
Intermediate Project
Embedded system for sewing machines activity monitoring using

WiFi protocol

Author: Mateusz Rado

Department of Electronics, Embedded Robotics
Wrocław University of Science and Technology

Supervisor: Ph. D. Witold Paluszyński, K-7

February 2nd, 2017

Abstract

Main goal of the project was to accomplish embedded system, which could monitor industrial
sewing machine activity (engine speed, number of stitches, amount of thread, etc.). All elements
of the system should work in one WiFi network and send information from sewing machine to the
server. In the first part of this report, it was presented problem. Afterwards it was described way of
configuration of the FTP server at Raspberry Pi computer and implementation WiFi client on the
embedded module (ESP8266). The results of the project are discussed in the last section of document.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

1 Introduction

Sewing industry is gaining in importance. Sewing machines are used in more and more complicated tasks,
level of its complication increase fast. For this reason monitoring of sewing process is really important.
Monitoring of sewing machine parameters such as number of stitches during sewing a single material
and related to it speed of motor could helps in optimization of production and increasing quality of the
products. Fast and precise data transfer from sewing machine straight into the server might be used as
one of the method to achieve these results.

2 Raspberry PI

Server for receiving data from sewing machine was set on the Raspberry Pi. First of all, operating system
was installed on the SD card. Choosen system was Raspbian Jessie (release date: 23.09.2016).

2.1 Connection via SSH

If there is physical access to the router, Raspberry could be connect to it via Ethernet cable. Then the
router automatically gives Rasperry IP and there are ability to connect to it via SSH protocol.

First connection to Raspberry Pi (without knowledge about Raspberry’s IP in the network) could be
also realize via editing file cmdline.txt, located at SD card, by adding at the end of line with configuration
of the Linux kernel, IP which we want to be used by Raspberry. Assigned IP should be same type as
network in which it is using. For example if network address is type of 192.168.X.0, then the Raspberry
IP could be analogous with changed value of X (in range 1-255). It is important to not overwrite existing
IP in the network.

Before one of this actions, connection to Raspberry could be realized.

2.2 Wireless USB network adapter

In this project, Raspberry is connected to WiFi network using wireless USB adapter - Tp-Link TL-
WN725. To use this adapter, drivers for it have to be installed. To do it, the version of installed
system has to be known. Commend uname -a typed in the command line will return the version of
the system. Then, at the page: https://www.raspberrypi.org/forums/viewtopic.php?p=462982#
p462982, proper version of the system and related to it link for download drivers should be find. After
that, to get the package with the drivers were used command wget with proper link as argument. Next,
downloaded package were unpack with tar xzf and name of the unpacked file, then installed sudo
./install.sh. At the end system was rebooted.

2.3 Automatic connection to WiFi network

To set the automatic connection with WiFi network for Raspberry Pi, file with configuration of the
networks should be edited. Searched file - interfaces.d is localized in \etc\network directory. Proper
configuration of the file is shown below:

i n t e r f a c e s (5) f i l e used by i f u p (8) and ifdown (8)

Please note that t h i s f i l e i s wr i t t en to be used with dhcpcd
For s t a t i c IP , con su l t / e t c /dhcpcd . conf and ’man dhcpcd . conf ’

Inc lude f i l e s from / etc /network/ i n t e r f a c e s . d :
source−d i r e c t o r y / e t c /network/ i n t e r f a c e s . d

auto l o
i f a c e l o i n e t loopback

i f a c e eth0 i n e t manual

al low−hotplug wlan0
i f a c e wlan0 i n e t manual

wpa−conf / e t c / wpa suppl icant / wpa suppl icant . conf

al low−hotplug wlan1

2

https://www.raspberrypi.org/forums/viewtopic.php?p=462982#p462982
https://www.raspberrypi.org/forums/viewtopic.php?p=462982#p462982

i f a c e wlan1 i n e t manual
wpa−conf / e t c / wpa suppl icant / wpa suppl icant . conf

