Bonus Chapter B

Programming for X

In this chapter and the next, we'll take a look at writing programs to run in the usual Linux graphical
environment, the XWindow System or X, http:/ /www .x.org/Xorg.html. Modern UNIX systems and nearly
all Linux distributions are shipped with a version of X.

We'll be concentrating on the programmer’s view of X, and we’ll assume that you are already comfortable
with configuring, running, and using X on your system.

We'll cover

X concepts
X Windows managers

X programming model

O o o o4O

Tk —its widgets, bindings, and geometry managers

In the next chapter, we’ll move on to the GTK+ toolkit, which will allow us to program user interfaces in C
for the GNOME system.

What Is X?

X was created at MIT as a way of providing a uniform environment for graphical programs. Nowadays it
should be fair to assume that if you've used computers, you've come across either Microsoft Windows, X,
or Apple MacOS before, so you'll be familiar with the general concepts underlying a graphical user
interface, or GUIL Unfortunately, although a Windows user might be able to navigate around the Mac
interface, it’s a different story for programmers.

Each windowing environment on each system is programmed differently. The ways that the display is
handled and the programs communicate with the user are different. Although each system provides the
programmer with the ability to open and manipulate windows on the screen, the functions used will be
different. Writing applications that can run on more than one system (without using additional toolkits) is
a daunting task.

To overcome the problems associated with proprietary interface systems on mainframes, minicomputers,
and workstations, The XWindow System was made publicly available and has been implemented on
many systems. It defines a programming style based on a client/server model with a clean separation of
hardware-dependent components and application programs.

The X Windows system comprises four major components, which we'll discuss briefly in turn:

O Xserver Interacting with the user
0 X protocol Client/server communications
O Xlibrary The programming interface
O Xclients The applications
X Server

The X server, or X display server, is a program that runs on the application user’s computer and is
responsible for controlling the graphical display hardware and looking after input and output. The X
server responds to requests from X client applications to draw on the screen or read from the keyboard or
mouse. It passes input and indications of things like mouse movements and button presses to the client
programs.

Typically, there will be a different X server for each distinct hardware combination that X can run on. The
most common implementation of X for Linux and other PC-based systems is XFree86
(http://www.xfree86.org). This package ships with X servers specially created for the many different video
cards that can be used in PCs, for instance, the XF86_S3 version for S3-based cards. Linux users have
much to thank these guys for.

X Protocol

All interactions between X client applications and the X display server take place via message exchanges.
The types and uses of the messages form the X protocol. One particularly useful feature of the X Windows
system is that the X protocol can be carried across a network as well as between clients and a server
running on the same machine. This means that a user with a fairly low-powered personal computer or an
X terminal (a machine dedicated to running just an X server) can run X client programs on more powerful
networked computers, but conduct the interaction and display the output on his/her own local machine.

Xlib
The X protocol is really of interest only to the programmers who actually implement X servers. Most X
applications ultimately use a C function library as a programming interface. This is Xlib, which provides
an API for X protocol exchanges. Xlib doesn’t add very much on its own—it can just about only draw on
the screen and respond to a mouse. If you want menus, buttons, scrollbars, and all the other goodies, you
have to write them yourself.

On the other hand, neither does Xlib impose any particular GUI style. It acts as a medium through which
you can create any style you choose.

X Clients

X clients are application programs that use the display and input resources of a computer that may not be
the one they’'re running on. They do this by requesting access to these resources from the X server that
manages them. The server can typically handle requests from many clients at once, and it must arbitrate
use of the keyboard and mouse between clients. The client programs communicate with the server using X
protocol messages that are sent and received using Xlib functions.

X Toolkits

We won’t linger in the Xlib programming interface, as it’s not the best tool for creating programs quickly
and easily. Because of its low-level interface, like the Microsoft Windows SDK,, it can make for some very
complex programs that apparently achieve very little. One book on the author’s shelves contains a version
of the “Hello World” program written for Xlib. It does nothing other than display “Hello World” in a
window, together with a button marked “Exit,” which does the obvious thing when you press it. The
program listing runs to five pages!

Any programmer who has written an Xlib program like this will surely have wondered if there’s a better
way. Of course there is! Common user interface elements such as buttons, scrollbars, and menus have
been implemented many times. Collections of these elements, also known as widgets, are generally called
X toolkits. Of these, the best known are the Xt Intrinsics suite that comes with X and two commercial
products: Sun’s OpenLook and OSF/Motif.

0 Xtis a free library written on top of X to give it some functionality: an intermediate layer that
simplifies application programming,.

O OpenLook is a free toolkit from Sun that enforces a different look and feel. It’s built on top of a
library called Xview, which is similar to Xt.

O Motif is an OSF standard designed to bring a common look and feel to the UNIX desktop. It's
built on top of Xt. Motif has two main components: a set of include files that define constants
used in Xt functions and a library of convenient functions to simplify the creation of elements
like dialogs and menus. Motif also defines a programming style that all programmers can
follow, whether they are actually using the Motif toolkit or not.

O Qtis alibrary built by trolltech that forms the basis of the KDE Desktop environment, which is
found with most Linux distributions.

O GTK+ is the GIMP toolkit, and the basis of the GNOME system. We'll look at how to program
this high-level environment in the next chapter.

Each X toolkit implements a set of widgets, usually with a distinctive look and feel. Display elements
might have a flat, plain implementation (as with Xt) or a sculpted, 3D effect (like Motif).

To illustrate the difference a toolkit can make, take a look at two different text editors available for Linux,
xedi t and t ext edi t. The first, xedi t, is a very simple editor with hardly any user interface
sophistication. To load a file, you need to type a filename into a box and press a button marked Load.

In contrast, the t ext edi t editor provided by Sun’s OpenWindows and written with the OpenLook

toolkit provides a dialog box for opening files. This allows the user to browse the file system for the
appropriate file to open. The toolkit also provides the familiar look and feel of 3D buttons.

X Window Manager

Another important element of any X system is the window manager. This is a special X client that is
responsible for dealing with other clients. It looks after the placement of client windows on the display

and handles management tasks like moving and resizing windows. It also imposes a distinctive look and
feel, depending on the X toolkit it uses.

Examples of window managers follow:

Window Manager Description
twm Tom’s (or Tabbed) Window Manager, a small, fast manager that comes with X.
fvwm An alternative window manager by Robert Nation. The favorite under Linux.

It supports virtual desktops and has configuration files that allow it to emulate
other window managers.

f vwd5 A version of f vwmthat emulates the Windows 95 interface.
gwm The generic window manager, programmable in a LISP dialect.
ol wm The OpenLook window manager.

mvm The Motif window manager.

All of these are available for most UNIX and Linux systems, although mvmrequires a license.

The X Programming Model

We've seen that the XWindow System separates responsibilities between client applications and X display
servers using a communications protocol. This method of programming gives rise to a typical structure for
an X application, which we’ll outline briefly below.

Start-up

A typical X application will start by initializing any resources it may need. It will establish a connection
with the X display server, choose which colors and fonts to use, and then create a window on the display.

XOpenDi spl ay and XCl oseDi spl ay are used by client programs for connecting to and disconnecting
from an X server.

Di spl ay *XOpenDi spl ay(char *di spl ay_nane) ;
voi d XCO oseDi spl ay(Di spl ay *displ ay);

The di spl ay_nane specifies the display to which we want to connect. If it’s nul | , the environment
variable DI SPLAY is used. This is of the form host nane: server[. di spl ay], allowing one or more X
servers on a host, each of which can control more than one display. The default display is normally : 0. O,
the first available server on the local machine. To specify a second screen, for a truly awesome desktop,
you would use : 0. 1.

XOpenDi spl ay returns a Di spl ay structure containing information about the X server selected, or nul |
if no X server could be opened. After a successful return from XQpenDi spl ay, the client program may
start using the X server.

When the client program has finished using the X server, it must call XCl oseDi spl ay with the display
structure returned from the XQpenDi spl ay call. This will destroy all windows and other resources that
the client has created on the display, unless (unusually) XSet Cl oseDownMbde has been called to modify
the shutdown behavior. Programs should always call XCl oseDi spl ay before exiting to allow any
pending errors to be reported.

The user can control most of the activities at start-up. Many X applications respond to command line
arguments, environment variables, and configuration file entries to allow the user to customize the
application. We'll give you some examples.

As we've seen, the environment variable DI SPLAY is used to direct the application to a particular display
server, which may be on a different networked computer. The following command would cause the
xedi t program to run, but to open its display on the machine called al ex.

$ Dl SPLAY=al ex: 0.0 xedit &

The file . Xr esour ces (or sometimes . Xdef aul t s) is used to configure the X application. Each
application will use configuration entries in the X resources database, typically created when an X system
starts up and including the user’s own, local preferences. A typical entry in a user’s . Xr esour ces file,
stored in his or her home directory, might be

xedi t *enabl eBackups: on

This entry changes the behavior of edi t with respect to making backup files while editing. Each entry has
the general format

Cl ass*Resource: Val ue
The command line

$ xedit -geonetry 400x200

causes xedi t to start in a window 400 pixels wide by 200 high. Note that other programs may use the
geometry differently. For example,

$ xterm -geonetry 80x50

starts a terminal emulator that has 50 lines, each with 80 columns. Refer to your system documentation
and application manual pages for more details on ways to affect X application behavior.

Main Loop

The bulk of an X application is made up of a main loop and code written to react to events. After starting,
a typical X program waits for the X display server to which it's connected to send it events. It does this by
calling XNext Event in a loop.

There are over 30 events that an application may have to deal with. We won’t cover them here because
there are many (very fat) books on the topic of X Windows programming that cover the topic in great
depth. However, we’ll get a flavor of the kinds of events that X uses from this partial list:

Keyboard events Key pressed, key released.

Mouse events Button pressed, button released, mouse moving,
mouse entering/leaving a window.

Window events Window created/destroyed, window gained/lost
focus, window exposed.

A low-level X program must respond to these events and more. A program that uses an advanced toolkit
or application framework will be able to concentrate on the main business of the application and use
sophisticated interface elements like dialog boxes without needing to deal with low-level events like these
explicitly. Of course, that doesn’t mean that the events aren’t still taking place.

Clean-up

When it exits, a well-behaved X program will free up any X display resources it has allocated while it was
running. It’s often sufficient to simply break the connection with the server, but this can result in the
server consuming more memory than required. Also, it’s considered a little rude not to say goodbye!

Fast-Track X Programming

In the rest of this chapter, we’ll leave the low-level considerations of X programming to those who need to
squeeze the ultimate performance from and have the finest control over their applications.

For the rest of us who are simply keen to see immediate results and to produce good-looking highly
functional X applications, we’ll concentrate on a couple of recent innovations in the X programming
world.

With the rise of very fast personal computers and workstations, it has become feasible to write at least the
user interface part of programs in an interpreted language. We’'ve seen a couple of these already in the
shell and Tcl. We've got the power of Perl to look forward to in now downloadable Chapter D

We'll now take a look at Tk (for Tool Kit), an extension to Tcl for graphical programming, and in the next
chapter GTK+, developed originally as a toolkit for controlling the GIMP (GNU Image Processor) but
which forms the underlying graphical language in the GNOME desktop.

The Tk approach to X programming also brings the benefit of portability. It is available for non-X
graphical environments (including Microsoft Windows) and is hardware independent. Tk programs
written for one machine should run unchanged on another.

If you are interested in the benefits of a platform-independent programming system and are also looking
for the power of a compiled language, then Java provides an interesting solution. The topic of Java
programming is too vast to cover here, but Ivor Horton’s Beginning Java 2, also from Wrox (ISBN 1-861002-
23-8), is an excellent place to start.

The Tk Toolkit

Tk, created by John Ousterhout to be the companion of Tcl, is a rich collection of graphical user interface
(GUI) abstractions (widgets) designed to simplify the essential components of graphical front-end
programming under X, Microsoft Windows, and Apple MacOS.

Tk is an action-oriented, composition-based, embeddable, extensible, highly portable, event-based toolkit
whose widgets are written in C and use Tcl bindings for event handlers. Tk has already been ported to use
many other languages such as Perl and Python for command bindings.

The current releases of Tk 8.1 and Tk 8.2 work consistently on all the three platforms: Unix, Windows, and
Macintosh.

By default, Tk’s widgets have the native look and feel of the widgets of the platform they run on, but they
are highly-configurable. You can operate Tk’s widgets in strict Motif mode by checking one of toolkit’s
global variables. Because Tk’s interface is consistent, most scripts written for one platform will run
without any modifications on the other two platforms.

All the examples in this section need at least version 8.0 of Tcl and 8.0 of Tk to work.
You can download the latest versions of the software from
http://lwww.scriptics.com/resource/software/. Most of the programs in this section are
written using Tcl8.0 and Tk8.0 because the latest releases of Jacl and Tcl Blend work
only with the Tcl8.0 version. Jacl is the complete rewrite of Tcl interpreter in pure Java,
and Tcl Blend is a dynamically loadable C extension to Tcl to interact with a Java
Virtual Machine.

Before we dive into Tk programming, you need to make sure that the Tk windowing shell, wi sh, is
installed on your system with the executable in your PATH. If Tk is not installed at the default location,
you'll need to set the environment variables TK_L| BRARY and TCL_L| BRARY to point to the right
locations. If you have multiple versions of Tcl installed on your machine, you might want to make sure
that you point the above-mentioned environmental variables correctly. For example, here is the shell script
I use to invoke wi shf for version 8.2b3 of Tk.

#!/bin/sh
LD LI BRARY_PATH=$LD LI BRARY_PATH: /usr/l ocal /tcl 8. 2b3/ uni x: /usr/| ocal / t k8. 2b3
/ uni

X:
PATH=$PATH. / usr/ | ocal / bi n: /usr/l ocal /tcl 8. 2b3/ uni x: / usr/ | ocal / t k8. 2b3/ uni x:
TCL_LI BRARY=/usr /| ocal /tcl 8.2b3/I1ibrary

TK_LI BRARY=/usr /| ocal /tk8. 2b3/ i brary

export LD LIBRARY _PATH PATH TCL_LI BRARY TK LI BRARY

Jusr/local/tk8.2b3/ uni x/ wi sh $*

When you type Wi sh at the shell prompt, a small and (by default) gray window should
pop up. To suppress this interactive Wi sh window —for example, when running

scripts —invoke Tk using Wi sh -f.wi sh is basically t cl sh with the Tk functions built
in.

http://www.scripts.com/download

Over the next few sections, we'll take a look at

Basic concepts of Windows programming

Writing our first Tk program

Touring the Tk widget set, with some of their configuration options
Bindings

Geometry managers

Application resource management

Inter-application communication

Window management and application embedding

A mega-widget completely wrtten in Tcl using existing Tk components

o o o o o o o o o g

A real Tk example for everyday use using Tcl events

Though by no means extensive, the discussion should show you how to get started with Tk, how to
program using its built-in widget set, and where to find out more about Tk as you need it.

Windows Programming

Using Tk, you can quickly create a graphical interface using the widgets provided to deal with the
underlying window system. You then attach event handlers to these widgets (usually using the Tcl
language) so that they react as required to the user’s commands. This fits in with usual visual
programming practice.

