WROCAW UNIVERSITY
OF SCIENCE AND TECHNOLOGY

FAcuLTY OF ELECTRONICS
EMBEDDED ROBOTICS

INTERMEDIATE PROJECT

Rule engine for distributed home automation system

Author: Supervisor:
Tomasz BARTOS Witold PALuSzyski, Ph.D

Abstract

The goal of the project was to implement rule based engine for distributed home
automation system, which can apply custom user logic. Logic can be understood
as set of states, which can occur in the system and if all states are matched as
expected, then some predefined action will be performed.

This work is licensed under a Creative Commons “Attribution- @ @ @
NonCommercial-ShareAlike 4.0 International” license.

Wrocaw 2018

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Tomasz Bartos Intermediate project January 23, 2018

conditions

\

after susnet

action

Turn on light in kitchen

Figure 1: Model of rule engine based on neural network neuron|4]

Rule engine

1 Introduction

Project proposes method of control based on rule engine, which allows to customize con-
trol logic over home automation system. It is an extension of bachelors thesis Home
automation system based on event driven architecture[l], it means that most of the as-
sumptions and implementation details have not been described in this report.

Defined logic can be understood by rules, which have following form:
If temperature in kitchen is below 25 Celsius and tf it is after sunset then turn on

light in kitchen
If sensor in garage detect move and tf alarm is armed then raise alarm

As can be seen, presented set of sample rules is composed from some common parts,
which can be used to build user defined logic:

e Bolded text represents if-then statements, which is a standard form of rule repre-
sentation [2][3].

e Underlined text represents states of the system given by set of predefined values
and possible actions.

This form of representation gives possibility to divide problem into smaller parts.
First one responsible for monitoring state changes in the system and filtering under given
conditions, second one responsible for performing user defined actions. Presented model
has been shown on Figure 1.

Sample rule defined from comercial Zipato[5] home automation system can be observed
on Figure 2. As can be seen, in particular example green boxes are representing conditions
which should be fulfilled. Orange box is representing action that will be performed when
all conditions are correct. Similar method has been used by Polish Fibaro group, what
has been shown on Figure 3.

Tomasz Bartos Intermediate project January 23, 2018

Rule &

<; [Lving Room window 1en (2238 2

0]

Configure

—

Save

Figure 2: Sample rule from Zipato[5] home automation system|6]

[-] Days of Week Cmon Dtue S wed © Thy SiFri @ sat @ sun e o

Time At Sunset : : 06 s

. =0 X

O

Figure 3: Rule from Fibaro[7] home automation system|8]

2 Implementation

Project has been implemented in C++ programming language as independent binary com-
municating with other components in micro-services architecture[2]. Following libraries
have been used during project realization:

e Fast-RTPS as Real Time Publish Subscribe protocol implementation [9]

e Protocol-buffers as extensible mechanism for serializing structured data [10].

2.1 User interface

User interface has been constructed in order to provide possibility to send commands
between users and the system. As an input can be taken JSON formatted string repre-
senting payload of predefined Protocol-buffers message, which will be published to other
components inside system. Presented format will used only on back-end side, which means
that understanding of this format is not needed by the user. View of user interface has

Tomasz Bartos Intermediate project January 23, 2018

USER Time.TimePoint]
{"day":1,"month™11,"year":1990,"weekDay":3,"hour™:12,"minute™40,"second™ 12}

USER Automation.RegisterRule|{"name":"SampleRule","rule":{"conditions":
[["'messageName"™ " Time.TimePoint","payload""CAEoDA=="}],"action";

Figure 4: User interface used in the system

been shown on Figure 4. Additional informations about messages have been described in
section 2.2.

2.2 Rule engine

Rule engine has been realized as component responsible for:
e Adding, storing and removing user defined rules
e Monitoring state of components requested by user

e Performing user defined actions

Logic of rule engine has been shown on Figure 6. As can be seen, logic has been
realized by observation of states received from the system. Data was received with usage of
RTPS protocol, where content of messages was a Protobuf serialized structure. Developed
component was able to compare data payloads in order to check, if given by user content
was a subset of received data, what has been shown on Figure 5. As can be seen, template
have this same value of all its fields as received structure, which means that this template
can be successfully matched.

3 Summary

Described method has been successfully implemented and tested in separated test en-
vironment. From received partial results have been obtained, that presented method is
flexible and generic for analyzing structured data. Unfortunately, project has not been
realized successfully, because one of used libraries was crashing during advanced usage.
Error was not trivially solvable without additional help from library developers, suitable
issue has been reported.

Tomasz Bartos Intermediate project January 23, 2018

message [ime

message [ime
I
1

our = 21: uint32
minute 37: uint3Z2 minute

(a) Payload of structure (b) Requested template

Figure 5: Template comparison with payload structure

Rule engine System

ser

Register rule:

if temperature = 25
and is after sunset
then turn on light

Subscribe for temperature

L

Subscribe for sun state

¥

__Temperature state 24

-

!
|
|
I
I
|
|
o
=
I
|
|
I
I
i
1
I
|
|
I
|

Before sunset
i

A

Termperature state 25 |
e

/

After sunset

A

Temperature state 28

A

Turn on light

v

Unregister rule

Unsubscribe temperature

Y

Unsubscribe sun state

Y

Rule engine System

Figure 6: Logic realized by rule engine

Tomasz Bartos Intermediate project January 23, 2018

References

[1] T. Bartos, “Home automation system based on event driven architecture,” 2016.

[2] M. Fowler, Domain-Specific Languages, ser. Addison-Wesley Signature Series
(Fowler). Pearson Education, 2010. [Online]. Available: https://books.google.pl/
books?id=rilmuolw_YwC

[3] Rule-based machine learning. [Online]. Available: https://en.wikipedia.org/wiki/
Rule-based_machine_learning

[4] PlauntUML. [Online]. Available: http://plantuml.com/
[5] Zipato system. [Online]. Available: https://www.zipato.com/

[6] Zipato system rule. [Online]. Available: https://www.
homecontrols.com /homecontrols/products/media/AA_Manufacturers/ZP-Zipato/
Zipato_Programming 02.jpg

[7] Fibaro system. [Online]. Available: https://www.fibaro.com/pl/

[8] Fibaro rule. [Online]. Available: http://fibarozwaveshop.com/wp-content/uploads/
2014/11/fibaro-adding-scene.png

[9] eProsima Fast RTPS. [Online]. Available: http://www.eprosima.com/index.php/
products-all/eprosima-fast-rtps

[10] Protocol Buffers — Google Developers. [Online|. Available: https://developers.
google.com/protocol-buffers/

https://books.google.pl/books?id=ri1muolw_YwC
https://books.google.pl/books?id=ri1muolw_YwC
https://en.wikipedia.org/wiki/Rule-based_machine_learning
https://en.wikipedia.org/wiki/Rule-based_machine_learning
http://plantuml.com/
https://www.zipato.com/
https://www.homecontrols.com/homecontrols/products/media/AA_Manufacturers/ZP-Zipato/Zipato_Programming_02.jpg
https://www.homecontrols.com/homecontrols/products/media/AA_Manufacturers/ZP-Zipato/Zipato_Programming_02.jpg
https://www.homecontrols.com/homecontrols/products/media/AA_Manufacturers/ZP-Zipato/Zipato_Programming_02.jpg
https://www.fibaro.com/pl/
http://fibarozwaveshop.com/wp-content/uploads/2014/11/fibaro-adding-scene.png
http://fibarozwaveshop.com/wp-content/uploads/2014/11/fibaro-adding-scene.png
http://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
http://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

	Introduction
	Implementation
	User interface
	Rule engine

	Summary

