Essential robotics swarm algorithms.

Implementation and simulation using ARGoS robot simulator.
Pawet Jakubowski *

Intermediate Project under instructions of Witold Paluszyriski Ph.D.

Faculty of Electronics — Wroctaw University of Technology, 11/17 Janiszewskiego St., 50-372 Wroctaw

March, 2016

Abstract

This paper shows implementations of chosen algorithms that corresponds to essential swarm prob-
lems. Each of these algorithms was implemented in ARGoS robot simulator — a C++ framework
developed within the Swarmanoid project. This work is preliminary research for master thesis and
intention was to check if ARGoS simulator will be suitable and relatively easy to use in determining
algorithm correctness and if it provide proper tools to perform different kind of experiments.

*@@®@ This work is licensed under a Creative Commons Attribution 4.0 International License.

2 ARGOS SIMULATOR

1 Introduction

Swarm robotics is still very fresh and challenging field of research. Designing and implementing algorithms
for multi-agent robot systems is not a trivial task. Many factors have to be taken into account. Main
difficulty is to deal with changing or unknown environment — in fact this is an area where swarm algorithms
shows real advantage in comparison to traditional single-agent systems and centrally controlled multi-
agent systems. In order to mimic swarms that exist in nature we want our systems to be distributed.
Only then we can threat our agents as they are redundant — failure of one agent do not cause failure of
whole system. What is more, such control allows system to be scalable (if implemented correctly) — this
is general requirement for all swarm algorithms.

Although swarm robotics is relatively new field of research we can determine few essential problems
that can be solved using swarm. First basic problem, which is also suitable for every robotics system, is
movement, with collision avoidance. Algorithm does not show any cooperation between agents, but it’s
simplicity makes it a good reference for future work. Implementation is described in Section 3. Detection
and collision avoidance was based on ARGoS Diffusion 1 example [1]. Second algorithm in this paper
is flocking algorithm — i.e. implementation proposed in article [2]. This specific implementation focused
on very simplified approach, so it could be used in memory-restricted robots such as nanobots. Flocking
is used here as an aggregation technique and implementation is described in Section 4. Third algorithm
is Particle Swarm Optimization (PSO) algorithm [4] — well known from optimization field of studies. In
this paper only most basic version of PSO was implemented. Results of this implementation are available
in Section 5

ARGoS simulator was chosen because it seemed to be very flexible and extensible. It was also
important that source code was released under the terms of the MIT license (published as git repository
https://github.com/ilpincy/argos3), have some documented usages [3, 5] and active support forum.

Development environment consist of Ubuntu 15.10 64 bit machine with i5-2410M CPU and 8GB
RAM.

2 ARGOS simulator

According to project website [1] authors motivation to develop this simulator was absence of software
that supports large-scale heterogeneous robot swarms. It is based on microscopic modeling — each robot
has own physical model, what results in strong coupling of robot entity with it’s sensors and actuators.
This approach lead to more accurate simulation results. It also allows to simulate heterogeneous swarms,
where robots have not same physical models, but this require to deep into unnecessary details if we want
higher level of abstraction.

ARGoS’s architecture consist of modules (showed on Fig. 1). Each module can be overwritten by
user and plugged into simulation as shared libraries. Controller is main module that contain robot’s
algorithm.

== == Control Interface

Visualizations ’ ’

Space

—a T
I

Physics Engines Media

SRS el

Figure 1: ARGoS modules [1]

Experiment configuration is stored as XML file, typically with extension .argos. Configuration
determine information about all modules and experiment-specific settings like visualization type, length
of experiment or position of cameras.

@@ This work is licensed under a Creative Commons Attribution 4.0 International License. 1

https://github.com/ilpincy/argos3

4 FLOCKING

3 Movement with collision avoidance

Movement with collision avoidance is most basic task described in this paper. Whole algorithm was based
on ARGoS Diffusion 1 example [1]. For this implementation footbot robots were used (provided by
ARGoS framework).

