
Chair of Cybernetics and Robotics
Faculty of Electronics

Wroclaw University of Science and Technology

Environment for testing Endogenous Configuration
Space Approach algorithms

Author:
Łukasz Chojnacki

Supervisor:
Dr. Witold Paluszyński

Wroclaw, February 2017



2

Abstract

This report presents a software and a hardware environment for Endoge-
nous Configuration Space Approach. ECSA is a set of motion planning
algorithms and can be used as a trajectory tracking algorithm. The al-
gorithms have already been tested during computer simulations. The
next step is to build real-time robotic system and use ECSA algorithms
to plan and track trajectory for mobile robot.

1 Introduction
A autonomous mobile robot should move from point A to point B avoiding obsta-

cles. The problem can be divided into two subproblems: motion planning problem and
trajectory tracking problem. The first subproblem can be treated as planning feasible tra-
jectory for mobile robot. The second one is a problem of minimization reference (given)
trajectory and actual trajectory. There are a lot of different approaches and algorithms
to solve this kind of problems. One of the them is Endogenous Configuration Space Ap-
proach that attempts to find such controls that move a mobile platform from one point to
another. The approach has been introduced in [Tchoń and Jakubiak, 2003] and different
algorithms using this approach are listed below:

• Extended [Tchoń and Jakubiak, 2002]

• Imbalanced [Janiak and Tchon, 2010], [Janiak and Tchoń, 2011]

• Prioritarian [Ratajczak and Tchoń, 2013]

• Lagrangian [Tchoń et al., 2015b], [Tchoń et al., 2015a], [Tchon and Góral, 2015]

• Lifted Newton [Janiak and Tchoń, 2015], [Janiak, 2015]

All this algorithms are a part of Endogenous Configuration Space Approach framework
[Chojnacki, 2016] which is a python library. To solve the trajectory tracking subproblem
Model Predictive Control, task priority Lifted Newton trajectory reproduction algorithm
or kinematic controller [Morin and Samson, 2004] can be used.

For this kind of algorithms, the real-time control system should be employed, and this
report presents a real-time robotic system that can move from one point to other one
following desired feasible trajectory. The system architecture is presented in section 2,
the hardware aspect of the system is shown in section 3, and the software in section 4.
To verify that the system works correctly an experiment was prepared and is presented
in section 5.

2 System’s Architecture
Component based approach was used to design real-time system. Each component is

a kind of black box that receive messages on input and return other messages on output.
That approach helps easily replace one block with another, for instance, we easily change
Model Predictive trajectory tracking algorithm. Real-time execution and proper tools
are needed to ensure that the system sends control command periodically and nothing
can break it. In [Janiak and Zieliński, 2015] has been presented a distributed system that



3

satisfies real-time constraints. Authors proposed Xenomai framework to provide real-time
of Linux operation system like Ubuntu, and OROCOS and ROS middlewares to build
software components of the system. In [Janiak, 2016] has been presented a board that
can control motors in real-time. The board can communicate in real-time with PC using
RTnet protocol. The real-time control system which was developed during the project is
presented at figure 2.1, and is composed of the following components:

• Motion capture – return information about position of a robot

• Estimator – estimate a robot state based on position from motion capture and
position of wheels

• Safety system – ensure that a robot will push the wall etc.

• Hokuyo – return information from laser scanner

• Arbiter – decide that get control commands from controller or remote gamepad

• PS3Teleop – return control commands from gamepad

• Wheels module – ensure that received control commands will be executed

• RTnode – execute control command and receive encoder speed and position

• Controller – is a trajectory tracking algorithm

R
T
N
o
d
e

Figure 2.1: Architecture of the system



4

3 Hardware

System’s architecture presented in the last section can be applied to every robot. In
this project was used differential drive mobile robot, which is one of the simplest robot to
control. Pioneer P3-DX was chosen because is available at Wroclaw University of Science
and Technology. The robot (Fig. 3.1) had to be modify. The main PC was replaced

Figure 3.1: Pioneer

with industrial PC with stronger processor, and RTnode was used instead of Pioneer
control board (3.2). The motors were connected to RTnode through ESCON 50/5 motor
drivers. The motor’s encoder were directly connected to RTnode. The next part of the

Figure 3.2: RTnode – left, and PC – right

system, from the perspective of the hardware, is OptiTrack Motion Capture System.
Motion Capture is composed of six cameras that can follow desired rigid body, in this
case Pioneer robot. The robot has to have fixed markers the are located asymmetrically.
Figure 3.3 presents print screen from the software delivered by a manufacturer. In the
middle top are presented the scene with six cameras and defined robot as a rigid body.
Below are the view from each camera separately. At the left side is shown position and
orientation of the robot that is published by local network (right side).



