
Haptic Feedback modelling for
manipulator with 3DOF

Jakub Koban

23.01.2018

Department of Cybernetics and Robotics, Wrocaw University of Science and Technology
Class: Intermediate Project

Instructor: Witold Paluszyski Ph.D.

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported”
license.

Abstract

The aim of this project is to explore possibilities of modelling a haptic feedback for 3DOF
redundant manipulator in two dimensions using the Unity3D game engine. The behaviour
of the manipulator (as real object) was simulated using inverse kinematics approach.
The results illustrate feasibility, problems, and effectiveness of selected environment and
mathematical methods.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en


1 Introduction

1.1 Assumptions

1. Design and create simple manipulator model in Unity3D.

2. Compute kinematics and inverse kinematics of such model, to mimic real object’s
behaviour.

3. Create as the simulation where manipulators behaviour could be controlled with
respect to the force applied to its effector.

4. Create a visualization of important parameters (drag forces in joints, angles etc.)

The goal of this project in one sentence is: Control manipulator’s joints drag forces in
order to influence (slow down, stop) the movement of effector by analysing the force
applied to this effector.

1.2 Haptic/Force feedback

Haptics, in general, refers to the branch of engineering dealing with tactile human-
machine interfaces. Another similar term (often used alternatively) is force feedback
- that term originates from control theory where force is used as input for the control
system rather than for instance position. Haptics interfaces are often suitable for force
feedback based control systems (because o compliance), which is why many devices are
controlled using force feedback (e.g. surgical training machines [1], or game simulators).

1.3 Unity3D

Unity3D[2] is currently the most popular development platform using in building high-
quality 3D and 2D games. One of the biggest advantages is that it supports all (25+
most popular platforms including Windows, Linux, Mac, Android, PlayStation, etc.) out
of the box. Unity is using NVIDIA PhysX - real-time physics engine which provides
realistic effects based on physics. It supports rigid body dynamics, soft body dynamics,
even particles and cloth simulation. It was used eg [3] so it should be capable application.
There are also a lot of tutorials that simplifies and speeds up the learning process.

2 Realization

3 Manipulator model

Creating graphical element in unity can be achieved in two ways: It can be composited
of ready-to-use simple shapes (like a square, circle, hexagon) or exported from external
graphical design tool (like Gimp, Adobe Photoshop or Blender in case of 3D). The links
of manipulator were created using simple shapes. The effector was designed in Gimp. To
enable physics interaction between models in the game engine one need to add a compo-
nent called RigidBody2D, where important parameters like mass, drag, and constraints
could be specified (more information could be found in [4]).

1



Figure 1: Manipulator model.

4 Kinematics and Inverse Kinematics

Figure 2: Three DOF planar manipulator simplified model

4.1 Analytic solution

Direct kinematics of manipulator model could be very easily derived analytically from
figure 2

x = l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3) (1)

y = l1sin(θ1) + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3) (2)

φ = θ1 + θ2 + θ3 (3)

Inverse kinematics are not that easy. They can be derived using some symbolic equation
solver, however it results in equations that contains a lot of arcsin and arccos functions
which are not numerically stable (see History and motivation section of [5]). Taking into
account that facts after a lot of complicated transformations one can finally derive:

θ2 = atan2(sin(θ2), cos(θ2)) (4)

θ1 = atan2((k1yn − k2xn), (k1xn − k2yn)) (5)

θ3 = φ− (θ1 + θ2) (6)

where, k1 = l1+l2cos(θ2), k2 = l2sin(θ2), cos(θ2) =
x2+y2−l21−l22

2l1l2
, sin(θ2) = ±

√
1 − cos2(θ2),

xn = x− l3cos(φ), yn = y − l3sin(φ), l1,l2 and l3 are lengths of manipulators links.

2



Having such implementation is ideal in theory, however in practice it also consists of
several troubles. Mathematical representation above was firstly prototyped using Mat-
lab. Such inverse kinematics implementation was working as expected. Unfortunately in
Unity it does not because of its mathematical library imperfection. For instance comput-
ing sin and cos for very small numbers results in different results in Unity (using both
C# Math library or Unity’s MathF) and Matlab.