2.4 Remote access

Remote access signficantly simplifies work with Raspberry Pi. VNC Server is one of the available solutions
for remote access tools. Installation were made using command sudo apt-get install tightvncserver. Next
application were turn on with tightvncserver and password for connecting with Raspberry were set. After
than, it was neccesary to edit file \etc\init.d\tightvncserver to allow access to Raspberry. Source
of this file is shown below:

export USER=’pi ’

eva l cd ˜$USER

case ”$1” in
s t a r t)

su $USER −c ’/ usr / bin / t i g h t v n c s e r v e r : 1 ’
echo ” Sta r t i ng TightVNC s e r v e r f o r $USER ”
; ;

stop)
p k i l l Xtightvnc
echo ” Tightvncserver stopped ”
; ;

∗)
echo ”Usage : / e t c / i n i t . d/ t i g h t v n c s e r v e r { s t a r t | stop }”
e x i t 1
; ;

e sac
e x i t 0

Next proper rights were set to this file using sudo chmod 755 \etc\ init. d\ tightvncserver . At the
end process were configurated to start with the system: sudo update-rc.d tightvncserver defaults.

After installation of VNC Server apllication at Windows, remote access is realized by typing IP
of Raspberry and number of port (for example 192.168.1.18) and password set in file \etc\init.d\
tightvncserver.

3 FTP server

Server used in this project was set on the Raspberry Pi 2 computer. There was two main types of the
FTP servers available on Unix system: ptoftpd and vsftpd. During this project it was used vstpd server.

Process of installation were started by typing sudo get-apt install vsftpd. During the installation, user
is asked about mode of the server (inetd\ standalone). In this project were chosen standalone mode.
File with configuration of the server is located at . Source of the file:

l i s t e n=YES #running as a s epe ra t e p roce s s
l i s t e n i p v 6=NO
anonymous enable=YES #anonymous l o g i n
anon root=/home/trym/ f tp #cata l og f o r anonmous us e r s
l o c a l e n a b l e=YES #l o c a l u s e r s can l o g i n
w r i t e e n a b l e=YES #wr i t i ng i s a l lowed in d i r e c t o r i e s
loca l umask =077 #r i g h t s f o r c rea ted f i l e s
anon upload enable=NO #anonymous upload to the s e r v e r
anon mkdi r wr i t e enab le=NO #anonymous c r e a t i n g d i r e c t o r i e s
d i rmes sage enab l e=NO #messages during changing the d i r e c t o r y
x f e r l o g e n a b l e=NO #log t r a n s f e r s
connec t f rom por t 20=YES #from which port connect i ons w i l l s t a r t
x f e r l o g f i l e =/var / log / vs f tpd . l og
x f e r l o g s t d f o r m a t=YES
i d l e s e s s i o n t i m e o u t =600
data connect i on t imeout =120

3

f tpd banner=Hel lo ! #message be f o r e connect ion
c h r o o t l o c a l u s e r=YES #p r o h i b i t i o n o f changin home d i r e c t o r y

#l i s t o f u s e r s enabled to changing
#home d i r e c t o r y (i f c h r o o t l o c a l u s e r=YES)
#c h r o o t l i s t e n a b l e=NO
#c h r o o t l i s t f i l e =/etc / vs f tpd . c h r o o t l i s t
s e c u r e c h r o o t d i r=/var /run/ vs f tpd
pam service name=vs f tpd

After configuration of FTP server, user can connect to it using dedicatied applications e. g. FileZilla
or typying in web browser addres of Raspberry Pi preceded by ftp:// (e. g. ftp://192.168.1.18).

Figure 1: Home directory of FTP server after connection

4 Configuration and programming of ESP8266 module

4.1 ESP8266 configuration

Module is very sensitive and if it has insufficient current efficiency power, it could restarts or work
unstable. Power should be filtered by proper capacitors. Correctly way of connection ESP8266 module
(including pull-up/pull-down 10k resistors and filtering 100nF capacitor) are shown below. It also might
be used 470µF capacitor close to module, which should prevent it from unwanted restarts and ensure
stable work.

Figure 2: Connection of ESP8266-12E

4

4.2 Arduino IDE

ESP8266 module brings user a lot of benefits. It can be programmed in many languages such as LUA,
python or Arduino. In this project ESP8266 module were programmed in Arduino Integrated Devel-
opment Environment. Used version of Arduino IDE was 1.8.1. To perform an environment for pro-
gramming ESP8266, it was installed the newest version of software, which can be downloaded from
https://github.com/esp8266/Arduino[5].