First, create the look of your program, adding in components to access the functionality you eventually
want to include. Select a widget from the Tk toolkit, initialize its look, and then use Tk’s geometry
manager to arrange it in relation to other widgets within the screen window. Then code the response of
each GUI component to user commands. What will clicking the Load button do? How will clicking it load
an image into the canvas widget?

This is rather different from the procedural programming we’ve been looking at throughout the rest of the
book. As a programmer, you can never control the order in which the user interacts with the program; the
whole point of GUISs is to provide a more natural and intuitive user interface. The program must wait for
and then act on user-initiated events.

Every time you create a widget in Tk using its ¢l ass command, the GUI primitive known as the widget is
created, as is a new Tcl command whose name is the name of the widget. You can then invoke methods
(Tk calls them configuration options) on this newly created widget using its widget command. Widget
commands are like objects in an object-oriented system: When the widget is deleted, the widget command
is also deleted.

For example, the widget command

button .b

creates a new widget and a widget command named . b. You can use this new command to communicate
with the widget; thus,

.b configure -text "Hello"

will set the title of the button . b to Hel | 0. If you think of . b as an object, you are invoking the
conf i gur e method on the object to set its t ext attribute to Hel | o.

Tk widgets are not completely object oriented, as they don’t support inheritance,
polymorphism, and so on. Their only similarity to OOP principles is the way methods
are invoked.

The widget creation and initialization parts of a Tk program will contain Tcl commands to create and
arrange the widgets on the user screen. Once you've created and arranged the widgets, they interact with
the user using Tcl scripts known as event handlers.

We'll try to present all the examples using this approach; however, it's sometimes difficult to separate the
two stages completely, because event handlers are sometimes bound when you create the widget. For
example, most widgets in Tk support the comrand widget handler, which is usually set immediately.
Also, it sometimes makes sense to bind the event handlers as soon as you create the widget and manage
the screen layout of the widgets later. No single approach is the best. To manage your design, use
whichever is appropriate or is easier to understand.

To get us started and make more sense of this introduction, let’s look at a program, hel | 01. t k, probably
the smallest multiline label program ever created!

Try It Out—Saying Hello

Type in the following script file:

#!/usr/ bi n/wi sh -f

pack [button .b -text "Hello\nWorldH!!" \
-justify center \
-width 20 \

-command {puts "H "}]
Make the script executable and run the hel | 01. t k program:

$./hellol. tk

This program creates the window shown in the figure and

. hellol .tk M=] E3
outputs the string Hi each time you click the button.
Hello

Word!!!

How It Works

Let’s dissect the program and see what’s going on in this ubiquitous masterpiece.

After invoking Wi sh - f, we get to the single line that does all the work. It's remarkably terse, and we've
expanded it to make the specified options more obvious. Ignoring the pack command for now, we see
that but t on. . . creates a button named . b whose multiline label Hel | 0 Wor | d!'!'! is centered. The
button is set to a width of 20 characters. The - conmand option attaches an event handler to the button to
output the string “Hi ” in the parent window when the user clicks the button. Note the backslashes that
allow you to write the command over several lines.

The pack command packs the widget . b into the default top-level window created by the application, so
that it occupies the window. Note that pack [button .b ...] would work just as well if we initialized
the button . b first and then called pack . b.

There’s no particular reason for calling the widget . b. You can name it . f 00 or anything else, provided
the name begins with a period. An application’s widgets are arranged in a hierarchy, and the default top-
level, “application” widget and its corresponding widget command are named “. ”. Each widget’s name is
a dot-separated list describing its position in the application’s hierarchy. For example, the path name

. a. b. ¢ implies that widget . ¢ is a child of . a. b, a grandchild of . a, and a great-grandchild of the
application widget. Currently, all the widgets in Tk can have any number of children, provided all the
path names are listed in this way.

Configuration Files
Now let’s add one more line before the widget’s creation:

option add *b. activeForeground brown

The program creates the widget . b and sets up its default act i veFor egr ound color to brown. The
asterisk before b means that any widget called b should have the option set, no matter what its parentage.

We can also make it into a more realistic X application by saving the line
*b. acti veForeground: brown

into a file called hel | 0. def, and then adding the following line into the hel | 03. t k script before we
create the widget:

option readfile hello. def

This line reads the application defaults from the file hel | 0. def before the widget's creation.

More Commands

You might be thinking, “Can’t I create more user interactions to the widget than - command?” We'll go
right ahead and create one such simple event binding. If the user presses Ctrl along with the mouse button,
the widget will output the string “Hel p! "

Here’s how to do this:

bind .b <Control -Button-1> {puts "Hel p!"}

Our final Hello World program, hel | 04. t k, with all these modifications, reads

#!'wi sh -f

option readfile hello. def

pack [button .b -text "Hello\nWrld!!!" \
-justify center \
-width 20 \

-command {puts "H "}]
bind .b <Control -Button-1> {puts "Hel p!"}

This is a simple three-line program that can do the same job as a 500-line Xlib program or 100+ lines of
Motif code. It has all the features of a basic X application and is still very simple. That’s what Tk is all
about. It removes all the complexity and fear involved in graphical user interface programming,.

Tk Widgets

It’s time to look more closely at the set of widgets Tk provides. Before we review the widgets Tk supports,
though, here’s a simple way to find out all the methods and arguments a widget provides. Note that the
symbol %denotes Tk’s Wi sh command shell prompt.

Try It Out—Learning More

First, interactively create a scale widget . s:

$ wish
% scale .s
.S

Call the conf i g method of the widget and see its output to check out what the widget offers:

% .s config
You should see this output:

{-activebackground activeBackground Foreground SystenButtonFace SystenButtonFace} {-
background background Background SystenButtonFace SystenButtonFace} {-bigincrenment

bi gl ncrenent Biglncrenment 0 0.0} {-bd -borderwi dth} {-bg -background} {-borderw dth
borderWdth BorderWdth 2 2} {-command comrand Command {} {}} {-cursor cursor Cursor
{} {}} {-digits digits Digits 0 0} {-fg -foreground} {-font font Font {{M5 Sans Serif}
8} {{M5 Sans Serif} 8}} {-foreground foreground Foreground SystenButtonText
SystenmButtonText} {-fromfrom From O 0.0} {-highlightbackground highli ghtBackground

Hi ghl i ght Backgr ound SystenButtonFace SystenButtonFace} {-highlightcolor highlightColor
Hi ghl i ght Col or Syst em\W ndowFr ane Syst emW ndowFr ane} {- hi ghl i ghtthi ckness

hi ghl i ght Thi ckness Hi ghl i ght Thi ckness 2 2} {-1abel |abel Label {} {}} {-length length
Length 100 100} {-orient orient Orient vertical vertical} {-relief relief Relief flat
flat} {-repeatdel ay repeatDel ay RepeatDel ay 300 300} {-repeatinterval repeatlnterval
Repeat I nterval 100 100} {-resolution resolution Resolution 1 1.0} {-showal ue

showval ue Showalue 1 1} {-sliderlength sliderLength SliderLength 30 30} {-
sliderrelief sliderRelief SliderRelief raised raised} {-state state State nornal
normal } {-takefocus takeFocus TakeFocus {} {}} {-tickinterval ticklnterval
Ticklnterval 0 0.0} {-to to To 100 100.0} {-troughcol or troughCol or Background
SystentScrol | bar Systenftscrol | bar} {-variable variable Variable {} {}} {-width width
Wdth 15 15}

Each list pair follows this combination:

option-switch option-nane option-class option-default-value option-actual -val ue.

You can interactively experiment and learn about the widget’s options and their default values. There is,
however, no easy way to learn a widget’s methods without perusing its manual page.

Frames
Frames are the simplest of all the Tk widgets. They are used only as containers, as you can see in the
following example:
#lusr/bin/wish -f
config -bg steel bl ue
foreach frame {sunken raised flat ridge groove} {

frame .$frame -width 0.5i -height 0.5i -relief $frane -bd 2
pack .$frane -side |left -padx 10 -pady 10

This script creates five frames with different 3D borders: frames.tk

ENEEE

Frames are often invisible and are almost always used to create nested layouts.

How It Works

In the above example, the - r el i ef option is used to set the border relief of the frame, and the - bd 2
option sets the widget border width to two pixels. This option is supported by all the Tk widgets and
gives the 3D effect.

As for the rest of the code, you can see the use of a Tcl list to create the five frames. The frames are sized by
setting the - hei ght and - wi dt h options to 0. 5i (half an inch); they’re packed to the left and padded 10
pixels on each side by the - padx and - pady options.

Top-Level

Top-level widgets are like frames, except they have their own top-level windows whereas frames are
internal windows within a top level.

%toplevel .t -width 1.5i -height 1i -relief ridge -bd 4

will create a top-level window that looks like the following: t M= B3

Labels

A label is simple widget that can display multiline text. We can create a label using the | abel command:

% | abel .l -waplength 1i -justify right -text "Hello Tk World!"

This creates a multiline label widget with a text length of one inch for each line. Once you pack the label
using

% pack .|

it will create a widget that looks like this:

| =lEd
Hello Tk
Word!

When you've created the label, you can use the widget command to communicate with it. For example,
the following command will query the foreground color of the label widget:

% .1 cget -fg
Bl ack

All the Tk widgets support the cget widget command, which retrieves any widget configuration option.
We can also use the conf i gur e method of the Tk widgets to set configuration options interactively. For
example,

% .1 configure -fg yellow -bg bl ue

will set the label’s foreground to yellow and background to blue.

Buttons
Tk provides three kinds of buttons: ordinary push buttons, check boxes and radio buttons.
Pressing a push button performs an action. We use check boxes to select or deselect a number of options.

Radio buttons are similar, but they exclusively select one choice from a group of options. You're most
likely familiar with the widgets, if not the terminology.

Let’s look at the following example, which illustrates most of the uses of Tk buttons.

Try It Out—A Choice of Buttons

After the script header and a couple of global variables, we create a check button to control the
selection of a favorite programming language.

#!/usr/bi n/ wi sh -f

set lang tcl
set state 1

checkbutton .lan -text "Language" -command {changeState} -relief flat \
-variable state -onvalue 1 -offvalue 0O

Next, we create a radio button panel, with one button for each language:

radi obutton .c -text "C' -variable lang -value ¢ -justify left
radi obutton .tcl -text "Tcl" -variable lang -value tcl -justify left
radi obutton .perl -text "Perl" -variable lang -value perl -justify left

We need two push buttons to control the output:

button .show -text "Show Val ue" -comrand showvars
button .exit -text "Exit" -command {exit}

Having configured the buttons, we need to arrange them on screen. It's time for a bit of geometry
management.

grid .lan -row 1 -colum 0 -sticky "w'
grid .c -row O -colum 1 -sticky "w'
grid .tcl -row 1 -colum 1 -sticky "w'
grid .perl -row 2 -colum 1 -sticky "w'
grid .show -row 3 -colum 0 -sticky "w'
grid .exit -row 3 -colum 1 -sticky "w'

The check button needs a callback procedure, changeSt at e. This is registered by the check button’s -
command option

proc changeState args {
gl obal state
if {$state == "0"} {
catch {
.c config -state disabl ed
.tcl config -state disabled
.perl config -state disabl ed

} else {
.c config -state normal

.tcl config -state normal
.perl config -state nornal

}

The push buttons need a similar procedure, showvar s:

proc showars args {
gl obal state |ang

if {$state == "0"} {
puts "No Language is sel ected"
} else {

puts "The Language selected is $l ang"

When you run the program, you should see this:
AR

W Language & Tcl
~- Ped

Show Value | Exit |

How It Works

The program starts off by setting up two global variables, | ang and st at e, to serve as the initial values of
the check boxes and radio buttons.

A check box is declared to select/deselect the “language” option. Every time it's invoked, its command
will call the changeSt at e procedure. It also sets the global variable st at e to 1 or 0, depending on the
selection before execution of the command.

Then the program composes the radio button, which is there to select just one of three languages (C, Tcl,
and Perl). If you look at the code, these buttons share the same global variable, | ang, which holds the
value of the current selection. This makes sure that the user can select only one radio button at a time.

Finally, we declare two push buttons; one exits the application when the user presses it, and the other
outputs the selection by calling the procedure showvar s.

The command changesSt at e is used by the check box to change the state of all three radio buttons
between active and inactive, depending on whether it’s selected or deselected. showVar s is used by the
ShowVal ue push button to output the value of the current selection.

Buttons also support many other options, including flash invoke methods. For more information, look at
the but t on, checkbut t on, r adi obut t on, and opt i ons man pages. Labels and buttons also support
bitmaps and images as their labels. We'll learn about images later.

The lines in the example that start with gri d. . . are used for geometry management of
the created widgets. We'll cover geometry management later in this chapter.

Messages

Messages are similar to labels and are used to display multiline text. They differ from labels in that they
automatically break up text to display it in a multiline format, using word boundaries and aspect ratio.
Message widgets can justify the text displayed and they can also handle nonprintable characters.

#!/usr/bin/w sh -f

message . m-aspect 400 -justify center \
-text "This is a nessage widget with aspect ratio 400 and \
center justification. Message wi dgets can also \
di splay control characters \240 \241 \242 \243 \251 \
\256 \257 \258 and tabs \t etc..."

pack . m

This example will create a simple message widget containing control characters.

Entrys

Entrys (sic) are single-line text widgets that we can use to type in and display a single line of text. Entrys
also support many key bindings for text editing. For example, here’s a small program, | ogi n. tk, to
handle user logins, though it lacks code to verify the user’s password.

Try It Out—Gaining Entry

First, we set up the look of the login window. We also define a global | ogi nName variable:

#!/usr/bin/w sh -f
set | ogi nNane "tinB"

| abel .nane -text "Login:"

entry .naneEntry -textvariabl e | ogi nNanme

| abel .passwd -text "Password:"

entry .passwdEntry -textvariabl e passwd -show *

Then we select all the text from . nameEnt ry:

.hanmeEntry selection from1l
.hameEntry selection to end

Finally, we arrange the widgets on the screen—we’ll explain it later!

grid .name -row O -colum O -sticky "w'

grid .passwd -row 1 -colum O -sticky "w'

grid .nanmeEntry -row O -colum 1 -col umspan 2 -sticky "W
grid .passwdEntry -row 1 -colum 1 -columspan 2 -sticky "W

If you run the program, you'll see this: login.tk M=
Login: [tirmE]
Password: | |

How It Works

After the first five lines, which create two label and two entry widgets, the next two lines show how to
select the text inside the entry. The sel ect i on command is Tk’s method for moving information between
widgets. The last four lines arrange the created widgets on the screen in a grid.

X defines a standard mechanism for supplying and retrieving the selection, and the

sel ecti on command is Tk’s way of managing inter-client communication. It obeys X’s
Inter-Client Communication Conventions Manual (ICCCM) rules. The reason we
introduce sel ect i on here is to show that you can programmatically set the selection so
that another, non-Tk, X client can retrieve the selection using normal X Windows
conventions.