4.2 Jacobian method

One of many alternative methods to solve inverse kinematics problem is the Jacobian
method. Very detailed description of this (and another Jacobian based) method could be
found in [6]. Shortly Jacobian method iteratively computes an estimate of the distance
to the desired position and minimizes the error. It is, in fact, an optimization problem,
for which many good algorithms exist (e.g. Levenberg-Marquardt or Gradient Descent
with Momentum). However in Unity dealing with matrices is also problematic (rotation
represented with quaternions, so matrices are basically not needed), that is why simple
gradient was implemented. Jacobian Inverse was substituted with transposition which
also simplifies computations.

5 Dynamics

The necessary mathematics required to obtain manipulators dynamics (in Euler-Lagrange
or Newton-Euler formalism) could be found in [7]. It is quite complicated and involves a
lot of equations, so it is not presented explicitly here due to report’s length constraints.
Some crucial parameters (e.g. inertia matrices, rigid bodies velocities ) are available
in physX but unfortunately are not present in Unity3D (a huge part of PhysX API is
hidden, because of optimization reasons). Due to lack of better linear algebra support,
the haptic feedback realization was extremely simplified to affect the only effector, by
changing angular drag parameter in last joints rigid body [8].

6 Visualization

Figure 3: Visualization of manipulators parameters.

3



Figure 3 presents the visualization of most important manipulators parameters. T0-
T2 represents angles in particular joints. Epos depicts effectors position, and Drag rep-
resents the actual value of angular drag in the last joint. Creating UI in Unity3D is very
customizable and intuitive (more information could be found in [9]).

7 Tools licensing

1. Blender - open source.

2. Unity - closed software, free of charge for open source.

3. Matlab - closed software, free 30-day trial available for non-commerce.

8 Results

• Model of 3DOF manipulator was created. Its dynamical parameters were described
using rigid bodies (defined in game engines).

• Kinematics and Inverse Kinematics was computer.

• Setting position of manipulators effector is possible in runtime (first two joints
rotation using mouse, last joint orientation using up/down arrows.)

• Force interactions (haptic feedback) was simplified to the last joint because of game
engines lack of precision and/or appropriate functions.

• Essential informations about manipulators were presented graphically.

• Jacobian method for solving inverse kinematics depends on minimization algorithm.
Proposed algorithm sometimes hits local minima which is very annoying. Better
algorithm (e.g. Levenberg-Marquardt) should fix that, however doing complicated
computation in selected environment is not easy.

• Having analytical solution does not always mean that it could be used directly
in practice (atan2 should be used instead of arcsin and arccos - expressing basic
formula in more comfortable form may be, as here very difficult).

• Unity3D is very powerful tool however it is not capable of doing precise mathemat-
ical computations, and its physics engine is computing everything approximately
not precisely.

• There are not many scientific publications about haptic/force feedback methods -
it is often necessary to search for informations in papers of different (but similar)
subjects.

4



References

[1] W. Rozenblit M. Hong. A haptics guidance system for computer-assisted surgical
training using virtual fixtures. 2016 IEEE International Conference on Systems,
Man, and Cybernetics, 2016.

[2] https://unity3d.com/unity.

[3] Zhonghua Lu A. Maciel, T. Halic. Using the physx engine for physics-based virtual
surgery with force feedback. Int J Med Robot 5(3): 341- 353, 2009.

[4] https://docs.unity3d.com/ScriptReference/Rigidbody2D.html.

[5] https://en.wikipedia.org/wiki/Atan2.

[6] M. Opaka I. Dulba. A comparison of jacobian-based method of inverse kinematics for
serial robot manipulators. nt. J. Appl. Math. Comput. Sci., 2013.

[7] A. Ghanbari SMRS. Noorani. Explicit dynamic formulation for n-r planar manipula-
tors with frictional interaction between end-effector and environment. International
Journal of Advanced Robotic Systems, 2011.

[8] https://docs.unity3d.com/ScriptReference/Rigidbody2D-angularDrag.html.

[9] https://unity3d.com/learn/tutorials/s/user-interface-ui.

5


	Introduction
	Assumptions
	Haptic/Force feedback
	Unity3D

	Realization
	Manipulator model
	Kinematics and Inverse Kinematics
	Analytic solution
	Jacobian method

	Dynamics
	Visualization
	Tools licensing
	Results

