
Hemispherical omnidirectional
gimbaled wheel-based mobile robot

Final Report

Maciej Ba luta

Artur Dróżdż

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Intermediate Project

PhD Witold Paluszyński

Wroc law University of Science and Technology
Faculty of Electronics

Department of Cybernetics and Robotics

February 16, 2017



1 OVERVIEW

1 Overview

Mobile robots are commonly used nowadays. Taking a look at motor vehicles
we may consider, that almost all of them have power-trains designed with the
same idea. We can easily separate engine, transmission, drive shafts, differ-
entials and the final drive. Torque is transferred from the engine through a
drive-shaft to the wheels, hence the wheels’ movement speed is proportional
to their radius and angular speed of the motor. However, there exists a spe-
cial kind of power-train. Its unusualness is caused by a hemisphere rotating
with large angular speed. When the point of contact with the ground lies
on the rotation axis then no movement is present. The driving force appears
when rotating hemisphere leans out in one of the two axis parallel to the
ground plane. The contact point has some linear velocity proportional to ro-
tor’s angular speed and trigonometric combination of flap angles in two axes.
The hemisphere has a few functions: accumulates kinetic energy alike fly-
wheel, has a role of the final drive components like usual wheels and changes
seamlessly gear ratio in the same way as stepless transmission. Historically,
the first known research was made in 1938 according to the article [1]. Some
known research work was made by students from research group [2] and other
people [3].

1



2 CONSTRUCTION

2 Construction

Figure 1: Final result — robot with HOG drive

Overview of the final construction is shown on fig. 1. Most important details
are shown on fig. 2. There are 2 servos that control the axis of the hemisphere
and a DC motor that rotates the hemisphere. We used popular TowerPro
MG995 servos with some cheap DC motor. We think they were good enough
for construction of that size and we haven’t encountered any problem with
power or accuracy.

2



2.1 Frame model 2 CONSTRUCTION

Figure 2: Detailed view of HOG drive

2.1 Frame model

Figure 3: 3D model used for main part of drive

We used an open-source CAD model [4] created by i-make-robots (shown on
figure 3). Unfortunately, this model has many disadvantages. Small parts
caused problems with finding appropriate elements, f.e. rod ends should be
smaller, but it was impossible to buy such ones. After creating the model
on 3D printer it occured, that its stiffness is not sufficient, therefore there

3



2.2 Inverse kinematics 2 CONSTRUCTION

were some clearances on fastenings. The rest of the construction was made
at first from aluminium profiles, then the LEGO blocks were used due to the
fact, that they offered more possibilities to adapt for our needs. LEGO tyres
made from rubber gripped well to the ground.

2.2 Inverse kinematics

Having such type of construction it was necessary to calculate inverse kine-
matics. Using Denavit-Hartenberg notation we created a function taking
inclination of the hemisphere in one of the axes on the input and giving back
servo’s angular position as a result. Possible angular positions are restricted
due to mechanical limitations caused by specific length of connectors between
servo and rings surrounding the hemisphere and by other parts’ dimensions.
Changing coordinates system is done in the following way:

A = Rot(Z,−π
2

) · Trans(X, a3) (1)

B = Trans(Z,−d1) · Trans(X,−a1) ·Rot(Z,−
π

2
) · Trans(X, a2) (2)

R = Rot(X,Θ1) ·Rot(Z,
π

2
) ·Rot(X,Θ2) ·Rot(Z,−

π

2
) (3)

P1 = R · A (4)

P2 = R ·B (5)

where:
Θ1,Θ2 - angles of desired hemisphere’s inclination

Having these equations we can calculate coordinates of the point defined
as hole at the end of rudder bar which is connected by rod with the bar
surrounding the hemisphere. Using calculated point’s coordinates we can
easily get the desired angle of servo. For the first servo we have:

(x− P2x)2 + (y − P2y)
2 + (z − P2z)

2 = R2
2 (6)

y = −a4 (7)

(z + d3)
2 + (x+ a5)

2 = r2 (8)

For the second servo:

(x− P1x)2 + (y − P1y)
2 + (z − P1z)

2 = R1
2 (9)

y = −a4 (10)

(z + d2)
2 + (x− a5)

2 = r2 (11)

where:
P1 and P2 are the points calculated in previous step

4



2.2 Inverse kinematics 2 CONSTRUCTION

a3 - distance from the middle of the ring to the middle of the first rod’s end
d1 - height of the engine’s holder box
a1 - width of the engine’s holder box
a2 - distance between engine’s holder box and the middle of the second rod’s
end
R1 - length of the second servo push rod
R2 - length of the first servo push rod
d2 - distance between the middle of the ring and first servo rotation axis
d3 - distance between servos rotation axes
Solving this system of equations is done in the following way:

a = −2P2x (12)

b = −2P2z (13)

c = R2
2 − (−a4 − P2y)