Entry widgets use key bindings for internal navigation through the text. If you read the man page, you'll
find that the entry widget supports lots of EMACS bindings, along with all the Motif bindings dictated by
the OSF Motif style guide. Here are a few of the more common ones:

Key Binding Description
Ctrl+a Moves the insertion cursor to the beginning of the entry text.
Ctrl+e Moves the cursor to the end of the entry text.
Ctrl+/ Selects all the text in the entry.
List Boxes

A list box widget can display a collection of strings and allows the user to select one or more items. The
following program shows a way to use a list box to design a Motif-like prompt dialog.

Try It Out—Lists

First we create the user interface elements:

#!/usr/ bi n/wi sh -f

scrollbar .h -orient horizontal -command ".list xview'

scrollbar .v -command ".list yview

listbox .list -selectnpde single -wi dth 20 -height 10 \
-setgrid 1 -xscroll ".h set" -yscroll ".v set"

| abel .label -text "File Selected:" -justify |left

entry .e -textvariable fileSel ected

To give widgets that Motif-ish look and feel, we use the gr i d geometry manager:

grid .list -row O -colum 0 -columspan 2 -sticky "news"
grid .v -row 0 -colum 2 -sticky "ns"

grid .h -row 1 -colum 0O -colummspan 2 -sticky "we"
grid .label -row 2 -colum 0

grid .e -row 3 -colum 0O -columspan 3 -sticky "we"

grid columconfigure . 0 -weight 1
grid rowonfigure . 0 -weight 1

We initialize the list box with the contents of the current directory:

foreach file [glob *] {
.list insert end $file
}

Finally, we bi nd an event handler to the list box to make it react to the release of mouse button 1. This
corresponds to the left mouse button for right-handed users, and the right mouse button for left-
handed users. We'll continue to call it mouse button 1 in this section, as this is the convention used in
the code.

bind .list <ButtonRel ease-1> \
{global fileSelected;set fileSelected [%Wget [%VN curselection]]}

If you run the program, you'll see this:
options.gif 3
bitmap1 .gif

dialog.gif

helloZ.gif

hello1.gif

label.gif

examples

buttons.gif

frames.gif |
toplevel.gif r
< O
File Selected:

[frames.gif

How It Works

The program first creates two scrollbars and then attaches them to the list box it creates. The widgets are
interconnected using - conmand for the scrollbars and -xvi ewand - yvi ewcommands for the list box.
This is the way we tell two widgets how to communicate and react to one another’s geometry or state.
We'll explore more interconnection later in the chapter.

Next, we initialize the list box with the contents of the current directory using the f or each loop. The Tcl
command gl ob performs pattern matching to return these filenames.

The list box provides many more configuration methods such as del et e, get , i ndex, i nsert, and scan
to manipulate the displayed contents.

Scrollbars

As we saw in the previous example, scrollbars are usually connected to other widgets so that the widget's
viewing area can be expanded. In the list box example, the viewing area is controlled by the two
scrollbars, . h and . v, like this:

scrollbar .h -orient horizontal -command ".list xview'
scrollbar .v -command ".list yview'

. h controls the horizontal viewing area of the list box using the command . | i st xvi ew, and similarly
for the vertical scrollbar, . v. The list box is also informed about the interconnection using the command

listbox .list ... -xscroll ".h set" -yscroll ".v set"

This, then, is how we make two widgets communicate with each other by binding them together and
informing each of them about the other’s behavior. You can also use implicit interconnection, as we’ll see
in the next section.

Scales

Scales display integer values and allow the user to select a particular value by moving a slider. Let’s look
at a simple example:

#!/usr/bin/w sh -f

set foo 100

label .1 -text "Choose a Value:" -justify left
scale .s -orient horizontal -fromO -to 2000 -tickinterval 500 \
-showal ue true -length 3i -variable foo
entry .e -width 6 -justify left -textvariable foo
pack .| -side top -anchor nw
pack .s .e -side left -padx 4m-fill x
When you run this program, you'll see this screen: scale.tk [C10IX]
Choose a Value:
627
| i |627
0 500 1000 1500 2000

Here, the scale and the entry have an implicit interconnection through the global variable f 00. If you
update the value of the scale, the value in the entry is automatically updated.

All the variables used explicitly in Tk’s widget event handlers are of global scope. If
the bound variable doesn’t exist, Tk will automatically create one for you. So in the
above example the variable f 00 is a global variable, and scal e and ent r y share the
same variable, creating an implicit interconnection in their behavior.

Text

Tk’s very versatile text widgets are used to create multiline, editable text. They support three types of
annotations, tags, marks, and embedded windows, which affect what is displayed.

O Tags allow different portions of text to be displayed with different fonts, colors, and reliefs. Tcl
commands can be associated with tags to make them react to user actions.
O Marks are used to keep track of various interesting positions in the text as it’s edited.

0 Embedded window annotations are used to insert widgets (windows) at particular points in the
text. You can have any number of embedded windows in the text. All the embedded windows
in the text require the text to be the parent of embedded windows.

Let’s look at a demonstration of some of the text widget features.

Tk's text widget is so powerful that we can use it as an HTML widget without much
effort. The well-known hypertext man page viewer TkMan uses Tk's text widget to
display normal Linux man pages in hyper-linked form.

Try It Out—Manipulating Text

1. First of all, we create a vertical scrollbar, which we attach to the text widget. Then we pack
them side by side and tell the text window to expand to fill the available window space.

We make sure that the text window continues to fill the window even when resizing occurs by telling the
packer, if there’s extra vertical space, to expand both widgets to occupy that space. However, if some extra
horizontal space is made available, only the text widget will be expanded.

#! [/ usr/bin/wish -f

scrollbar .y -command ".t yview'

text .t -wap word -width 80 -spacingl 1m -spacing2 0.5m -spaci ng3 1m\
-height 25 -yscrollcomand ".y set"

pack .t -side |
pack .y -side |

eft -fill both -expand yes
eft -fill y

2. Next, we want to create embedded windows. We don’t have to worry about managing them
because the text widget will look after them internally.

set image [image create photo -file mickey.gif -wi dth 200 -hei ght 200]
| abel .t.l -inmage $i mage
button .t.b -text "Hello Wrld!" -command "puts Hi*

3. Then we configure all the tags that we're going to associate with the text window:

tag configure bold -font -*-Courier-Bold-O Normal --*-120-*-*-*-*_%_x*

tag configure yell owBg -background yel | ow

tag configure blueFg -foreground bl ue

tag configure yell owBgBl ueFg -background yell ow -foreground red

tag configure underline -underline 1

tag configure raised -relief raised -borderwidth 2

tag configure sunken -relief sunken -borderw dth 2

tag configure center -justify center

tag configure left -justify left

tag configure right -justify right

tag configure super -offset 4p

tag configure sub -offset -2p

tag bind col orOnEnter <Any-Enter> ".t tag configure col orOnEnter \
- background yel | ow'

.t tag bind col orOnEnter <Any-Leave> ".t tag configure col orOnEnter \

-background {}"

L e e A

4. Having configured the tags, we now insert text with those tags to show off the widget's
potential, if not our graphic design.

—

insert end "Tk text widget is so versatile that it can support many \
di splay styles:\n"

insert end "Background: " bold

insert end " You can change the "

insert end "background" yell owBg

insert end " or

insert end "foreground" bl ueFg
insert end " or "

insert end "both" yell owBgBl ueFg
insert end "\nUnderlining. " bold

insert end "You can "

insert end "underline" underline

insert end "\n3-D effects: " bold

insert end "You can nmake the text appear
insert end "raised" raised

insert end " or "

insert end "sunken" sunken

insert end " Text"

insert end "\nJustification" bold

e e e A e i e

.t insert end "\nright justification" right

.t insert end "\n center justification " center

.t insert end "\nleft justification " left

.t insert end "\ nSuper and Subscripts: " bold

.t insert end "Text can be "

.t insert end "super" super

.t insert end " or "

.t insert end "sub" sub

.t insert end " scripted"

.t insert end "\nBindings: " bold

.t insert end "Text can be nade to react to the user interactions" col orOnEnter

.t insert end "\nEnrbedded W ndows: " bold

.t insert end "You can insert |abels "

.t window create end -w ndow .t.|

.t insert end " or any kind of w ndows "

.t window create end -wi ndow .t.b
If you run this program, TR W=
this is what you'll see: L T p———r— e e [P

Backgrownd: You can change the background or foreground or beth
Underdining. ¥ou can underline
3-D effects: You can make the text appear rcusﬂ or m Text
Jastification
right justificaticn
center justification
left justification
Super and Swbscripts: Text can be FUPST or o} moripted
Bindings: Text can be made to react to the user interacticns

Embedded Windows: You can inmert lobels

or any

kinda of windows — Hello Wodd? -

How It Works

In this example, the first text window and a scrollbar are created and managed to create the basic interface.
All the internal windows (. t . | and . t. b) are created, but not explicitly managed, because we’re going to
insert them into the text widget. Next, all the binding tags that we're going to use are configured using
various configuration options. For example,

.t tag configure bold -font -*-Courier-Bold-O Normal --*-120-*-*-*-*._%_%

will create a tag called bol d. The characters inserted with the tag will have the font - *- Cour i er - Bol d-
O Normal --*-120-*-*-*-*-*-* We'll look at the way Tk handles fonts later on. Similarly, characters
inserted with bl ueFg will be displayed in blue.

We don’t need to create the text tag explicitly. When we insert a piece of text with tag
f 00, f 00 will be created automatically. Here, we’ve configured the tags beforehand and
the program has created them.

We then insert text using tags with the following format:

text_wi dget insert index chars taglist chars taglist...

An index is a string used to indicate a particular place within a section of text, such as a place to insert
characters, or one endpoint of a range of characters with blue background. Indices have the syntax

base nodifier nodifier nodifier...

base gives the starting point and the modifiers shift or adjust the index from the starting point. Modifiers
can move the index in either direction from the starting point.

The base for the index must have one of the following forms:

Index Base Description

I'i ne. char Indicates the char th character of the line | i ne.

@,y Indicates the character that covers the pixel within the text window whose
co-ordinates are X and y.

mar k Indicates the character just after the mark.

tag.first Indicates the first character in the text that has been tagged t ag.; Ssimilarly for
tag. | ast.

pat hname Indicates the position of the embedded window whose path name is pat hnane.

Modifiers can have these forms:

Modifier Description

+count chars Adjusts the index forward by count char s.

-count chars Adjusts the index backward by count chars.

+count |ines Adjusts the index forward by count | i nes.

-count lines Adjusts the index backward by count | i nes.

Li nestart Adjusts the index to refer to the first char on the line.

Li neend Adjusts the index to refer to the last char on the line.

VWordstart Adjusts the index to first char of the word containing the current index.
VWor dend Adjusts the index to last char of the word containing the current index.

We can associate a particular piece of text with more than one tag. For example, text can be bold and italic
at the same time. When you insert text, you need to specify the location. In our last example, end means
“insert after the last character displayed.” In text, indices can also be tags and marks, so the text command

.t insert end "right justification" right

will insert the text ri ght justificati on at the end of all the text in the text widget and will right-
justify it.

Text supports lots of features, and we recommend that you read the text man page and
take a look at the text demos that come with the Tk distribution. Before we finish
covering text, though, think about what it would take to implement the last example in
Motif or Xlib. In Motif, it would take a couple of hundred lines and in Xlib, perhaps
several thousand. The power of Tk can be pretty mind boggling!

Canvases

Tk’s canvas widget is used to implement structured graphics. Canvases can display any number of items,
including rectangles, circles, lines, text, and embedded windows, which can be manipulated (moved or
colored) and bound to user interactions. For example, we can make a particular item change its
background color when the user clicks the mouse button over it.

Before we play with the canvas widget, we need to cover some concepts: identifiers and tags.

When we create each item in the canvas, it's assigned a unique integer identifier. Items can have any
number of tags associated with them. A tag is a string of characters that can take any form except an
integer. Tags are used for item grouping, identifying, and manipulating purposes. The same tag can be
associated with many items to group them under one category. Every item inside the canvas can be
identified by its ID, or a tag associated with it. The tag al | is implicitly associated with every item in the
canvas. The tag cur r ent is automatically managed by Tk. It refers to the topmost item whose drawn area
lies at the position of the mouse cursor.

When we specify items in canvas widget commands, if the specifier is an integer, we assume that it refers
to a single item with that ID. If the specifier isn’t an integer, we assume that it refers to all the items in the
canvas that have the tag matching the specifier. In the next example, we use the t agOr | d symbol to
specify either an ID that selects a single item or a tag that selects zero or more items.

When we create any item on the canvas, we specify its location. The locations are floating-point numbers
optionally suffixed with one of the letters m ¢, i , and p:

mstands for millimeters.
¢ stands for centimeters.

i stands for inches.

o o o g

p stands for points.

If we don’t follow the coordinate with one of these letters, the program assumes that the item location is in
pixels. Let’s look at some of the canvas commands and see what they do. In the following commands, the
pat hNane identifier refers to the canvas path name:

pathNane create arc x1 yl x2 y2 ?option value option value ...?

This creates an ar ¢ item on the canvas, with X1 y1 x2 y2 specifying the coordinates of a rectangular
region enclosing the oval that defines the arc. Command options in this example include - ext ent, -
fill,and-outl i ne.For example, the command

% set k [.c create arc 10 10 50 50 -fill red -outline blue -tags redArc]

creates an ar ¢ item inside canvas . ¢ with $k giving the value of the ID. Its outline is drawn in blue. This
arc is enclosed inside a rectangle with canvas coordinates 10 10 50 50 and is filled in with red. A tag,
r edAr ¢, is also associated with the ar ¢ item.

pat hNane itentonfigure tagOrld ?option value option value ...?

This command is similar to the - conf i gur e widget command, except that we can use it to modify only
specific options for the item denoted by t agOr | d, instead of modifying the whole canvas widget. For

example,
% .c itenconfigure redArc -fill yellow
will change all the fi | | colors of items associated with tag r edAr ¢ to yellow.

pat hName type tagOrld

will return the type of first item in the list of items referred to by t agOr | d. For example,

% .c type redArc
arc

pat hNane bind tagOrld ?sequence? ?command?

works just like the bi nd command, but instead of applying the sequence to the whole canvas, it applies it
just to the item specified by t agOr | d. If conmand isn’t given, it returns all the commands associated with
the binding sequence sequence for canvas item t agOr | d. If neither sequence nor conmmand is specified,
all the sequences bound to the item are returned.

% .c bind $k <Enter> ".c itenctonfigure redArc -fill blue"
% .c bind redArc <Leave> ".c itenctonfigure redArc -fill red"

In this example, the first binding will fill in the item associated with t agOr | d $k with blue when the
mouse enters the item. The second binding fills in all the items associated with tag r edAr ¢ with red when
the mouse leaves them.

Text and canvases support so many commands that it would take much more than one chapter to explain
them all. We strongly advise that you refer to the canvas and t ext man pages for the mastery of these
two widgets. Here’s a small example that shows a few of their features.

Try It Out—Text on Canvas

First we create the canvas and then some objects to display on it: an image of a teapot, a line of text over
the image, another text object to exhort users to move the items around, and a rectangle. We pack the
canvas so it will fill the window.