Algorithm itself was very easy — robot reads values from his proximity sensors and sum all vectors.
As a result he knows center of mass of surrounded obstacles. When it detects obstacle it checks whether
he is safe or he should turn. Robot consider obstacle not harmful if absolute weighted angle was more
than 150 degrees or it was in front of him — between -45 and 45 degrees — but further than minimum safe
distance. Robots angles are shown on Fig. 2a.

D> i BN e

YT I

150 = -150 y :

(a) Robot’s angles (b) ARGoS simulator with Qt visualization

This algorithm was used as sort of “Hello world” in ARGoS framework. Different setting of experi-
ments was tested and all behaved properly (example on Fig. 2b). Settings that were tested:

e different arena sizes

different obstacle sizes

random placement of objects (obstacles and robots)
e passing parameters from XML to controller

It was sufficient to create controller class that implements above algorithm and compile it as shared
library. Then properly written configuration allowed to run experiment.

4 Flocking

Algorithm that was base for implementing flocking behavior was introduced in article [2]. Main motivation
that drives authors of that article was to design very simple algorithm that can be embedded into very
limited robots. Short communication range, small sensor ranges, very limited computational power, little
memory, imprecise locomotion — all of these factors was taken into account. Additionally robots do not
possess any kind of global information.

Simplicity of this approach was reached by dividing robots sensor fields into sectors. For each sector
threshold was assigned and different behavior was performed depending on which sector robot detect
object or another robot. Zones and algorithm are shown on Fig. 3.

Implementation

Implementation was not so easy as for collision avoidance algorithm. This time goal was to properly
implement algorithm and gather results from experiments. To be able to compare obtained results with
those introduced in article [2] environment had to be as close as possible to original implementation.
Robots used by authors of algorithm was not available in ARGoS library so there was a need to develop
and plug custom robot entity class. It was done by copying e-puck robot implementation and modifying
it to match description in article [2].

Number of proximity sensors was changed to 12 — 3 per each section. Maximum range of those
sensors was increased to 5 robot-diameters (unit used by authors [2]). Additionally to mimic passive
diodes virtual omidirectional camera from footbot was added and LED ring was lighten in red. That way
robots can distinguish obstacles from other robots.

@@ This work is licensed under a Creative Commons Attribution 4.0 International License. 2

4 FLOCKING

IR values of other
objects or robots

> Check active front Above threshold high
sensor (zone 1)
| Below threshold
Check passive front, | apove threshold
left, right sensors Tum left/ right
(zones 2) Zones
| Below threshold M 1_. active IR
y -
r > Isi
Check passive left . mmsive R
ey [oo e
3,4... passive IR
Above threshold - attractive

G- - .
(A) (B) 4 @ obet

Figure 3: A: Schematic of minimalist flocking algorithm. B: Robot sections and visualization of threshold
levels. [2]

ARGoS do not take path of shared library with robots as opposite to controllers or loop_functions.
However it loads on start all libraries that are located in one of paths defined by ARGOS_PLUGIN_PATH
environment variable. It was sufficient to overwrite this variable to point directory with custom robot
library and it was loaded like build-in robot types.

Performing experiments

This algorithm was really good test for ARGoS, because it required to perform experiment thousand
times to collect statistical data. Only then obtained results could be compared with original results
described in article [2].

Turns out that ARGoS can run without any visualization module — so it only compute environment
without overhead of visualizing and rendering it. Thanks to that experiments could be performed very
fast even though experiment time limit was set very high — 10 000 seconds. Remembering that each
control step was called 60 times per second it gives big amount of data that have to be calculated.

Time limit was not goal in this experiment. It should end (successfully) if at least 60% or 80% of robots
are aggregated in same flock. For this purpose loop-function module has do be developed (Algorithm 1).
It calculates flocks aggregation level so it can determine if any of those flocks contains desired number of
robots.