5

Figure 3.3: Motion capture

4 Software components
A component is a piece of software that model a particular functionality of the system.

It can be compared to a brick, and like from blocks we build a construction that performs
the desired job. In this way, it is possible to construct a robotic system that does a specific
task, like for example moving a robot from one point to another. Such a system should
consist of the suitable components. At figure 2.1 is presented an architecture that allows
following the desired trajectory. The good idea is to use a framework to speed up the
process of programming. ROS is a well-known robotic framework that has a lot of tools
and packages which help us to develop and debug written code, but unfortunately not
guarantees real-time. For that reason, it is necessary to use OROCOS framework that
allows running components in real-time.

The functionality of OROCOS components is the following:

• Motion capture – the robot is defined as a rigid body in OptiTrack application.
Next, the application broadcast the position and orientation of the rigid body in
space. The primary task of the component takes this information and publish it like
a posture of the robot, in this case, is a planar position (x, y) and orientation (θ).

• Estimator – there are two sources of robot pose: from motion capture, and from
encoders. This component takes this two sources and estimates the state of the
mobile platform.

• Controller – is a trajectory tracking algorithm. In this project kinematic controller
[Morin and Samson, 2004] is implemented. The controller takes the desired state
of the platform in given time (reference trajectory) and actual state and computes
the controls signals. In the beginning, the component read the reference trajectory
from file to the array. Next, in each time it calculates controls based on desired and
actual state. In the end, it saves the reference, executed trajectory and controls to
file.

• Safety system – it is a kind of kill switch. The component decides that robot should
be enabled or not, based on data from laser scanner and motion capture. If a



6

robot is out of the available region or is too close to the obstacle, it should not
be enabled, and stops execute any command. Otherwise, a robot should execute
control commands.

• Arbiter – choose from which source trajectory tracking controller or gamepad con-
troller, a robot should execute control commands. Moreover, the component enables
the robot based on information from safety system component.

• Wheels module – is a component responsible for communication with a low-level
controller. It translates control command (in this case it is linear and angular
velocity) to number understood by a low-level controller and vice versa.

• RTnode – establish the connection between RTnode device and PC through RTnet,
and next send and receive proper frame between devices.

The functionality of ROS nodes is the following:

• PS3Teleop – get gamepad state and translates it to linear and angular velocity.

• Hokuyo – get data from hokuyo laser scanner and publish it.

5 Experiment
The main goal of the project was building the system that allows a robot track a

reference trajectory. One of the last action which has to do is a validation of the system.
Thus an experiment was prepared to check that presented system is able to follow a given
trajectory.

The experiment was the following; the robot should track the circle trajectory with
radius one. Figure 5.1 presents initial position during the experiment. The red cross
in the middle is the center of the circle. The initial position of the robot in global
coordinates is (0, 0, 0). Total time of the trajectory was 26.4s. During the experiment
desired state (xd, yd, θd), actual robot state (x, y, θ) and commanded controls (linear and
angular velocities) was logged.

Figure 5.1: View of the experiment



7

The result of the experiment shows figure 5.2. The dashed line is the reference tra-
jectory, and the solid one is the trajectory realized by the robot. The robot tracks the
trajectory quite good, but the result is not perfect.

Figure 5.2: Result

6 Conclusion
The report presents the robotic system that allows tracking the trajectory. The hard-

ware is a differential drive mobile robot Pioneer P3-DX enhanced by industrial PC, RTn-
ode board and two ESCON 50/5 motor drivers. OptiTrack Motion Capture system is
used as a main reliable source of the robot position and orientation. To ensure that each
control command is realized in proper time, real-time operation system and framework
are necessary. Thus Xenomai as a real-time extension of Linux kernel and OROCOS are
used. OROCOS guarantee that each component is executed in real-time. RTnet protocol
guarantees real-time communication between RTnode board and PC. Components that
do not need real-time execution are implemented in ROS framework.