#!/usr/ bi n/wi sh -f
set ¢ [canvas .c -width 300 -height 300 -relief sunken -bd 2]

set image [i mage create photo -file teapot.ppm-w dth 200 -hei ght 200]
$c create image 150 150 -anchor center -inage $i mage -tags item

$c create text 150 150 -text " Inmage Object” -fill white

$c create text 10 10 -text " Move any Item\n using Muse " -justify center \
-anchor nw -tags item -fill red

$c create rectangle 200 10 250 40 -fill yellow -outline blue -tags item

pack .c

Next, we bind the canvas so that we can operate on the items shown on it. We'll define the
i tenDragSt art and dr agl t emprocedures:

bind $c <1> "itenDragStart $c % %"
bi nd $c <B1-Mdtion> "dragltem $c % %"

For the procedure’s benefit, we need to define two global variables, | ast Xand | ast Y.
global lastX |astY

event handler for the <1> event
proc itenDragStart {c x y} {

gl obal lastX lastY

set |lastX [$c canvasx $x]

set lastY [$c canvasy $y]

}
event handler for the <B1l-Mdtion> event
proc dragltem{c x y} {
gl obal lastX lastY
set x [$c canvasx $x]
set y [$c canvasy $y]
$c nove current [expr $x-$lastX] [expr $y-$lastY]
set |astX $x
set lastY $y

}

The program produces this output: canvas.tk [_ O[]

Move any Item
using Mouse

Image

How It Works

It's really a very simple example. We created a few canvas item types and bound the mouse buttons so
that the user can move them with the mouse. For example, the line

$c create image 150 150 -anchor center -inage $i mage -tags item

creates an image on the canvas at the canvas location (150, 150). This image is an object in its own right, so
you can move it and make it react to the user by binding event handlers to the tag associated with the
item. Like text, canvas supports many features, so it’s very difficult to explain them comprehensively in a
simple 20-line example. We'll look at some more canvas features in the final applications.

Before we leave canvas objects, we'll mention a few of their properties:
Canvas items can have event handlers attached to them.
An item can have many tags associated with it, but will have one unique ID.

If an item is a widget, it should be the child of the canvas that contains it.

o o o g

If items are widgets, you can configure them just as you would had they been outside the
canvas. Embedding them within the canvas doesn’t change their methods.

O Asyou place items on the canvas, you can stack them on top of one another, obscuring some of
the items beneath. You can change the stacking order using canvas r ai se and | ower
commands.

Finally, to make things simpler in the last example, we don’t bind the procedures to the objects through
tags, but directly through the canvas. If you look at the dr agl t emprocedure, the line

set x [$c canvasx $x]

sets the values of X to a canvasx coordinate from the real screen coordinate X. The line

$c nmove current [expr $x-$lastX] [expr $y-$lasty]

moves the current object under the mouse cursor (denoted by the index cur r ent) to a new location, from
| ast Xto x. | ast Xwas saved when the user event handler i t enDr agSt art was invoked, through the
binding

bind $c <1> "itenDragStart $c % %"

Here, the bind means that when the user clicks on the canvas with mouse button 1, the i t enDr agSt ar t
event handler is invoked with arguments canvas, % (the value of x at the mouse click), and %y (the
value of y at the mouse click). We'll discuss bindings later in the chapter.

Images

Tk can display images of two built-in types: photo and bitmap. The photo type can display gi f and ppm/
pgmfiles, while the bitmap format can display xbmfiles. The i mage command can be used to create
images. The general format of the i mage command is

i mage option ?arg arg ...?

where opt i on can be used to create, delete, and set such options as height, names, image type, and so on.
Next we're going to develop an example based on the sliding block example that comes with the Tk
distribution, but we are going to jazz up the original example by using the i mage command.

Try It Out—Manipulating Images

First we create the image. Then we configure the frame that will hold the pieces of the image that form
the puzzle. This we pack with a little padding;:

#!'/usr/bi n/ wi sh -f
set image [i mage create photo -file mickey.gif -width 160 -height 160]

frane .frame -width 120 -height 120 -borderwidth 2 -relief sunken \
-bg grey
pack .frame -side top -pady 1c -padx lc

Now we create the individual pieces of the puzzle. This involves 15 loops of the code, which crops
portions of the original image to fit on the buttons.

set order {316 257 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
set num [l index $order $i]
set xpos($num) [expr (S$i %) *.25]
set ypos($num [expr ($i/4)*.25]

set x [expr $i %]
set y [expr $i/4]

set butlmage [image create photo i mage-${nunt -w dth 40 -hei ght 40]
$but I mage copy $image -from [expr round($x*40)] \
[expr round($y*40)] \
[expr round($x*40+40)] \
[expr round($y*40+40)]
button .frane. $num -relief raised -i mage $butl nage \
-command "puzzleSwitch S$nunt \
- hi ghli ghtthickness 0
place .frane. $num -rel x $xpos($num -rely $ypos($nun) \
-relwidth .25 -rel height .25
}

Finally, we have the event handler that deals with the user’s input. The two global variables are set to
show that the initial space in the puzzle is at the bottom right-hand corner.

set xpos(space) .75
set ypos(space) .75

proc puzzleSwitch { nunm} {
gl obal xpos ypos
if {(($ypos($nunm) >= (Pypos(space) - .01))
&& ($ypos($num) <= ($ypos(space) + .01))
&& ($xpos($num >= ($xpos(space) - .26))
&& ($xpos($num <= ($xpos(space) + .26)))
[l (($xpos($num) >= ($xpos(space) - .01))
&& ($xpos($num <= ($xpos(space) + .01))
&& ($ypos($num >= ($ypos(space) - .26))
&& ($ypos($num) <= ($ypos(space) + .26)))} {
set tnp $xpos(space)
set xpos(space) $xpos($num
set xpos($num $tnp
set tnp $ypos(space)
set ypos(space) $ypos($num
set ypos($num) $tnp
pl ace .frane. $num -rel x $xpos($nunm) -rely $ypos($num

}

When you run the program, you'll get this 15-piece image puzzle output:

How It Works

The first line in the program creates a photo image, using the m ckey. gi f file and assigns it to the
variable i mage. Portions of this image are then copied on to the buttons with the

set but | mage line and those following in a f or loop. The result is 15 buttons with 15 associated images,
taken from the big image held in $i mage. The rest of the program deals with event handlers to arrange
the buttons when the user clicks them. We'll return to that part when we deal with geometry
management.

The gist of the puzzl eSwi t ch algorithm logic is based on the fact that when the user clicks a button, if
the button is next to an empty space, the button and empty space will be swapped. If you play with the 15-
piece puzzle, you will notice that the piece that can take the place of the empty space will obey one of the
following rules:

0 It will have the same x position as the empty space, and its y position will be 0.25 units away (up
or down) from the empty space. (The piece is on the same column as the empty space, and it is
directly above or below the empty space.)

0 It will have the same y position as the empty space, and its x position will be 0.25 units away
(left or right) from the empty space. (The piece is on the same row as the empty space, and it is
directly to the left or right of the emtpy space.)

The preceding algorithm makes use of these properties to decide whether to switch the piece with the
empty space.

Buttons and labels support images as labels. Also, these labels can be embedded inside canvas and text
widgets. Refer to the bi t map, phot 0, and i mage man pages for more information on Tk’s i mage
support.

Menu

Traditionally, menus are used to provide users with a set of choices in an application without changing
much of the application’s appearance. Menus give users convenient access to various features of the
application without the user having to move away from the main window. Tk’s menu command creates a
widget that displays a list of entries in a separate top-level window. Menu is not a container widget; it is a
single widget with different objects embedded in it.

Menus can have three types of entries embedded in them:

0 Command entries, to run commands
0 Radio entries, to select one of many choices

O Option entries, to select one or more choices from a group of options

Menus can also hold other menus in a recursive way, by using cascade entries.

Menu entries can be displayed with up to three separate fields: a label (in the form of text), a bitmap, or an
image, using the —| abel , —bi t map, or —i mage option, respectively. A second field may use the —

accel er at or option to specify an accelerator sequence next to the label. The - accel er at or option
describes a key sequence that is used to invoke a particular entry associated with a menu entry. A third
option is an indicator that radio and option entries display to the left of the label. Note that Tk does not
automatically create a key binding when the —accel er at or option is specified. The binding should be
explicitly set using the bi nd command for the sequence to take effect; setting

- accel er at or simply displays the key combination in the menu.

Menu entries can be configured with different options, such as foreground and background colors and
fonts, using the ent r yconf i gur e option of the wi dget command. Entries can also be disabled using the
—st at e option. If a menu entry is disabled, it will not respond to the user action.

Tk menus are very flexible. You can enable the —t ear of f option of the menu so that the user can tear the
menu off from the menu bar and use it as a top-level window. You can also specify commands that get
called when a menu is posted or torn off.

Menus are indexed using either their position numerically in the menu, their label , or “last” and “end”
tags. Menus can be posted programmatically by calling the post and unpost menu commands. Tk’s
documentation refers to menus as being posted; to say “pulled down” or “popped up” only describes the
behavior of certain menus on certain platforms. Posting is a more generic term.

Each top-level widget in Tk can have one menu widget act as the default menu bar for that window. A
menu bar is a list of menus arranged side by side in a frame. Menu bars can be attached using the —nenu
widget option associated with top-level windows.

The Tk library provides a <<MenuSel ect >> virtual event that is triggered whenever a menu or one of its
entries becomes active. The menu command provides lots of options; for a complete list of options, refer to
the menu command manual page.

The menu system was overhauled in Tk version 4.0, and many improvements were
made in Tk version 8.0. Prior to Tk 8.0, to create menu bars users had to use functions
such as

tk_menuBar frane ?menu nmenu ...

t k_bi ndFor Traversal arg arg ..

These functions are deprecated and have no effect in Tk versions beyond 4.0.

Try It Out—Menus

Let’s look at an example that illustrates most of the menu command features. This example will make use
of the text widget features. Using the menus, we will change the background color and the properties of
the font used to display the text. We will also create a menu to insert bitmap images inside the text widget.

First, we will create the main window components, including a text widget with an associated
scrollbar, and a status widget to display menu traversal and error messages. We arrange these widgets
on the screen using the gr i d command. We will also create a new font named nyFont . We will use the
menu to manipulate the font attributes so that the text in the text widget will change its appearance.

wntitle . "Menu denonstration"
wm i connane . "Menu denp"

create the basic U
scroll bar .yscroll -orient vertical -command ".text yview'
font create myfont -family Courier -size 10 -weight bold -slant italic \

-underline 1
text .text -height 10 -width 40 -bg white -yscrollcommand ".yscroll set" -font nyfont
| abel .msg -relief sunken -bd 2 -textvariable message -anchor w -font "Helvetica 10"
.text insert end "Menu Denonstration!"

manage the widgets using the grid geonetry manager.
grid .text -row 0 -colum 0 -sticky "news"
grid .yscroll -row O -colum 1 -sticky "ns"
grid .nmsg -row 1 -columspan 2 -sticky "ew'

grid columconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

Next, we will develop callback functions, which will be associated with the menu entries. The Set Bg
procedure will change the background color of the text. Conf i gur eFont will change the attributes of
nyFont . I nser t | mage will insert the named bitmap into the text buffer. The | nsert | mage
procedure has a side effect: If the named bitmap already exists in the text buffer, it will be deleted and a
new bitmap will be inserted. The OpenFi | e procedure will prompt the user for a file, and if the user
selects a file, its contents will be displayed in the text widget.

procedure to set text background col or
proc SetBg {} {

gl obal background

.text configure -bg $background

}
procedure to configure the previously created font.

proc ConfigureFont {} {
gl obal bold italic underline
expr {$bold ? [set weight bold]: [set weight normal]}
expr {$italic? [set slant italic]: [set slant roman]}
expr {$underline? [set underline 1]: [set underline 0]}
font configure nyfont -weight $weight -slant $slant -underline $underline

}

Procedure to insert inmages in the text w dget

proc Insertlmage {inmge} {
catch {destroy .text.$i mage}

| abel .text.$i mage -bitmap $i mage
.text window create end -w ndow .text.$i nage

}

Cal | back for open nenubutton

proc OpenFile {} {
gl obal message
set file [tk _getOpenFile]
if {$file == ""}
set nessage "No file selected..."
return;

}
.text delete 0.0 end
set fd [open $file "r"]
while {[eof $fd] I= 1} {
gets $fd line
.text insert end $line

puts $line

updat e idl et asks
}
cl ose $fd

}

Now we focus on the menu widget and its components. First, we create a menu that will become the
menu bar for the top-level window.

create toplevel nenu
menu .nenu -tearoff 0O -type menubar
Create File nenu

set m.nenu.file

We will add a Fi | € submenu with open and exi t entries. The open entry will prompt the user with
an “open file” dialog. If the user chooses a file, that file will be displayed in the text widget using the
OpenFi | e procedure. The exi t menu entry is used to exit the application. As you can see, Tk does not
create a default global binding for the menu entry just by using the

—accel er at or menu entry option. We have to explicitly create the binding in order for the accelerator
to take effect.

menu $m -tearoff 0O

.nmenu add cascade -label "File" -nmenu $m -underline 0

set nodifier Meta

$m add commrand -1 abel "QOpen..." -accelerator $nodifier+o -comrmand "QpenFile" -
underline 0 -conmand OpenFil e

bind . <$nodifier-o> "OpenFile"

$m add separ at or

$m add command -l abel "Exit..." -accelerator $nodifier+x -command "exit" -underline O
bind . <$nodifier-x> "exit"

We next add an Options submenu to the main menu. This submenu contains Background and Font
cascade menus. The Background cascade menu contains a group of radio buttons to change the
background color of the text widget. The Font cascade menu provides a group of check buttons to
manipulate nyf ont menu attributes.

#
Create options nenu
#

set m . nmenu.options
nmenu $m -tearof f 1

.nmenu add cascade -l abel "Options" -nmenu $m -underline 0
$m add cascade -|abel "Background" -nenu .nenu.options.bg -underline O
$m add cascade -|abel "Font" -nenu .nenu.options.font -underline O

#
create Radi o button cascade nenu
#

set m . menu. options. bg
nmenu $m -tearoff 0O

$m add radio -label "Red" -background red -variabl e background -value red \
-comand Set Bg

$m add radio -label "Yellow' -background yellow -variabl e background \
-val ue yell ow - conmand Set Bg

$m add radio -I|abel "Blue" -background blue -variabl e background -val ue bl ue \

-command Set Bg

$m add radio -label "Wite" -background white -variabl e background -val ue white \
-comand Set Bg

$m i nvoke 3

#
Insert option button cascade Menu
#

set m . nenu.options. font

menu $m -tearof f 0

$m add check -1|abel "Bold" -variable bold -command Confi gureFont

$m add check -label "Italic" -variable italic -command Confi gureFont

$m add check -Ilabel "Underline" -variable underline -command Confi gureFont
$m i nvoke 3

As you can see from the code, the entries in a menu can be configured to have different backgrounds and
foregrounds, as well as other standard widget options.

Next, we will proceed to add yet another cascade entry to the main menu to insert bitmaps into the text
widget. As explained earlier, these bitmap entry commands have a limitation: Only one instance of
these bitmaps can be present in the text widget at any given time.