2 − P2x
2 − P2z

2 (14)

d = 2a5 (15)

e = 2d2 (16)

f = r2 − a5
2 − d2

2 (17)

g = −a− d

b− e
(18)

h =
c− f

b− e
(19)

i = g2 + 1 (20)

j = d+ 2gh+ eg (21)

k = f − h2 − eh (22)

ix2 + jx+ k = 0 (23)

(24)

Solving the last equation with respect to x we get the result. Delta of this
quadratic equation determines existence of the solution. Finally we have:

Φ1 = atan2(y1, x1) (25)

Φ2 = atan2(y2, x2) (26)

Φ1 and Φ2 are desired angles of servos.

5



3 HARDWARE

3 Hardware

3.1 Electronics

We used ST Nucleo boards with STM32 F4 series microcontrollers with
Arduino-style shield described below. We wanted to use as many ready-
to-use components as possible to focus on mechanics and algorithms. We
had to use separate power supplies, because servos operate with 5V and all
logic components with 3.3V.

3.2 Shield

We needed to extend the Nucleo board with more components such as:

• power supply,

• DC motor driver,

• and OLED display.

We decided to make an Arduino-style shield with all these components and
also external connectors for servos. This saved us a lot of problems caused
by tangled, loose cables. It was also possible to change Nucleo board. The
shield is shown on figure 4.

6



4 SOFTWARE

Figure 4: Shield connected to Nucleo board

Display shows current PWM settings of servos and DC motor and some
rotating box that indicates if the system is working — everything happens
in main loop, so if the program gets stuck, the box does not rotate.

4 Software

4.1 Microcontroller program

The microcontroller was used in order to:

• control servos for gimbal system and DC motor of the hemisphere using
PWM signal of desired duty and frequency,

• provide an interface for the user to modify the parameters online (via
serial interface),

• show current state of the system to ease debugging.

The controller was programmed in C language using HAL libraries pro-
vided for STM32 platform. Hardware configuration was generated using

7



4.1 Microcontroller program 4 SOFTWARE

STM32CubeMX. Such approach allowed easy and fast prototyping. In our
opinion the platform is stable enough to use for complex projects, even
though it is relatively new on the market.

4.1.1 CMSIS

We discovered CMSIS library (Cortex Microcontroller Software Interface
Standard) which contains DSP toolkit. It contains a lot of functions use-
ful for robotic systems and we were especially interested in matrix manipula-
tion. What is important is that they are well optimized for Cortex microcon-
trollers and they use features of ARM cores like SIMD operations. Despite
being written in C with assembler, CMSIS has easy to use object oriented
interface.

We used the library to implement compute inverse kinematics of the gim-
bal. The library worked well, even though we used software implementation
of floating point numbers.

We implemented functions that create rotation and translation matrices
that are later multiplied to solve kinematic chains. An example function
looks in the following way:

void matrix_create_rotationX(arm_matrix_instance_f32 *mat,

float32_t angle)

{

float32_t ang_sin, ang_cos;

arm_sin_cos_f32(RAD2DEG(angle), &ang_sin, &ang_cos);

arm_fill_f32(0, mat->pData, 16);

mat->pData[MAT_INDEX(0,0)] = 1.0;

mat->pData[MAT_INDEX(1,1)] = ang_cos;

mat->pData[MAT_INDEX(1,2)] = -ang_sin;

mat->pData[MAT_INDEX(2,1)] = ang_sin;

mat->pData[MAT_INDEX(2,2)] = ang_cos;

mat->pData[MAT_INDEX(3,3)] = 1.0;

}

We compared the results from CMSIS based program with a GUI imple-
mented in C# and the results were the same and during testing there were
no problems with precision or overflows.

8



4.2 Serial communication protocol 4 SOFTWARE

4.2 Serial communication protocol

The system communicates over Bluetooth serial link using HC-05 module.
The protocol was text-based and the following commands were implemented:

? - returns current PWM settings for servos and DC motor:
SER1=%d, SER2=%d, MOT=%d

r - resets PWM settings to initial values and returns the state as in ? com-
mand.

a ROLL PITCH - sets roll and pitch angles for the gimbal. ROLL and PITCH

are given as angle * 100 without point, because standard implementation
of sprintf does not support floating point numbers. Returns PWM set-
tings as in ? command if angles set properly, otherwise it may return ”Wrong
value!” if given angles are out of range or ”Forbidden SER1=%d, SER2=%d”
if the given angles lead to a position that is forbidden in software (to avoid
damage).

m MOT - sets motor PWM value and returns all PWM settings as ? command
if successful, ”Wrong value!” if out of range.