To install the software, user has to choose option preferences from Arduino menu and provide link to
the software located on github in proper window, as shown below.

Figure 3: Arduino preferences menu

Then it has to be choose option Board Manager from Tools menu. In this window, user has to find
ESP8266 software and choose proper version of softare. In this case, it was choosen version 2.3.0, because
it provides libraries for handling with SPI Flash FileSystem, which has been used in this project.

Figure 4: Arduino board manager

To program the module, user has to set few options according to version of his ESP8266 board. In
this project it was used ESP8266-12E board and below is shown configuration for programming this type
of board.

5

https://github.com/esp8266/Arduino

Figure 5: Programming preferences

5 FTP client

5.1 SPIFFS

ESP8266 has own file system, which helps handling with data storaged on the board. SPIFFS (SPI
Flash File System) is stored on the same flash chip as the program, but programming new sketch will
not modify file system contents. This allows user to use SPIFFS to store sketch data on the module.[6]

Figure 6: Flash layout used in Arduino environment
[6]

Data could be saved on the ESP8266 from Arduino IDE level (using ESP8266 Sketch Data Upload
tool) or by creating file directly in the code.

5.2 Client

As main part of the project it was developed FTP client, which handle connection with the network and
transfer files between module and server set on Raspberry Pi. Program allows to download SPIFFS file
from server to board, upload SPIFFS file from board to server and show SPIFFS files storaged on the
board. Every time module is turning on, program scan network (IP and password for both server and
WiFi network are provided in the code), connects to the network, connects to the server and allows user
to do proper action via serial port monitor:

• -u upload

• -d downlaod

• -r show SPIFFS files

Program were developed using libraries for Arduino cited in the references. Results of working program
are shown below. During the test it was succeeded to download files from the server into the flash memory
of ESP8266 module and upload files from memory to FTP server.

6

Figure 7: Serial port monitor

6 Results

During the formation of this project it was created a prototype of module, which provide proper powering
of ESP8266 and connecting of signals from sewing machine. It was also developed program, which allows
user to download files from external FTP server and upload files into it (client of the WiFi network),
which was implemented using Arduino IDE and libraries available at ESP8266 Community Forum[4]. It
was succeeded to transfer files between server and client in WiFi network.

Taking into account software, it has to be prepared implementation of handling with signals incoming
from controller of sewing machine and saving it in file at ESP8266 module. Next this file will be send to
a FTP server using already developed program.

References

[1] Simon Monk, Raspberry Pi: Przewodnik dla programistów pythona. Helion, 2014.

[2] M. Evans, J. Noble, J. Hochenbaum, Arduino w akcji. Helion, 2014.

[3] ESP8266 SDK Getting Started Guide ver. 2.5, 2016.

[4] ESP8166 Community Forum
https://github.com/esp8266.

[5] ESP8266 core for Arduino
https://github.com/esp8266/Arduino.

[6] ESP8266 SPIFFS library at github.com
https://github.com/esp8266/Arduino/blob/master/doc/filesystem.md#
file-system-object-spiffs.

[7] Arduino WiFi library
https://www.arduino.cc/en/Reference/WiFi.

[8] Arduino serial library
https://www.arduino.cc/en/reference/serial.

[9] Efka DC1550 instruction manual.

[10] Efka Compiler C200 user manual.

[11] Efka compiler C200 for advanced learner.

7

https://github.com/esp8266
https://github.com/esp8266/Arduino
https://github.com/esp8266/Arduino/blob/master/doc/filesystem.md#file-system-object-spiffs
https://github.com/esp8266/Arduino/blob/master/doc/filesystem.md#file-system-object-spiffs
https://www.arduino.cc/en/Reference/WiFi
https://www.arduino.cc/en/reference/serial

	Introduction
	Raspberry PI
	Connection via SSH
	Wireless USB network adapter
	Automatic connection to WiFi network
	Remote access

	FTP server
	Configuration and programming of ESP8266 module
	ESP8266 configuration
	Arduino IDE

	FTP client
	SPIFFS
	Client

	Results