#

Create insert nenu option

#

set m.nenu.insert

menu $m -tearoff 0

.menu add cascade -label "Insert" -menu $m -underline 0

foreach i {info questhead error} {

$m add command -bitmap $i -command "puts {You invoked the $i bitmap}"\
-hidemargin 1 -conmand "I nsertlnmage $i"

$m entryconfigure 2 -columbreak 1

One thing to observe from the above code snippet is that entries in a menu can be arranged in a tabular
fashion using the ent r yconf i gur e command with the —col urmbr eak option.

Finally, we will attach the menu to the top-level widget to make it the default menu bar. We also make
use of the <<MenuSel ect >> virtual event, which is activated when any menu or one of its entries is
selected. The <<MenuSel ect >> virtual event will display a message in the message label, indicating
that a particular entry has been selected:

#

Attach the nenu to the toplevel nenu

#
configure -nmenu .nenu

Bind global tags
#

bi nd Menu <<MenuSel ect >> {
gl obal message
if {[catch {9V entrycget active -label} label]} {
set |abel " "

set nessage "You have sel ected $l abel ..."

}

When you run the preceding example using the command

$ wish nmenu.tcl

you will see the Menu demonstration [_[O]x

following File Options Insert

screen: Mewu Demoustration!

|\"0u have selected Insert...

Menu Button

Menu buttons are like normal buttons with menus associated with them. They are very useful in graphical
user interfaces to provide a set of choices grouped together by one button. Unlike menu bars, which
usually have more than one cascade menu associated with them, a menu button has only one associated
menu. There is only one menu bar associated with a top-level window, but menu buttons can be
embedded anywhere in the user interface.

Menu buttons can also be organized into groups to make menu bars, which can be placed anywhere inside
a user interface (unlike top-level menus). These can be used to build toolbars and similar functionality into
your user interfaces. Usually, a menu button can also be configured to behave like an option menu by
setting the —i ndi cat or option. The menu button command syntax is as follows:

menubut t on pat hNane ?options?

Try It Out—Menu Buttons

To illustrate MenuButtons’ features, we will create a simple application that draws circles and rectangles
on a canvas with a specified fill color. First, we will develop a utility procedure that will draw a circle or a
rectangle on the canvas. It uses three global variables: X, y, and sgsi ze. x-y coordinates are used to
specify where on the canvas the object needs to be drawn. The variable sqsi ze is used either as the
diameter or the side of the square.

Let’s start off with the basics needed to draw circles and squares.

wnmtitle . "Menubutton denonstration"
wm i connane . "Menubutton demp"

Initial paraneters to draw circles and squares
#

set x 50

set y 50

set sgsize 30

#

procedure to draw canvas objects

#
proc Addoj ect {type} {
global x y sgsize sqgsize fillc
if {$type == "circle"} {
.c create oval $x $y [expr $x+$sqgsize] [expr $y+$sqgsize] \
-tags item-fill $fillc
} elseif {$type == "square"} {
.c create rectangle $x $y [expr $x+$sqsize] [expr $y+$sqgsize] \
-tags item-fill S$fillc
}
incr x 10
inc

n
ncr y 10

Next, we create a canvas with a frame, a menu button, and a dismiss button. The frame widget will
hold the menu and dismiss buttons. We pack all the elements to create the main user interface.

create the basic User Interface canvas, 2 menu buttons and a dismi ss button
set ¢ [canvas .c -width 200 -height 200 -bd 2 -relief ridge]

frame .f -bd 2

menubutton .f.ml -nenu .f.ml. menu -text "Draw' -relief raised -underline 0\
-direction left
button .f.exit -text "Disniss" -command "exit"

manage the widgets using the grid geonetry nanager.
pack .c -side top -fill both -expand yes
pack .f -side top -fill x -expand yes

pack .f.ml .f.exit -side left -expand 1

Finally, we add a menu to the menu button. We create a menu and add three entries to it: two
command entries to draw circle and square objects, and a cascade widget for fill color selection.

set m.f.ml. menu
menu $m -tearoff 0O

$m add command -1 abel "Circle" -command "AddQbj ect circle" -accelerator "Mta-c"
bind . <Meta-c> "AddObj ect circle"

$m add command -1 abel "Square" -command "Addbj ect square" -accel erator "Meta-s"
bind . <Meta-s> "AddObj ect square"

$m add separ at or

$m add cascade -label "Fill Color.." -nenu .f.nl.cascade

set m .f.nl. cascade
menu $m -tearoff 0O

$m add radio -l|abel "Red" -background red -variabl e background -value red \
-command "set fillc red"
$m add radio -label "Yellow' -background yellow -variabl e background \

-val ue yellow -conmand "set fillc yell ow'
$m add radio -label "Blue" -background blue -variable background -val ue blue \

-command "set fillc blue"

$m add radio -label "Wite" -background white -variabl e background -val ue white \
-comand “"set fillc white"

$m i nvoke 1

As you can see from the code, we have not only added the accelerators to the menu entries; we also have
created the bindings explicitly using the bi nd command.

Pop-up Menu

Tk also supports pop-up menus. Unlike menu buttons and menu bars, which provide static menus, pop-
up menus are used to provide a context-sensitive menu system. For example, if you are designing a text
editor, when the user selects a block of text and clicks the right mouse button, you can programmatically
create a menu with items such as “Spell...,” “"Format...,” “Copy,” and “Delete.” Pop-up menus help
facilitate such tasks. Pop-up menus are very helpful in associating menus with any type of widgets, such
as text and canvas widgets. Pop-up menus don’t have any menu buttons associated with them. They are
plain menus that get posted programmatically by associating a binding to a specific widget and invoking
the t k_popup command in the event handler of that binding. Since the menus are posted dynamically,
the entries inside a pop-up menu can be created dynamically to display only relevant items.

The general creation format of an pop-up menu is

tk_popup menu x y ?entry?

where nenu is the menu that needs to be posted, x and y specify the coordinates, and ent ry gives the
index of an entry in menu. The menu will be located so that the entry is positioned over the given point.
Let’s build some pop-up menus.

Try It Out—Pop-up Menus

First, create a menu and add a binding to the top-level window associated with the menu so that the
menu will get posted when the user clicks on the window using the third mouse button.

set w . nmenu

catch {destroy $w}

menu $w

bind . <Button-3> {
tk_popup .nenu %X %Y

The rest of the example creates menu entries to show that pop-up menus have exactly the same
capabilities as regular menus.

Add nmenu entries
$w add command -1abel "Print hello" \
-command {puts stdout "Hello"} -underline 6
$w add command -l abel "Red" -background red
Add a Cascade nenu
set m $w. cascade

$w add cascade -1 abel "Cascades" -nmenu $m -underline 0
menu $m -tearoff 0O

$m add cascade -1abel "Check buttons" \
-menu $w. cascade. check -underline 0
set m $w. cascade. check
menu $m -tearoff 0O
$m add check -label "G checked" -variable oil
$m add check -Ilabel "Transm ssion checked" -variable trans
$m add check -I|abel "Brakes checked" -variabl e brakes
$m add check -Ilabel "Lights checked" -variable lights
$m add separ at or
$m i nvoke 1
$m i nvoke 3

$m add cascade -1 abel "Radio buttons" \
-menu $w. cascade.radi o -underline 0
set m $w. cascade. radi o
menu $m -tearoff 0
$m add radio -label "10 point" -variable pointSize -value 10

$m add radio -label "14 point" -variable pointSize -value 14
$m add radio -label "18 point" -variable pointSize -value 18
$m add radio -label "24 point" -variable pointSize -value 24
$m add radio -label "32 point" -variable pointSize -val ue 32
$m add sep

$m add radio -|abel "Roman" -variable style -value ronan

$m add radio -label "Bold" -variable style -value bold

$m add radio -label "Italic" -variable style -value italic
$minvoke 1

$m i nvoke 7

When you run the preceding popup.tk M= E

example using the command
wi sh popup. t k, you will see
the following:

Print hello

Cascades L
Check huttons PJOiIchecked

| Transmission checked
_|Brakes checked
1| Lights checked

Radio buttons M point

i~ 14 point

18 point
= 24 point
= 32 point

& Roman
" Bold
~ Italic

Option Menu

Tk’s option menu is written completely in Tk to emulate the Motif option button and has the following
syntax:

tk_opti onMenu w var Nane val ue ?val ue val ue...?

The t k_opt i onMenu command creates an options menu button wand associates a menu with it.
Together, the menu button and the menu allow the user to select one of the values given by the val ue
arguments. The current value will be stored in the global variable var Nane, which users can use to
manipulate the options button. Calling t k_opt i onMenu returns the menu associated with the options
button.

Let’s use options buttons to reimplement our earlier buttons example.

Try It Out—Menu Options

We set the global variable st at e equal to 1, and create a check button and an options menu. These are
packed side by side:

#!/usr/bin/w sh -f

set state 1

checkbutton .lan -text "Language" -command {changeState} -relief flat \
-variable state -onvalue 1 -offvalue 0

set optMenu [tk _optionMenu .opt |ang Tcl C Lisp C++]

pack .lan .opt -side left

now make C As the default using lang variable

set lang C++

We need a procedure to handle the application’s event:

proc changeState {} {
gl obal state

if $state {
.opt config -state normal
} else {

.opt config -state disabl ed

}

In this example, we’ve used an options menu instead of three radio buttons. This example works the same
way as but t ons. t k, but is much terser. It also reduces the amount of space needed to display the options
on the screen. When you run this example, it will look like this:[Auth: Note that art is missing from this

file.]

If you wanted to, as before, you could add two push buttons to output the value of the selection. This
example also shows that we can control option menus using the global variable with which they are
associated. The line

set lang C++
sets the selection to C++ by setting the variable.

Dialogs

Dialogs are used extensively in a user interface design cycle. Tk provides a custom dialog called
t k_di al og. It's very simple but can be used in many clever ways to implement most tasks. t k_di al og
has the syntax

tk_dialog window title text bitmap default string string ..

This will create a modal dialog with title t i t | e, with message textt ext, and with the specified bitmap
inside. It will also create buttons with titles given by the st r i ng arguments. When the user presses one of
the buttons, t k_di al og will return that button number and then destroy itself.

Let’s look at a simple example:

#!'/usr/bin/wsh -f

wm wi t hdraw .

set i [tk dialog .info "Info" "Sinple Info Dialog" info 0 Ok Cancel]

if {$i==0} {
puts "Ck Button Pressed"
} else {

puts "Cancel Button Pressed"

exit

The first line unmaps the default top-level window, created by wi sh. This is necessary because

t k_di al og creates a top-level window itself, and we don’t want to have two windows popping up in this
simple example. The next line creates a modal dialog . i nf 0 with title “Info” and message “Simple Info
Dialog” and adds in a built in i nf o bitmap. It also creates two buttons, “Ok” and “Cancel,” and makes
button number 0 (Ok) the default.

When we were explaining the dialog, we used the word modal. What's that? It means that the user’s range
of choices is restricted. The user won't be able to do anything with the application unless they first
respond to the dialog by clicking either Ok or Cancel. Once the user has clicked on one of these buttons,
control passes back to the application, where i is set depending on the button the user invoked.

We can achieve modal interactions using the gr ab and t kwai t commands. Take a look at the man pages
or Tk books for more information on these topics.

Tk’s Built-in Dialogs

In addition to providing the tk_dialog command, Tk provides many utility dialog procedures. Most GUI-
based applications have lots of common functionality, such as prompting users for input or output files,
color choices, and the like. Tk provides utility dialog boxes for these operations. Also, these built-in
dialogs are written in such a way that they have the native look and feel of whichever operating system
the Tcl script is run on. We will explore the utility dialogs in this section. These utility dialogs are not Tk's
built-in commands, but rather utility scripts that provide a specific dialog functionality.

Color Chooser
tk_chooseCol or ?option value ...?

Most GUI-based applications provide their users with ways to customize the look feel of the application
using color and font choices. Humans are accustomed to using descriptive names for colors, but
underneath, most graphic systems deal with color using different schemes such as RGB or CMYK. RGB is
a Red, Green, Blue color scheme. Any color in the system can be represented using a combination of these
three colors.

Tk describes colors in a similar way to HTML. If you’ve programmed Web pages before, you may be
familiar with the notation. There are also a large number of valid color names that directly refer to specific
color values. However, if you want to control Tk’s colors more precisely, you'll have to become familiar
with the way it represents them internally.

All colors in Tk are represented as hexadecimal integers. You can use various lengths of hex number,
either 3, 6, 9, or 12 digits. For example, you could use 6-digit hex numbers between #000000 and #ffffff.
Each pair of digits represents the level of red, green, or blue, in that order. So #££9900, for example, would
represent a red value of #ff, a green value of #99, and a blue value of #00. In fact, the resulting color would
be a shade of orange. In this system, #000000 is black and #ffffff is white. Values such as #a5a5a5, where
all three components are the same, will lead to shades of gray. Any other value will be a color of some
sort.

The other hex number lengths acceptable to Tk are, of course, divided into three equal-length hex numbers
to form the three components in exactly the same way as for the six-digit example.

t k_chooseCol or dialog provides a simple way to choose a color using the RGB color scheme. This
dialog also provides a way to inquire about the RGB values for a given color by name. The procedure

t k_chooseCol or pops up a dialog box for the user to select a color. The following option-value pairs are
possible as command line arguments:

-initialcolor color Specifies the color to display in the color dialog when it pops up.
col or must be in a form acceptable to the Tk_Get Col or function,
for example, r ed or #f f 0000. (#f f 0000 is the RGB equivalent of
red.)

- parent wi ndow Makes wi ndow the logical parent of the color dialog. The color dialog
is displayed on top of its parent window.

-title titleString Specifies a string to display as the title of the dialog box. If this option
is not specified, a default title will be displayed.

If the user selects a color, t k_chooseCol or will return the name of the color in a form acceptable to Tk
widget commands. If the user cancels the operation, both commands will return the empty string.

The following scripts illustrate the use of t k_chooseCol or dialog box.

#

tk_chooseCol or denp

#

| abel .1 -text "Set my background color:"

button .b -text "Choose Color..." -comand ".| config -bg \[tk_chooseCol or\]"

pack .1 .b -side left -padx 10

When you run the above script and click ‘ choose Color.tk -[Ofx] |

the “Choose Color...” button, you will see Set my background color: Choose Colar...
the following;: e
Selection:
Jiso I8 =
= i |#saensn
Green: 224 Y
i
Blue: J50 |
Y
DK | Cancel |
Get Open/Save Files

t k_get OpenFi | e and t k_get SaveFi | e are convenience functions to prompt the user for input or
output file selection, respectively. In most GUI-based operating systems, all applications provide some
dialog boxes for selecting input and output files. Tk makes this functionality available to all Tk-based
applications by providing these convenience functions. These dialog boxes have native look, feel, and
behavior. The dialog boxes handle most error conditions so that the programmer does not have to do
much other than create and initialize these dialogs. They provide interfaces so that developers can specify
filters to select only those files matching certain patterns. The Tk_get OpenFi | e command is usually
associated with the “Open” command in the File menu, and t k_get SaveFi | e is usually associated with
the “Save as...” command.