Algorithm 1 Aggregation calculator

1: procedure CALCULATE

2 Set of flocks F = &

3 for each robot r do

4: if r is not assigned to any flock then

5: Add new flock f to set F'

6 f=fur

7 for each robot o do

8 if 0 # r and distance from r to 0 < 1 robot dimension then
9 f=fUo

return max | * 100/ robots count

To help with changing parameters of experiments simple bash script was written that used sed
program to change those parameters.

Results

Results are not quite the same as presented in article [2]. Implemented swarm has bigger tendency to
drive along walls and flocks that had more that 2 robots are nearly impossible to move. Only partial
results for Density-neutral Efficiency was taken. Only 5 and 10 robots swarms was able to finish task
before timeout (Fig. 4). Same as in article [2] results presented first, second and third quantile of obtained
results for 1000 experiment runs.

@@ This work is licensed under a Creative Commons Attribution 4.0 International License. 3

6 CONCLUSIONS

Flocking minimalist algorithm
3500

2500

2000

1500

1000

Aggregation time [s]

————

5 robots, 80% aggregation
5 robots, 60% aggregation 10 robots, 60% aggregation

Experiment

Figure 4: Results obtained for implemented flocking algorithm

5 Particle Swarm Optimization

Particle Swarm Optimization algorithm is one of best known distributed optimization algorithms. It is
used to find optimal solution within problem environment. It was designed as optimization algorithm
that operates in multi-dimension set. It could be also successfully used to swarm robots search problem
in typical 2D space. One variation of this algorithm was described in article [4].

Only simplest version of this algorithm was implemented in this paper. Neighborhood was assumed
to be global and for collision avoidance algorithm from Section 3 was used. All parameters are same as
in article [4] — that also include arena size and type of robots (e-puck). Control steps was called 10 times
per second and synchronization occurred every 100 steps.

Arena was 8 x 8m and contained 20 uniformly distributed obstacles — 10 cylinders 0.2 x 0.25m and
10 boxes 0.1 x 0.6 x 0.3m. On Fig. 6 are shown result of one experiment for 10 robots.

During implementation one problem showed up. Even though ARGoS treats light as normal entity
it do not allow to randomly distribute this objects. It was a problem because in chosen implementation
light source was used as a target for swarm.

D> jim»: BD e

' o @
[t=0] Log started.

s ® Logerr

[£=0] LogErr started.

Yy IIII LY

o

)

Figure 5: PSO algorithm experiment. Light source was used as a target.

6 Conclusions

Not all implementation provided satisfying results. In flocking one can expect to obtain similar results
as those introduced in article [2]. Possible mistake was to introduce more IR sensors (3 for each section
instead of 1) and passive sensors approximation in the form of omidirectional camera.

All in all ARGoS proved itself to be flexible swarm simulator that allow to implement and test essential
swarm algorithms. Possibility to replacing each module of framework and clear design was very important

@@ This work is licensed under a Creative Commons Attribution 4.0 International License. 4

REFERENCES REFERENCES

- N w
-] N (& w]
E T T T

Distance from target of closest robot [m]

g
2]

0 L , L A \
0 2000 4000 6000 8000 10000 12000
Time [s]

Figure 6: PSO algorithm results for 10 robots.

during algorithms implementation. It was also relatively easy to perform multiple — time consuming —
experiments without additional overhead and in reasonable time.

References

[1] The ARGoS website. http://www.argos-sim.info. Accessed: 2016-02-05.
[2] C. Moeslinger, T. Schmickl, K. Crailsheim. A minimalist flocking algorithm for swarm robots.

[3] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante,
G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, M. Dorigo. ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271-295, 2012.

[4] J. Pugh, A. Martinoli. Inspiring and modeling multi-robot search with particle swarm optimization,
2007.

[5] T. Stirling, ames Roberts, ean Christophe Zufferey, D. Floreano. Indoor navigation with a swarm of
flying robots. Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
2012.

@@ This work is licensed under a Creative Commons Attribution 4.0 International License. 5

http://www.argos-sim.info

	Introduction
	ARGoS simulator
	Movement with collision avoidance
	Flocking
	Particle Swarm Optimization
	Conclusions