The experiment shows that the designed system works correctly but unfortunately is
not perfect. In the next stage of the project, another trajectory tracking algorithms will
be implemented, like for example algorithms based on Model Predictive Approach and
Endogenous Configuration Space Approach. Next, the reference trajectory will be given
by one of the motion planning algorithms. The project is a starting point of the Master
thesis "Real-time toolchain for Endogenous Configuration Space Approach".



References

[Chojnacki, 2016] Chojnacki, L. (2016). ECSA framework. https://bitbucket.org/
lukych92/ecsa.

[Chojnacki, 2017] Chojnacki, L. (2017). Real-time control system. https://bitbucket.
org/lukych92/realtime_control_system.

[Jakubiak and Tchoń, 2004] Jakubiak, J. and Tchoń, K. (2004). Fourier vs. non-fourier
band-limited jacobian inverse kinematics algorithms for mobile manipulators. In Proc.
10th IEEE Int. Conf. on Methods and Models in Automation and Robotics, pages 1005–
1010.

[Janiak, 2015] Janiak, M. (2015). Lifted newton motion planning algorithm. In Robot
Motion and Control (RoMoCo), 2015 10th International Workshop on, pages 223–228.
IEEE.

[Janiak, 2016] Janiak, M. (2016). Rtnode-komponent zintegrowanego środowiska
sprzętowo-programowego. Prace Naukowe Politechniki Warszawskiej. Elektronika,
pages 79–90.

[Janiak and Tchon, 2010] Janiak, M. and Tchon, K. (2010). Constrained robot motion
planning: Imbalanced jacobian algorithm vs. optimal control approach. In Methods and
Models in Automation and Robotics (MMAR), 2010 15th International Conference on,
pages 25–30. IEEE.

[Janiak and Tchoń, 2011] Janiak, M. and Tchoń, K. (2011). Constrained motion planning
of nonholonomic systems. Systems & Control Letters, 60(8):625–631.

[Janiak and Tchoń, 2015] Janiak, M. and Tchoń, K. (2015). Motion planning through
waypoints for a skid-steering mobile platform. In Robot Motion and Control (RoMoCo),
2015 10th International Workshop on, pages 58–63. IEEE.

[Janiak and Zieliński, 2015] Janiak, M. and Zieliński, C. (2015). Control system archi-
tecture for the investigation of motion control algorithms on an example of the mobile
platform rex. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(3):667–
678.

[Morin and Samson, 2004] Morin, P. and Samson, C. (2004). Trajectory tracking for non-
holonomic vehicles: overview and case study. In Robot Motion and Control, 2004. Ro-
MoCo’04. Proceedings of the Fourth International Workshop on, pages 139–153. IEEE.

[Ratajczak and Tchoń, 2013] Ratajczak, A. and Tchoń, K. (2013). Multiple-task motion
planning of non-holonomic systems with dynamics. Mechanical Sciences, 4(1):153–166.

8

https://bitbucket.org/lukych92/ecsa
https://bitbucket.org/lukych92/ecsa
https://bitbucket.org/lukych92/realtime_control_system
https://bitbucket.org/lukych92/realtime_control_system


References 9

[Tchon and Góral, 2015] Tchon, K. and Góral, I. (2015). Lagrangian jacobian motion
planning. In Proc. IMA Conference on Mathematics of Robotics, St Annes College,
University of Oxford.

[Tchoń et al., 2015a] Tchoń, K., Góral, I., and Ratajczak, A. (2015a). Jacobian motion
planning of nonholonomic robots: The lagrangian jacobian algorithm. In Robot Motion
and Control (RoMoCo), 2015 10th International Workshop on, pages 229–234. IEEE.

[Tchoń and Jakubiak, 2002] Tchoń, K. and Jakubiak, J. (2002). Extended jacobian
inverse kinematics algorithms for mobile manipulators. Journal of Field Robotics,
19(9):443–454.

[Tchoń and Jakubiak, 2003] Tchoń, K. and Jakubiak, J. (2003). Endogenous configura-
tion space approach to mobile manipulators: a derivation and performance assess-
ment of jacobian inverse kinematics algorithms. International Journal of Control,
76(14):1387–1419.

[Tchoń et al., 2015b] Tchoń, K., Ratajczak, A., and Góral, I. (2015b). Lagrangian jaco-
bian inverse for nonholonomic robotic systems. Nonlinear Dynamics, 82(4):1923–1932.


	Introduction
	System's Architecture
	Hardware
	Software components
	Experiment
	Conclusion