If the user enters a file that already exists, the dialog box prompts the user for confirmation as to whether
or not the existing file should be overwritten. The syntax of these commands is as follows:

tk_get OpenFil e ?option value ...?
tk_get SaveFil e ?option value ...?

For a complete list of options for these commands, refer to the t k_get QpenFi | € manual page.

The following example illustrates the use of these commands.

tk_get OpenFil e deno
tk_get SaveFi |l e demp

label .o -text "File to open:"
entry .oe -textvariable open

set types {
{{Text Files} {.txt} }
{{TCL Scri pts} {.tcl} }
{{C Source Files} {.c} TEXT}
{{AF Files} {.qgif} }
{{AF Files} {} G FF}
{{A'l Files} * Iy
button .ob -text "Open..." -command "set open \[tk _getQpenFile -filetypes \$types \]"
label .s -text "File to save:"
entry .se -textvariable save
button .sb -text "Save..." -command "set save \[tk_get SaveFile\]"

Create a dism ss button
button .b -text "Dismss" -command "exit"

Manage the widgets

grid .o -row 0 -colum O -sticky e -padx 10
grid .oe -row 0 -colum 1 -padx 10

grid .ob -row 0 -colum 2 -padx 10

grid .s -row 1 -colum O -sticky e -padx 10
grid .se -row 1 -colum 1 -padx 10

grid .sb -row 1 -colum 2 -padx 10

grid .b -row 2 -pady 10

As you can see from the code, openfile.tk I [3
these dialog routines have a File to open: fusrfincludeswcharh Open...
way of specifying file filters File to save: | TR
using patterns. When you Te— |
run the above example and
3 “" 7 .
click Ope.n..., you will see Dpon
the following;: =
Directory: fustfinclude -ll
7 gnu £ nfs £ sys El ali
7 kpathsea 1 protocols 7 ®11 E all
£9 linux 9 readling [El _G_configh El ar.
£ ncurses 7 rpe E __math.h El ar
£ net £ rpesve E aouth B as
9 netinet 9 sane E] aalib.h El by
1 netipx £ scsi [El acegr_nph El bz
File name: [a.outh Open <
Files of type: Al Files (%) =4 Cancel

Color Schemes

When you create new widgets using Tk widget commands in Tk 4.0 and later versions, all the widgets
have a black foreground and a gray background. So if you create a complete application (like most of the
examples above), that application will have a gray background and a black foreground. What if you
wanted to create an application with a light blue background? One way to accomplish this is to configure
all of the created widgets’ backgrounds to light blue. This will make the application code bloated and
unreadable, however, since most of the commands in the code will be configuration commands —
obscuring the application logic. To solve this problem, Tk provides a convenient way of globally changing
the color scheme of the application. The following commands are used to set overall color scheme for any
application.

tk_set Pal ette background
tk_setPal ette nanme val ue ?name value ...?
tk_bi sque

If t k_set Pal et t e is invoked with one argument, then that argument is taken as the default background
color for all widgets and Tk_set Pal et t e will compute the color palette using this color. For example,
the commands

tk_setPal ette steel bl ue
button .b -text "Linux is cool!"
pack .b

will create a button and display it in a steel blue background. It will also set the background color of any
future widgets in the same application to steel blue.

Alternatively, the arguments to t k_set Pal et t e may consist of any number of name-value pairs, where
the first argument of the pair is the name of an option in the Tk option database and the second argument
is the new value to use for that option. The following option database names can be specified currently.

acti veBackgr ound di sabl edFor egr ound f oreground

hi ghl i ght Col or hi ghl i ght Backgr ound i nsert Backgroun
d

sel ect Backgr ound sel ect Col oracti veFor egr ound sel ect For egr oun

backgr ound d

t roughCol or

Refer to the opt i ons(n) manual page on the option database description. t k_set Pal et t e tries to
compute reasonable defaults for any options that you don’t specify. You can specify options other than the
ones above and Tk will change those options on widgets as well.

The procedure t k_bi sque is provided for backward compatibility: It restores the application’s colors to
the light brown (“bisque”) color scheme used in Tk 3.6 and earlier versions.

Fonts

If you have ever programmed using Xlib or Motif on an X Window System, you know that fonts are one of
the murkier areas of X. You have to specify font names in X Logical Font Description (XLFD) structures.
For example, in applications created with pre-Tk 8.0 versions, if a button had to be created with a specific
font, the command would look something like this:

Button .b —text "Hello" —font -font -*-Courier-Bold-O Normal --*-120-*-*-*-*_*%_x*

We actually encountered this notation earlier, but we're going to see how we can get around this ugly
format now. The reason X was designed this way was to adhere to the requirement that X client
applications be portable across server implementations, with very different file systems, naming
conventions, and font libraries. X clients must also be able to dynamically determine the fonts available on
any given server, so that understandable information can be presented to the user and intelligent fallbacks
can be chosen. XLFD provides an adequate set of typographic font properties, such as FOUNDRY,

FAM LY_NAME, ViEI GH_NAME, and SLANT. To learn more about XLFD, refer to its specification in the X
Windows system documentation or play with the xf ont sel command on your Linux box.

Even though XLFD is extremely powerful and flexible, it is not simple and intuitive. As in the case of
colors, humans tend to associate simple names with fonts, such as “Helvetica 12-point italic.” Porting Tk
to other, non-X platforms introduced another complexity because other windowing systems do not use
XLFD, so the users were forced to learn XLFD. In addition, XLFD does not support a way of creating fonts
by name.

Tk 8.0 introduced a new mechanism to deal with fonts, using the f ont command. New named fonts can
be created using human-readable metrics. Tk internally will take care of translating these fonts to system-
specific interfaces. One advantage of the new f ont command is that it gives a platform-independent way

of specifying fonts. It also provides a way to associate names with created fonts. The f ont command
syntax is as follows:

font create ?fontnane? ?option value ...?
font configure fontnane ?option? ?value option value ...?

The f ont command takes options such as —f ani | y, - si ze, and —sl ant . For a complete list of f ont
command options, take a look at the f ont manual page.

For example, you can create a font called nyf ont using this command:

font create nyfont -famly Courier -size 20 -weight bold -slant italic\
-underline 1 -overstrike 1

Once the font is created, you can use that font name to specify a value for a —f ont widget option. After
creating the font, if you run the following code using Wi sh,

button .b -text "Hello Wrld!" -font nyfont
pack .b

You should see the following: font.tk o =]
Helileo—fiomiat

Bindings

Once we've created widgets, we can attach event handlers to them to make them respond to the user. For
example, in the final “Hello World” program, we attached an event handler to the button:

bind .b <Control -Button-1> {puts "Hel p!"}

We use the bi nd command to attach these event interactions to the widgets. The bi nd command
associates Tcl scripts with X events and is very powerful. Its general syntax is

bi nd tag

bi nd tag sequence

bi nd tag sequence script
bi nd tag sequence +script

The t ag argument determines which window(s) the binding applies to. If t ag begins with a dot, as in
. a. b. ¢, then it must be the path name for a window; otherwise, it may be an arbitrary string. Each
window has an associated list of tags, and a binding applies to a particular window. If its tag is among
those specified for the window, the default binding tags provide the following behavior:

0 Ift ag is the name of an internal window, the binding applies to that window.

O Ift ag is the name of a top-level window, the binding applies to the top-level window and all its
internal windows.

O Ift ag is the name of a class of widgets, such as but t on, the binding applies to all widgets in
that class.

0 Ift ag has the value al | , the binding applies to all windows in the application.

For example, let’s see what happens if we invoke bi nd on the but t on class:

% bi nd Button
<Key- space> <ButtonRel ease- 1> <Button-1> <Leave> <Enter>

The result says that there are bindings for these five event sequences in the but t on class. Let’s experiment
further and see what happens when we invoke the second form of bi nd command on one of these
bindings:

% bi nd Button <Key-space>

t kBut t onl nvoke %W

The result says that <Key- space> binding on the but t on widget class (all the push buttons belong to
this but t on class) will invoke the Tecl script t kBut t onl nvoke with the button path as the argument.

We can also use class names when we associate the binding. For example,
% bind Button <Control -Button-1> {puts "Hel p!"}

will set the <Cont r ol - But t on- 1> binding on all the button widgets in the application. It's possible for
several bindings to match a given X event. If the bindings are associated with different tags, each of the
bindings will be executed in order. By default, a widget class binding will be executed first if it exists,
followed by a binding for the widget, a binding for its top level, and finally, an al | binding if one exists
for that event. We can use the bi ndt ags command to change this order for a particular window, or to
associate additional binding tags with the window.

When a binding matches a particular sequence, the script associated with that binding will be invoked.
While we’re invoking the script, we can inform the bi nd command to pass some arguments to that script
from the X event that invoked the binding. For this we use special modifiers. For example, in the canvas
example, we had a binding

bind $c <1> "itenDragStart $c % %"

There we informed bi nd that while invoking the i t enDr agSt art command, it should pass $c, %, and
%, which bi nd replaces with the x and y coordinates of the X event structure. The bi nd command
supports lots of substitution parameters; for a complete listing, refer to the bi nd man page.

Binding Tags

As just described, the bi nd command is used to associate an action with a binding. When an association is
created with the bi nd command, a tag is specified. The t ag argument specifies which windows the
binding applies to. Usually, t ag is the name of the widget, the name of the widget class, the keyword al |,
or any other text string. Each window has an associated list of tags, and a binding applies to a particular
window if its tag is among those specified for the window. When an event occurs in a window, it is
applied to each of the window’s tags in order; for each tag, the most specific binding that matches the
given tag and event is executed. For example, after executing the following code snippet in the wi sh shell,

bind . <F1> "puts Topl evel "
entry .e

pack .e

bind .e <F1> "puts Entry"

if you press the F1 key inside the entry widget, you will see the strings “Ent r y” and “Topl evel ” printed
in that order, because if you invoke the bi ndt ags command on . e, theresult willbe. e Entry . all;
this means that when an event is triggered on . €, it is first checked in the . e tag and later in the top level
that includes the entry. What if you want to make the top-level binding fire before the entry’s binding?
You can use the bi ndt ags command to change the order:

Bindtags .e {. .e Entry all}
By default, each window has four binding tags consisting of the following, in order:

The name of the window
The window’s class name
The name of the window’s nearest top-level ancestor

All

o o o g

Top-level windows have only three tags by default, since the top-level name is the same as that of the
window.

The bi ndt ags command can be used to introduce arbitrary additional binding tags for a window. In fact
this function of bi ndt ags accomplishes many things. It aids in creating a binding once and and
associating it with as many widgets as needed by simply inserting the binding tag in the widget’s bind
tags list. Second, it allows widgets to have more than the standard four binding tags. Tags aid in
identifying an action by name rather than by a key sequence. The following example illustrates a practical
use for binding tags.

set count O

button .b -text "Tick(mnms)"

| abel .ticker -textvariable count
pack .b .ticker

bind timer <ButtonPress-1> {
set count O
Start Ti mer %NV

}

bi nd timer <ButtonRel ease-1> {
St opTi mer %W

proc StartTiner { wdget } {
gl obal pendi ng count
incr count 200
set pending [after 200 [list StartTiner $wi dget]]

proc StopTinmer { widget } {
gl obal pendi ng
after cancel $pending

}
bindtags .b [linsert [bindtags .b] 0 tiner]

In this example we first created a simple user interface with a button and a label to display timer ticks.
Next we created a binding with a tag t i mer . We added two key sequences to the tag timer. The first
sequence, <But t onPr ess- 1>, starts the timer, and <But t onRel ease- 1> stops the timer. The code is
pretty simple to understand. The point to observe here is the use of bi ndt ags. We have easily added
these key sequences to the button . b in a single line. Without the bi ndt ags command, we would have to
do something like

bind .b <ButtonPress-1> "+{set count O; StartTimer %y"

and the same for the binding <But t onRel ease- 1>. Also, these bindings do not really imply what we are
trying to achieve. Using the bi ndt ags command, we have identified these sequences with the name

ti mer . If we create another button to handle another timer, all we have to do is invoke the bi ndt ags
command on that button and insert the binding.

Geometry Management

After we've created the widgets and bound the event handlers using bi nd, we need to arrange the
widgets on the screen in a way that makes the GUI meaningful and useful. Geometry managers perform
this job. Tk currently supports three explicit geometry managers:

0 Packer, using the pack command

O Placer, using the pl ace command

O Table or grid manager, using the gr i d command

Packer

We use the pack command to arrange the slave widgets of a master window or widget in order around
the edges of the master. The syntax of the pack command takes one of these forms:

pack option arg ?arg ...?
pack sl ave ?slave ...? ?options?
pack configure slave ?slave ...? ?options?

Let’s look at an example and explore some of the pack options:

#!/usr/bi n/ wi sh -f

foreach i {1 2 3 41} {
button .b$i -text "Btn $i"
pack .b$i -side left -padx 2m -pady 1m

This will produce the following output:

Btn1| Btn2| Btn3| Btn4|

Here the buttons are packed to the left, with a horizontal space of two millimeters between them and with
a space of one millimeter vertically to the master’s boundary.

In the pack sequence

#!/usr/ bi n/wi sh -f

foreach i {1 2 3 41} {
button .b$i -text "Btn $i"
pack .b$i -side left -ipadx 2m -ipady 1m

- i padx specifies that the slaves be internally padded with two millimeters horizontally. Internal padding
causes the slave (button) to expand to fill the extra space created.

There are many more combinations of the pack command. Refer to the pack man page
and Ousterhout’s Tcl and the Tk Toolkit, Addison-Wesley (ISBN 0-201-63337-X), for
more information.

Placer

The placer geometry manager is used for fixed placement of windows, where you specify the exact size
and location of one window (the slave) within another window (the master). We'll use the i mage example
to explain the placer geometry manager. The following code fragment shows how the buttons are created
in the puzzle.

set order {316 257 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
set num [l index $order $i]
set xpos($num) [expr ($i %) *.25]
set ypos($num [expr ($i/4)*.25]

set x [expr $i %]
set y [expr $i/4]

set butlmage [image create photo image-${nun} -w dth 40 -hei ght 40]
$but | nege copy $inmge -from[expr round($x*40)] \
[expr round($y*40)] \
[expr round($x*40+40)] \
[expr round($y*40+40)]
button .frame. $num -relief raised -inmage $butlmge \
-command "puzzleSwitch S$nunmt \
- hi ghlightthickness 0
place .frame. $num -rel x $xpos($nunm) -rely $ypos($num \
-relwidth .25 -rel height .25
}

This loop creates buttons and places them relative to the master, . f r anme. Here, - r el x 0 is the left edge
of the master and - r el x 1 is the right edge of the master, and similarly for-rely Oand-rely 1.Now
if you decipher the loop code, you'll see how all the buttons are arranged to form the puzzle.

