
Wroclaw University of Science and Technology

Faculty of Electronics

Automation and Robotics - Embedded Robotics

Intermediate Project

Android application for controlling
window-walking robot’s movement

Author:
Piotr Lukomski

Supervisor:
Ph.D. Witold Paluszyński

February 5, 2018

Abstract

Window-walking robot control via Bluetooth. Made using Android Studio and Java programming
language. Implementation done with two activities, asynchronous class and separate thread for reading
and writing to and from Bluetooth streams. Communication with robot done by sending simple strings
to invoke movement.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

1 Introduction

Main goals of this project were:

• enable exchange of data between application and robot

• create interface to control robot’s movement

• functionality to create route for the robot

• functionality to memorise it’s path based on time/distance

Besides there were two ”hopeful” goals:

• creation of frame for messages and periodical handshaking the robot

• implementing encryption

Goals were fulfilled partially as obstacles arose along the way.
Firstly, I had serious problems in searching for reliable tutorials as they could greatly speed-up my work’s
progress. After checking many solutions existing online (most of which didn’t work at all or didn’t work
with HC-05), I had to forfeit that path and develop my own solution. It resulted in many hours and days
spent on learning about Java, Android and Bluetooth handling.

Secondly, obstacles were in accessing and changing the ”backend” of the robot - not everything could
have been done in the app itself. It also became clear that in this particular case controlling one leg of the
robot is not an easy task, letting synchronizing four of them alone.

Software:

• Android Studio - it is a very good, free IDE - really helps with downloading necessary packages,
libraries, gives hints and helps to keep your code clean. It is most useful if you memorize several
commands from the keymap.

Hardware:

• Samsung Grand Trend with Android 5.1.1

• Bluetooth adapter HC-05

2 Implementation

2.1 GUI

First thing I started to do was Graphical User Interface. It changed over time from one activity (one
screen) to two - first with list of devices you can connect to, second - after you connect - with control
buttons.

In the first version of the application I implemented enabling phone’s Bluetooth adapter, discoverability
and pairing with other devices, however I abandoned that part - it was redundant, made my code messy
and application unstable, while it wasn’t in the scope of my application. Finally you have only list of your
paired devices in the list, so pairing has to be done by Android built-in tools.

1

Figure 1: This was first design

Figure 2: This is final design

2

As you can see, I abandoned the ”left” and ”right” buttons. Why? Becaused it occurred that the
robot is unable to turn left or right.

2.2 The code

Each activity (screen) contains buttons and other elements that have to be handled in code. After creating
GUI we have to declare our elements in our activity’s main class and write methods to handle what they
do. How it looks in the code of first activity:

Figure 3:

Besides, I had to handle the viewing of paired devices and behaviour after choosing one:

Figure 4:

3

In the second activity there is more buttons, which means more behaviours and more code:

Figure 5:

As you can see, there is declared handler which is used to check whether a button is still pressed. It is
used to detect end of the long-press on the button which allows you to perform different actions on single-
click and long-click. In this case it is used to perform extension of robot’s leg only a bit on single-click
and as long as you hold the button. Quite nice feature, which I am satisfied with.
There is also custom function ”isInteger” which allows me to check whether a String is in fact an Integer.

Again declaration of buttons and text fields, invoking asynchronous class to execute and perform
connection and further handling long-press, in this particular case on btnForward:

Figure 6:

4

Only btnBackward is handled in the same way, for the rest it wasn’t needed, so they only invoke their
methods:

Figure 7:

Here we have example of method invoked by button - first one has some logic in it - it sends messages
to go forward/backward and to measure as long as the desired measurement value is obtained:

Figure 8:

5

Now we come to the part that caused most troubles and hours of contemplation - handling Bluetooth
connection:

Figure 9:

Above we have an asynchronous class that shows us dialog telling that connection is being made
and performs connecting to the specified Bluetooth device. On PostExecute it invokes ”Connected” toast
message (using myToast custom method), initializes and starts new thread that will run in the background
and read/write any data passed to the input or output of the Bluetooth socket.

The following screen is a very important one - it handles receiving measurements from HC-05. Because
of the fact that we are communicating using Strings I used regular expressions to detect what comes
through the input stream. There was a big problem, because it occurred that HC-05 sends measurements
of leg expansion character after character in a fast way. It caused input stream to collect that data in
an unregular way, sometimes several characters at the time, sometimes one by one. It was the reason I
used regular expressions as method to detect beginning and end of each communicate. Later it turned
out not to be such great idea, because a lot of logic in this method caused the thread to slow down and
bring many problems while implementing ”expand to the given measure” functionality, where reading and
writing happens very quickly.

6

Figure 10:

7

On the following screen we see the rest of ”read” method, along with writing measurement value to
screen (which wasn’t so obvious). There is also ”write” method for sending messages and ”cancel” to close
the Bluetooth Socket.

Figure 11:

8

3 Summary

As you can see the robot control is not what it was supposed to be due to several reasons. Firstly, leg
expansion measurement wasn’t ready in the beginning, which prevented me from starting with development
of my goals in the first place. In exchange, we focused on implementing other functionalities, like turning
on/off, using pump and expanding leg to the desired length. The progress of work is, in my opinion, good,
and right now we are in a comfortable place to automate the movement control with significantly less effort
than we invested so far. Implementing ”hope to” goals is now also quite real, as the basic fundaments are
set.

Besides, Android Studio turned out to be a very friendly environment to code in. However, Android
programming differs a lot from regular Java usage and requires a lot of effort to learn it’s specifics. It’s
quite rewarding though and enforces to use complicated mechanisms of programming in a flexible way you
probably wouldn’t use often in other projects.

3.1 References

You can make lists with automatic numbering . . .

• ”The Busy Coder’s Guide to Android Development” - Mark L. Murphy

• ”Android Programming for Beginners” - John Horton

• HC Serial Bluetooth Products User Instructional Manual

• ”Bluetooth Tutorial” on youtube - Mitch Tabian

• Internet - developer.android.com, stackoverflow.com

9

	Introduction
	Implementation
	GUI
	The code

	Summary
	References

