each message by changing a color
intensity. Moreover, a Key module sends a temperature data regularly (every 60 seconds).

3



2.6.1 Key module

Key module can be powered using microUSB cable (5V) – a current standard for portable
devices’ chargers.

Key module primary goal is to detect a key on a key hanger, consisting of two metal screws,
one connected to GND, the other to ADC of the ESP8266 board. Should a key be hanged, a change
in voltage can be detected and the data can be sent to the server. This method was chosen as
the most reliable. Other solution – capacity sensor – was rejected as a key detection method
based on previous experience of such detection system: it was unreliable and detected an event
in random moments.

An additional option to notify a "I’ll be right back" (in case of hanged up key) or "I will
leave soon" (in case of hanged on key) on a website is available under the button on the module.

By pressing a button for more than 2 seconds, a network to which a module is connected
can be changed. When this happens, a module becomes an Access Point to which a user can
connect and set up SSID and password. Additionally, user can change a name under which this
module is shown on a website. After providing new network credentials, module goes back to
the client mode and connects to the new router. This ability is implemented using WiFiManager
library [4].

The temperature is measured using DS18B20U+ digital thermometer, which communicates
with ESP8266 using OneWire protocol.

Figure 3: Schematic of key module

4



a) b)

Figure 4: PCB design of key module a) Top layer b) Bottom layer

Figure 5: Soldered key module

2.6.2 LED module

LED module is powered from 24V DC (this is a requirement of a LED strip used). To power
ESP module DC-DC converter was used.

Module consists of ESP8266 board connected to MOSFET transistors. These MOSFETs
allow to control resultant voltage on strip by PWM signal. Similar transistors for [5], [6] available
in local stores were searched. IRML2060 transistors was selected. This transistors has similar
parameters.

Module subscribes MQTT topics for each of controlled colours (red, green, blue, cold, warm)
and act accordingly, setting a PWM duty cycle thus controlling the intensity of each colour.

5



Figure 6: Schematic of LED controller module

a) b)

Figure 7: PCB design of led controller module a) Top layer b) Bottom layer

6



a) b)

Figure 8: Led controller module a) Soldered module b) Working module

3 Project results and summary
The project result is an architecture of a web-based system which is designed to minimise
the delay between obtaining the data and presenting the data to the website user or user
controlling the device via website interface and device reacting to the control signal. Moreover,
the architecture ability can be proven using designed IoT modules.

The architecture designed to minimise the delay in transmission of the information between
all parts of the system allows to control the LED strip with almost imperceptible delay (usually
in a matter of less than half of a second), although the data is transmitted over the Internet
(the results may vary depending on a quality of connection, Internet traffic etc.). Also, the data
obtained by the Key module are pushed through the system and presented immediately to the
user without any necessity to reload the page or to wait for specified amount of seconds.

Modules are programmed to be connected easily into the system and are manageable using
any device with Wi-Fi capability. New modules are automatically registered on a website which
minimises the amount of configuration steps needed for the user and makes the system as easy
as possible to use.

References
[1] mqtt.org community members. mqtt.org. http://mqtt.org/faq.

[2] Docker. Why Docker. https://www.docker.com/what-docker.

[3] Google. Angular – NgModel. https://angular.io/api/forms/NgModel.

[4] tzapu. WiFiManager. https://github.com/tzapu/WiFiManager.

[5] Philippe Libioulle. A WiFi-enabled RGB LED strip controller. https://www.stavros.io/
posts/wifi-enabled-rgb-led-strip-controller/.

[6] Stavros Korokithakis. RGB LED Strips Controller. https://www.hackster.io/
ThereIsNoTry/rgb-led-strips-controller-b15300.

7

http://mqtt.org/faq
https://www.docker.com/what-docker
https://angular.io/api/forms/NgModel
https://github.com/tzapu/WiFiManager
https://www.stavros.io/posts/wifi-enabled-rgb-led-strip-controller/
https://www.stavros.io/posts/wifi-enabled-rgb-led-strip-controller/
https://www.hackster.io/ThereIsNoTry/rgb-led-strips-controller-b15300
https://www.hackster.io/ThereIsNoTry/rgb-led-strips-controller-b15300

	Introduction
	Background of the project
	Assumptions and goals of the project

	Architecture and project design
	Communication protocols
	Websocket
	MQTT

	Docker
	Website front-end
	Server back-end
	Asynchronous engine
	IoT modules
	Key module
	LED module


	Project results and summary