Grid
The grid geometry manager arranges widgets (slaves) in rows and columns inside another window, called
the geometry master. Grid is a very powerful geometry manager; using it, we can create complex layouts

with ease. Let’s see just see how simple it is to create an entry for personnel information using 10 lines of
Tk code:

#!/usr/bi n/ wi sh -f

set row O
foreach item {name enmil| address phone} ({
| abel .$item|abel -text "${iten}:"
entry .$itementry -width 20
grid .$itemlabel -row $row -colum 0 -sticky e
grid .$itementry -row $row -colum 1 -columspan 2 -sticky "ew'
incr row

grid colummconfigure . 1 -weight 1

If you run this program, you'll see output like this: grid.tk M= E

name: |

email: |

address: |

phone: |

Here the slaves . $i t em | abel and . $i t em ent ry are arranged in the master, using the - r ow $r ow
and - col um options. You can also specify row and column span options for the slave using the -
rowspan and - col unmspan options. These options will span the slaves to occupy Span number of rows
or columns or both. The line

grid .$itementry -row $row -colum 1 -colummspan 2 -sticky "ew

specifies that the ent r y widget will occupy two columns, and - sti cky "ew' implies that the slave will
stretch from east to west in the parcel space available for it. If you specify just one letter in the - st i cky
option, it behaves as an anchoring option. The last line,

grid columconfigure . 1 -weight 1

specifies that if the master (.) is resized horizontally, then column 1 should get the resized portion.

In developing these examples, we’ve made much use of the grid geometry manager.
This is because grid makes it so much easier to design and understand layouts. It's been
in Tk since version 4. 1.

Focus and Navigation

When you have multiple top-level windows on your computer screen and you press a key, which one of
the windows will receive the key press event? The answer is the top-level window with the focus. So focus
determines the target of the keyboard input. Top-level window focus management is done automatically
by the window manager. For example, some window managers automatically set the input focus to a top-
level window whenever the mouse enters it; others redirect the input focus only when the user clicks on a
window. Usually, the window manager will set the focus only to top-level windows, leaving it up to the
application to redirect the focus among the children of the top level.

Tk provides two application-level focus models: i npl i ci t, which sets the focus to the widget the mouse
is currently on, and expl i ci t, where the user must either explicitly click on the widget or navigate to

that widget using the keyboard. By default, tab keys are used to navigate focus between widgets in an
explicit model.

Tk remembers one focus window for each top level (the most recent descendant of that top level to receive
the focus); when the window manager gives the focus to a top level, Tk automatically redirects it to the
remembered window. Within a top level, by default, Tk uses an explicit focus model. Moving the mouse
within a top level does not normally change the focus; the focus changes only when a widget decides
explicitly to claim the focus (e.g., because of a button click) or when the user types a key, such as Tab, that
moves the focus.

The focus command syntax is as follows:

focus
focus wi ndow
focus option ?arg arg ...?

For a complete list of the f ocus command’s usage, refer to f ocus manual page.

Once the application or any of its top-level windows gets focus, the Tcl procedure

t k_f ocusFol | owsMouse may be invoked to create an implicit focus model. It reconfigures Tk so that
the focus is set to a window whenever the mouse enters it. For example, the following example will
instruct the window manager to give focus to whichever component the mouse is on, once the application
top level gets the focus. If you run the example, you will notice that the buttons get focus as soon as the
mouse is moved over them without a mouse click.

tk_focusFol | owsMouse

button .bl -text "Button 1"
button .b2 -text "button 2"
button .b3 -text "button 3"

pack .bl .b2 .b3 -side left -padx 10

The Tcl procedures t k_f ocusNext andt k_f ocusPr ev implement a focus order among the children of a
top level; among other things, these are used in the default bindings for Tab and Shift+Tab.

The syntax of thet k_f ocusNext and t k_f ocusPr ev commands is as follows:

ocusNext wi ndow
ocusPrev w ndow

tk_f
tk_f
t k_f ocusNext is a utility procedure used for keyboard traversal. It returns the “next” window after

wi ndowin focus order. The focus order is determined by the stacking order of windows and the structure
of the window hierarchy. Among siblings, the focus order is the same as the stacking order, with the
lowest window being first. If a window has children, the window is visited first, followed by its children
(recursively) and then by its next sibling. Top-level windows other than Wi ndow are skipped, so that

t k_f ocusNext never returns a window in a different top level from wi ndow.

After computing the next window, t k_f ocusNext examines the window’s - t akef ocus option, to see
whether it should be skipped. If so, t k_f ocusNext continues on to the next window in the focus order
until it eventually finds a window that will accept the focus or returns back to wi ndow.

The t k_f ocusPr ev command is similar to t k_f ocusNext , except that it returns the window just before
the window in the focus order.

The following example illustrates how a widget can avoid the focus by specifying the —t akef ocus 0
option. When you run the example, the “skip focus” button does not take focus, even though the mouse is
on it.

t k_focusFol | owsMbuse

button .bl -text "Button 1"
button .b2 -text "skip focus" -takefocus 0
button .b3 -text "button 3"

pack .bl .b2 .b3 -side left -padx 10

Option Database

Just as in Motif or Xt, every widget in Tk has a class, which can be retrieved using the command

wi nfo cl ass wi dget - pat h- nane

These class names are used to specify application defaults and class bindings for the widget. Tk uses a
special database, called the option database, to store and retrieve application resources. For example, in the
very first program, we used the line

option add *b. activeForeground brown

This informed the option database that buttons with name . b (it can have any parent) should have a
brown act i veFor egr ound color. We could have specified the button class instead and had the same
effect:

option add *Button. activeForeground brown

The reason these commands change act i veFor egr ound is that when Tk creates a widget, after setting
the command line it searches the option database to set the appropriate resources. If it finds a match to the
resource, it will use that option; otherwise it will use a default value.

The opt i on command does the same things as an X resource file. In fact, we can store all the resources in
a file and let the opt i on command read the file, just as we did with hel | 04. t k program. We can also
use the opt i on command to query the options stored, using the syntax

option get wi ndow name cl ass

The option database is very versatile, much more so than the simple . Xdef aul t s file. We can use it to
simulate the same application default loading mechanism that is supported by any Xt-based application.
For example, before the application is loaded, the defaults file can be located in the directories specified by
X Windows environment variables, such as XFI LESEARCHPATH, XAPPLRESDI R,

XUSERFI LESEARCHPATH and XENVI RONVENT.

We can now assign priorities to the application defaults file found in those directories while reading them
into the application using the opti on readfile ... command. The code for this emulation would
look something like this:

gl obal env

if [info exists env(XFl LESEARCHPATH)] {

I ook for the app-defaults file in XFI LESEARCHPATH dir

load the file with priority 1

} else {

l ook in one of {/usr/lib/X11l/ app-defaults, /usr/openw n/lib/app-defaults,
/usr/liblapp-defaults..} directories and load the file with priority 1

if [info exists env(XUSERFI LESEARCHPATH)] {
| ook for the app-defaults file in XUSERFI LESEARCHPATH dir
load the file with priority 2 over riding XFI LESEARCHPATH priority
} elseif [info exists env(XAPPLRESDI R)] {
|l ook for the app-defaults file in XAPPLRESDI R dir
load the file with priority 2 over riding XFI LESEARCHPATH priority
} elseif
| oad app defaults file if exists fromcurrent dir with priority 2

}
if [the defaults exist in .Xdefaults] {
load themwith priority 3 }
if [info exists env(XENVI RONVENT)] {
load the file XENVI RONMENT as the app defaults file with second-highest priority

}
finally | oad conmand-line options with the highest priority

Inter-application Communication

Tk provides a very powerful mechanism for two applications that share a display server (though they can
be on different screens) to communicate with each other, using the send command. For example,
application A can send application B (i.e., with Tcl interpreter name B) a command to output the string
“hel | 0”:

send B [list puts "hello"]

Application B will receive this command and execute the put s "hel | 0" command. For more
information on this, refer to the send man page.

Selection

Imagine the scenario where a user is operating on a desktop with multiple xterms. The user highlights a
selection of text in one xterm, using the left mouse button, and then pastes the selection in another xterm,
using the middle button. There are a lot of things going on under the covers during this transaction.

When the user decides to select something in an xterm, the xterm must first of all figure out what
information is being selected and then it should become the selection owner. Being the selection owner
means that when another application decides to request the selection, the owner should convert the
selection to the type specified by the requested application. A client wishing to obtain the selection in a
particular format requests the selection from the selection owner. All of these cooperative interactions
between X clients is described in the X Inter-Client Communication Conventions Manual (ICCCM).

Selection can be of various types: PRI MARY, SECONDARY, and CLI PBOARD. By default, the PRI MARY
selection, named XA PRI MARY, is used by all the clients. A SECONDARY selection, named

XA _SECONDARY, is used when applications need more than one selection. The CLI PBOARD selection is
usually used to hold deleted data.

The sel ecti on command provides a Tcl interface to the X selection mechanism and implements the full
selection functionality described in the X Inter-Client Communication Conventions Manual (ICCCM). The
following example shows selection manipulation. It creates a new slave Tk interpreter, with a text widget.

It automatically selects the text inside the text widget using the sel tag of t ext . Using the sel tag of the
t ext command will make the selection by default PRI MARY. So when the slave interpreter calls the

sel ecti on own, it is owning the primary selection. The master interpreter then retrieves the selection
and outputs it to st dout .

#! wi sh
interp create foo

foo eval {

load {} Tk
text .t
pack .t

.t insert end "Hello World!"
.t tag add sel 0.0 end
sel ecti on own
.t insert end "\n"
.t insert end "[selection get -selection SECONDARY]"
.t insert end "[selection get]"

puts "[selection get]"

If the commented line in the above example is uncommented, the application will output an error because
there is no secondary selection. A selection owner can also reject selection retrievals by any other
application or component.

Clipboard

In X, CLI PBOARD is another type of selection mechanism. The CLI PBOARD selection can be used to hold
deleted data. For example, a client can post deleted data to the clipboard and exit. Another client can
retrieve the deleted selection from the clipboard, even thought the original client no longer exists. This is
not possible with the PRI MARY and SECONDARY selection types, because when a client requests PRI MARY
or SECONDARY selection, the owner will be sent a request. If the owner no longer exists, the selection
request will fail.

The cl i pboar d command provides a Tcl interface to the Tk clipboard, which stores data for later
retrieval, using the sel ect i on mechanism. Tk_cl i pboar d is not the same as the system clipboard that
you see on various operating systems. Tk_cl i pboar d is designed to hold deleted data between
applications developed using the Tk toolkit. To copy data to the clipboard, cl i pboard cl ear must be
called, followed by a sequence of one or more calls to cl i pboar d append. The following command
illustrates the use of the cl i pboar d command.

#! wi sh
interp create foo

foo eval {
load {} Tk
cl i pboard cl ear
cl i pboard append -type STRING "Cl i pboard Data"

}
interp delete foo
puts "[sel ection get -selection CLI PBOARD]"

This example creates a new Tk interpreter called f 00. f 00 appends data to the clipboard. The master
interpreter deletes the slave interpreter and retrieves the data from the clipboard. As you can see, even
though the slave does not exist, the selection can still be retrieved.

Window Manager

Tk provides the wncommand so that windows can communicate with the window manager. Window
manager functions typically include managing the keyboard focus between application windows, setting
up top-level window properties, allocating colormaps to windows, and positioning top-level windows on
the screen. Since window manager deals only with the top-level windows of any application and leaves
the internal window management to the application, wncommand arguments must be top-level windows.
The kinds of functions that a client can request from the window manager include the following:
Iconifying and de-iconifying top-level windows

Positioning top-level windows at a particular point on the screen

Requesting the initial sizes of top-level windows

Setting the titles of top-level windows

Setting the focus model of an application

Requesting the height and width of a top-level window

O o o o o o g

Overriding the default window manager decorations

For example, using the wncommand, one can query the state of a top-level window in an application as
follows:

% wmiconify .
% puts "[wmstate .]"
iconic

Users can also set up window manager protocols on a top-level window. For example, we can set up a
handler on a top-level window that will get called when the window receives focus or when the window
is deleted.

% wm protocol . WM TAKE_FOCUS {puts "w ndow . got focus"}
% wm protocol . WM DELETE W NDOW {puts "window . is being deleted"; exit}

When run, this code snippet will output the string “wi ndow . got focus” when the top-level window

.7 gets focus, and the string “wi ndow . i s bei ng del et ed” when the top-level window “. ” is
deleted using the window manager delete button.

wmcommands can also be used to set or query the title of a top-level window as follows:

wmtitle ?newtitle?.

A client can also request that a window manager not decorate a top-level window. When the client makes
such a request, the window manager will not display the iconify, de-iconify, or resize button on the
window manager frame of the requested top level. The following code snippet requests the window
manager not to add any decorations to the top-level window.

topl evel .t

wm wi t hdraw .t
wmtransient .t
wm dei conify .t

When this code is run, you will see the following

output:

Actually, the code snippet shows more than one functionality of the window manager command. The
application first requests the window manager to withdraw the top-level window, it then asks the
window manager to remove the minimize/maximize decorations for the top-level window, and finally it
asks the window manager to map the window back to the screen.

Dynamic/Static Loading

In the previous sections, we created new interpreters and loaded Tk statically. There are two ways in
which interpreters can load the Tk toolkit—statically and dynamically, using the | cad command. For
static loading, the executable should be preloaded with Tk. For example, the code

interp create debuglnterp

debugl nterp eval {
load {} Tk
text .t
pack .t
updat e

}

proc debug {interp args} {
debuglnterp eval [list .t insert end "$args"]

debug . "hello world!"

statically loads the Tk executable to a newly created interpreter. The example also shows how to
communicate between interpreters. The master interpreter creates a debug routine, which communicates
with debugl nt er p to display debugging information.

So how do we load a Tk interpreter dynamically into a t ¢l sh application? The following examples
illustrate how.

interp create debuglnterp

debugl nterp eval {
load /usr/local/tk8.2b3/unix/libtk8.2.s0o Tk

text .t
pack .t
updat e

proc debug {interp args} {
t

debuglnterp eval [lis .t insert end "$args"]

debug . "hello world!"
vwai t foob

This code assumes that you have compiled the Tcl/ Tk distributions so that they are dynamically loadable
and that the Tk dynamic library | i bt k8. 2. so is located in the / usr/ | ocal / t k8. 2b3/ uni x/
directory. As you can see from the code, t cl sh creates a new interpreter and loads Tk dynamically into
the newly created interpreter, and the master interpreter enters the event loop using the vwai t command.
If the master interpreter does not enter the event loop, the application exits without warning. If you run
the preceding code using the command

Tcl sh8. 0 dynami cLoad. tk

the Tk interpreter will be loaded dynamically!

Safe Tk

Suppose you download a Tcl script from the network and execute it. If the script is malicious, it can do a
lot of damage to your system. For example, it can delete all of your files or transfer files to another
computer. How do you ensure that untrusted scripts do not do any damage? In 1994 Marshall and Rose
created Safe-Tcl, which was originally conceived as a mechanism to allow e-mail messages to contain Tcl
scripts that would execute on the receiver’s computer. Safe-Tcl was incorporated into the core code in Tecl
version 7.5.

The goal of Safe-Tcl is to create a sandbox that allows users to safely execute untrusted Tcl scripts in the
sandbox without having to worry about any side effects.