SER1 SER2 MOT - sets values of PWM for servos and DC motor. Return given
settings as ? command if successful, ”Forbidden setting” if such config is
forbidden in software, ”Wrong value!” if the values are out of range.

All arguments are checked for being valid. If the issued command syntax is
invalid, microcontroller returns ”Wrong arguments” message.

4.3 GUI

4.3.1 Inverse kinematics solver

The first GUI was implemented in C#. It provided possibility to calculate
inverse kinematics, display rotation matrices, transform results to servo co-
ordinates and send data through serial port directly to the driver board. It
was replaced by other GUI written in C++ because of better portability.

9



4.3 GUI 4 SOFTWARE

Figure 5: First version of GUI

4.3.2 Game controller interface

The seconds graphical program we developed was created in order to control
our robot with a game controller. Joystick (2D analog controller) is used for
setting gimbal position and trigger (1D analog controller) is used for setting
DC motor speed. Such interface is intuitive and feels natural for such kind
of robot.

10



4.3 GUI 4 SOFTWARE

Figure 6: Gamepad interface

The program is written in C++. We used SDL 2.0 library for accessing
game controller and drawing user interface. Program communicates with
robot via Bluetooth serial link and sends desired angles and motor speed.
Robot responds with set PWM values.

Quite surprisingly the trickiest part of this program was serial communi-
cation. At first we used serial interface built in Nucleo. We tried to use some
serial port library, but after sending some commands the communication was
stuck and it was needed to unplug the Nucleo board and plug it again. After
hours of debugging it turned out that the communication channel simply
blocks when the input buffer gets full. When we changed the code to read

11



5 RESULTS AND CONCLUSIONS

data sent by the microcontroller everything started to work flawlessly.

5 Results and conclusions

Figure 7: Final result

The robot is able to move in the desired direction and with desired speed,
however there is no simple relation between position of the joystick and linear
velocity of the robot, so it was not possible to design deterministic trajectory
control, especially without feedback mechanism which is not present in our
construction. However in real construction, like f.e. cars, we have also non-
linear relation between accelerator and speed of the car. In case of nonlinear
friction between dissimilar materials it is not possible to design the control
for every type of the ground, hence we get wide range of different behaviours.

Probably the most challenging part of the project was mechanical con-
struction. The size of our construction makes it impossible to find suitable
parts such as joints and rods. It was hard to make construction stiff and
stable enough. The most critical task is to attach hemisphere to drive-shaft
coaxially and rigidly. Fortunately, it was realized with good effect.

Analysis of energy efficiency could be interesting area of research for en-
gineers who are looking for alternative drive systems. It seems even more

12



REFERENCES REFERENCES

attractive, because of very small amount of articles and materials discussing
this topic.

References

[1] Hemisphere Drive Speedster. http://blog.modernmechanix.com/

hemisphere-drive-speedster/. Access: 13.02.2017.

[2] Model of mobile robot with HOG wheel. http://konar.usermd.

net/wordpress/wp-content/uploads/2016/11/hog.pdf. Access:
13.02.2017.

[3] E. Ackermann. You’ve Never Seen a Robot Drive System
Like This Before. http://spectrum.ieee.org/automaton/robotics/

diy/youve-never-seen-a-drive-system-like-this-before. Access:
13.02.2017.

[4] HOG Drive. https://www.thingiverse.com/thing:52097. Access:
13.02.2017.

13

http://blog.modernmechanix.com/hemisphere-drive-speedster/
http://blog.modernmechanix.com/hemisphere-drive-speedster/
http://konar.usermd.net/wordpress/wp-content/uploads/2016/11/hog.pdf
http://konar.usermd.net/wordpress/wp-content/uploads/2016/11/hog.pdf
http://spectrum.ieee.org/automaton/robotics/diy/youve-never-seen-a-drive-system-like-this-before
http://spectrum.ieee.org/automaton/robotics/diy/youve-never-seen-a-drive-system-like-this-before
https://www.thingiverse.com/thing:52097

	Overview
	Construction
	Frame model
	Inverse kinematics

	Hardware
	Electronics
	Shield

	Software
	Microcontroller program
	CMSIS

	Serial communication protocol
	GUI
	Inverse kinematics solver
	Game controller interface


	Results and conclusions