Safe interpreters have a restricted command set. The following commands are hidden in a safe interpreter.

cd exec exit fconfigure
gl ob | oad open socket
source vwai t pwd file

The saf e base Tcl manual page describes how to create these safe interpreters. Sometimes it might be
necessary to give the newly created safe interpreter some restricted access; for example, it might be
allowed to open files in a particular directory. Safe-Tcl provides mechanisms for allowing such restricted
access. Interpreters created with the : : saf e: : i nt er pCr eat e command give mediated access to
potentially dangerous functionality through untrusted scripts by using the alias mechanism. Thus, Safe-
Tcl is a mechanism for executing untrusted Tcl scripts safely and for providing mediated access by such
scripts to potentially dangerous functionality.

Just as with Safe-Tcl, it is necessary to create sandboxes to execute untrusted Tk scripts. For example, you
don’t want the Tk applet to delete all of your top-level windows or to steal your X selection. Safe Tk adds
the ability to configure the interpreter for safe Tk operations and load the Tk script into a safe interpreter.
By default, you can’t load Tk into a safe interpreter, because the safe interpreter does not allow | oad
commands. Safe Tk also isolates the untrusted Tk scripts to be executed in a sandbox so that no damage
can be done.

The : : saf e: : | oadTk command initializes the required data structures in the named safe interpreter and
then loads Tk into it. The command returns the name of the safe interpreter. : : saf e: : | oadTk adds the
value of t kK_I i br ary taken from the master interpreter to the virtual access path of the safe interpreter,
so that auto-loading will work in the safe interpreter.
The following examples show that you cannot load Tk into a safe interpreter unless you use the
::safe:: | oadTk command.

:safe::interpCreate safelnterp
::safe::interpAddToAccessPath safelnterp /tnp
::safe::loadTk safelnterp

interp create -safe safelnterp2

puts " 1 -> [interp hidden safelnterp]"”
puts " 2 -> [interp hidden safelnterp2]"

puts " 1 -> [interp aliases safelnterp]"”
puts " 2 -> [interp aliases safelnterp2]"

safelnterp eval {

text .t
pack .t
updat e

safelnterp2 eval {
load {} Tk

When you run this script, you'll see the error message:

$ wish safelnterp.tk
1 -> file socket send open pwd gl ob exec encoding clipboard | oad fconfigure source
exit toplevel wngrab nenu selection tk bell cd
2 -> file socket open pwd gl ob exec encoding | oad fconfigure source exit cd
1 ->file load source exit encoding
2 ->
Error in startup script: invalid command nane "safel nterp2"”
whi | e executing
"safel nterp2 eval {
load {} Tk

(file "safelnterp.tk" line 26)

This informs you that you cannot load Tk into a safe interpreter unless it is created using the
::saf e:: creat el nt er pcommand. If you want to see how safe interpreters are used, take a look at the
saf eDebug. t k example in the distribution.

A Mega-Widget

We have now seen how to use various widget commands to create applications. Sometimes people need to
display their information in ways that require new types of widgets, such as panes, spreadsheets,
notebooks, and spinboxes. Although the Tk team at Scriptics is planning to add these widgets to the core,
as of this writing they have not been added. So the question is, how does one go about creating custom
widgets?

There are two ways to do this. One way is to use Tcl’s and Tk’s C extension API, also known as TEA. The
other way is to use pure Tcl and existing Tk widgets. Since we have not yet discussed Tcl’s and Tk’s C
API, and it would in fact merit far more coverage than we can give it here, let’s go ahead and use pure Tcl
and existing Tk widgets to create a mega-widget. The mega-widget that we are going to create is a tree
widget. As of now, Tk does not have a built-in tree widget. This widget example is by no means complete,
but it is quite useful and will steer you in the right direction.

The rendering algorithm and some of the interface ideas in this example are taken from
GPLed comp.lang.tcl posts. None of the other implementations I have encountered
have the flexibility of this package/namespace-based implementation.

We will use Tcl's package and namespace mechanisms to encapsulate our tree widget into an abstract data
structure. The next question is, what kind of widget and configuration commands should we provide for
this tree widget? We should provide most of the standard configuration options such as —f ont , —

backgr oundcol or, and some more tree-specific options. Since the tree widget supports hierarchies, we
should provide methods such as addi t em del i t em confi g, set sel ecti on, and get sel ecti on. So
let’s go ahead and define the tree widget package as follows.

Sanpl e tree nega-w dget. Can be used to display hierachies. The clients
who use this package need to specify parent and tail procedures for any
el emrent of the tree hierarchy. Al the nodes that get stored inside the
tree are conplete path names separated by '/'. The top-level node is

al ways /

HHFEHHEH

package provide tree 1.0

nanespace eval tree {
variable tree

#
default font setup
#

switch $tcl_platform(platform {
uni x {
set tree(font) \
-adobe- hel veti ca- nedi umr - nor mal - *- 11- 80- 100- 100- p- 56-i s08859- 1

w ndows {
set tree(font) \
- adobe- hel veti ca- nedi um r - nor mal - *- 14- 100- 100- 100- p- 76- i s08859- 1

}

#
Bitmaps used to show which parts of the tree can be opened/cl osed
#

set maskdata "#define solid_w dth 9\ n#define solid_height 9"
append maskdata {
static unsigned char solid bits[] = {
oxff, 0x01, Oxff, 0x01, Oxff, Ox01, Oxff, Ox01, Oxff, Ox01, Oxff, 0OxO01,
oxff, 0x01, Oxff, 0x01, Oxff, O0x01
Ik

}
set data "#define open_wi dth 9\ n#define open_hei ght 9"
append data {
static unsigned char open_bits[] = {
oxff, 0x01, 0x01, 0x01, 0x01, O0x01, Ox01, Ox01, Ox7d, Ox01, 0x01, 0xO1,
0x01, 0x01, 0x01, 0x01, Oxff, 0x01

) 5
set tree(openbm [inmage create bitmap openbm -data $data \

-maskdat a $rmaskdata \
-foreground bl ack -background white]

set data "#define closed_w dth 9\ n#define cl osed_hei ght 9"
append data {
static unsigned char closed bits[] = {
oxff, 0x01, 0x01, 0x01, 0x11, 0x01, 0x11, 0x01, O0x7d, 0x01, O0x11, O0xO01,
0x11, 0x01, 0x01, 0x01, Oxff, 0x01

}

set tree(closedbm) [inmage create bitmap cl osedbm -data $data \
-maskdat a $rmaskdata \
-foreground bl ack -background white]

nanmespace export create additemdelitem config setselection getsel ection
nanespace export openbranch cl osebranch | abel at

As shown in the example, the tree widget exports one package variable called t r ee as well as methods
such as addi t em del i t em confi g, and set sel ecti on. A tr ee package variable is used to hold
instance information for all the trees created. As you can see from the code, t r ee also creates some images
to display open and closed branches and stores them inside the tree data structure.

Our next step is to define the widget commands. First, we will define the t r ee: : cr eat € command. This
command basically parses the configuration options and creates a canvas with the path name specified by
the cr eat e command. The cr eat e command also looks for —par ent and —t ai | widget creation
options. These options are procedures specified by the client so that the tree command can determine the
parent and tail of any of its nodes. The tail is basically the end part of the node name. For example,
suppose the node is named a/ b/ c. The t ai | command will return ¢ (presuming the character “/ ” is used
as a path separator). The par ent command will return / a/ b. The tree mega-widget enforces “/ ” to be the
path separator and all nodes are represented with absolute paths.

The philosophy behind these —par ent and —t ai | option commands is to allow the tree to display any
hierarchical information, and not just directory structures. The cr eat e command also initializes variables,
such as sel ecti on and sel i dx, which are the currently selected node and its tag. The cr eat e
command arranges the tree to be redrawn at a later time.

tree::create --

#

Create a new tree widget. Canvas is used to enmulate a tree

widget. Initialized all the tree-specific data structures. $args becone
the configuration argunents to the canvas wi dget fromwhich the tree is
constructed.

Argunents:

- paren proc

#

sets the parent procedure provided by the application. tree

widget will use this procedure to determ ne the parent of an

el ement. This procedure will be called with the node as an

#

ar gunment

#

-tail proc [Gven a conplete path this proc will give the end-el ement
nane]

#

Resul ts: Atree widget with the path $w is created.

#

proc tree::create {w args} {
variable tree
set newArgs {}

for {set i 0} {$i < [llength $args]} {incr i} {

set arg [lindex $args $i]

switch -glob -- S$arg {
-paren* {set tree($w parenproc) [lindex $args [expr $i +1]]; incr i}
-tail* {set tree($w tailproc) [lindex $args [expr $i +1]]; incr i}
?Ef ault {l append newArgs $arg}

}

if !'[info exists tree($w parenproc)] ({
set tree($w parenproc) parent

if !'[info exists tree($w. tailproc)] {
set tree($w tailproc) tail

eval canvas $w -bg white $newArgs

bi nd $w <Destroy> "“tree::delitem $w /"
tree::Dfl tConfig $w /

tree:: Buil dwienldl e $w

set tree($w selection) {}

set tree($w selidx) {}

}

When the tree is created, a root node by the name of / is automatically created. Every time a new node is
added, the nodes are initialized with some default configuration, including, for example, the children
associated with the node, whether the node should be displayed open, and the icon and tags associated
with the node. t ree: : Df | t Confi g is for node initialization.

tree::DfltConfig --
#

Internal function used to initialize the attributes associated with an itenf node.
Usually called when an itemis added into the tree

Argument s:
wid tree w dget
node conplete path of the new node

Resul ts:
Initializes the attributes associated with a node.

HHEHEHHHH

proc tree::DfItConfig {wi d node} {
variable tree
set tree($w d: $node: chil dren) {}
set tree($w d: $node: open) 0
set tree($w d: $node:icon) {}
set tree($w d: $node: tags) {}

}

Just like any other Tk widget, tree widget should support the —conf i g widget method. Tree widget
supports this using the t r ee: : conf i g class method.

tree::config --
Function to set tree wi dget configuration options.

Argunent s:
args any valid configuration option a canvas w dget takes

Resul t s:
Configures the underlying canvas w dget with the options

HHEHHHH R

proc tree::config {wid args} {
variable tree
set newArgs {}
for {set i 0} {$i < [llength $args]} {incr i} {
set arg [lindex $args $i]
switch -glob -- $arg {
-paren* {set tree($w parenproc) [lindex $args [expr $i +1]]; incr i}
-tail* {set tree($w tailproc) [lindex $args [expr $i +1]]; incr i}
default {l append newArgs $ar g}
}

}
eval $wi d config $newArgs

Now that we are done with the creation and configuration of the tree widget, the next step is to add an
item. This routine makes sure that a duplicate item is not added to the tree. It finds out the parent of the
new item and adds it into its children. The routine also parses the item tags, such as —i mage and —t ags,
and sets the attributes of the item. The —i mage option is used to display an icon next to the item during
rendering. The —t ags option attaches tags to the newly added item. The addi t emroutine also arranges
the tree widget to be drawn when the application is not busy.

Adds the new item and configures the new item

tree::additem --

#

Called to add a new node to the tree.

#

Argunents:

wid tree w dget

node conplete path name of the node (path is separated by /)
args can be -inmage val, -tags {taglist} to identify the item
#

Results:

#

#

proc tree::additem {wi d node args} {
variable tree
set parent [$tree($w d: parenproc) $node]
set n [eval $tree($wi d:tail proc) $node]
if {I{[info exists tree($w d: $parent:open)]} {
error "parent item\"$parent\" is m ssing"

set i [lsearch -exact $tree($wi d: $parent:children) $n]
if {$i>=0} {
return

}
| append tree($wi d: $parent: children) $n
set tree($w d: $parent:children) [lsort $tree($w d: $parent:children)]
tree::Dfl tConfig $wi d $node
foreach {op arg} $args {
switch -exact -- $op {
-image {set tree($w d: $node: i con) S$arg}
-tags {set tree($w d: $node: t ags) S$arg}

}
tree:: Buil dwienldl e $wid

del i t emdoes the opposite of addi t emand removes the item from the tree data structure and from its
parent’s children list. It also arranges the tree widget to be drawn at a later time.

HHEHHEHHH R

tree::delitem --

Del etes the specified itemfromthe w dget
Argunent s:

w d tree widget

node conplete path of the node

Resul ts:
If the node exists, it will be deleted.

proc tree::delitem{w d node} ({

}

variable tree
if {I[info exists tree($w d: $node: open)]} return
if {[string conpare $node /]==0} ({
del ete the whol e wi dget
catch {destroy $wi d}
foreach t [array nanmes tree $wid:*] {
unset tree($t)

foreach c $tree($w d: $node: chil dren) {
catch {tree::delitem $wi d $node/ $c}

unset tree($w d: $node: open)
unset tree($w d: $node: chi | dren)
unset tree($w d: $node: i con)
set parent [$tree($w d: parenproc) $node]

set n [eval $tree($wi d:tail proc) $node]
set i [lsearch -exact $tree($wi d: $parent:children) $n]
if {$i>=0} {

set tree($w d: $parent:children) [lreplace $tree($w d: $parent: children) $i $i]

}
tree:: Buil dwienldl e $wid

The user has control over which node in the item can be assigned as a selection. The set sel ect i on and
get sel ect i on routines are used to accomplish the job. The selection object is drawn with a highlighted
background.

tree::setselection --

HHEHHHHHHHHR

Makes the given node the currently sel ected node.

Argunent s:
wid - tree w dget
node - conplete path of the one of nodes

Resul t s:
The given node will be selected

proc tree::setselection {w d node} {

}

variable tree
set tree($w d: sel ecti on) $node
tree:: DrawSel ection $wid

tree::getselection --

Get the currently selected tree node

Argument s:

wid - tree w dget

Resul t s:

If a node is currently selected it will be returned; otherw se NULL

HHEHHHH TR

proc tree::getselection wid {
variable tree
return $tree($wi d: sel ection)

The next task is building/rendering the tree. The algorithm recursively calls each node to draw itself and
its children. After the tree is drawn, it will set the scroll region so that when the tree widget is associated
with scrollbars it will behave properly. It also draws the current selection.

tree::Build --
Internal function to rebuild the tree

Argunent s:
wid- tree wdgets

Resul ts:

This routine has no conplex logic init. Deletes all the current itens
on the canvas associated with the tree and rebuilds the tree. #

HHFEHFEHHFH R

proc tree::Build wid {
variable tree
$wid delete all
catch {unset tree($w d: bui |l dpendi ng)}
set tree($wi d:y) 30
tree:: Buil dNode $wid / 10
$wi d config -scrollregion [$w d bbox all]
tree::DrawSel ection $wi d

}

The meat of the tree-drawing algorithm is Bui | dNode. It is a basic algorithm that draws the parent and
each of its children if the open attribute of the parent node is set. If the open attribute of any of the child
nodes is set, Bui | dNode will be called recursively to display its children. The rendering algorithm should
be pretty self-explanatory.

tree:: Buil dNode --
Function called by tree::build to incrementally build each node
Argunent s:
wid - tree w dget
node - conplete path of the node
in - the starting x-coordinate

Resul ts:
The node gets drawn

HHFEHFEHHFH R

proc tree::Buil dNode {wi d node in} {
variable tree

if {$node=="/"} {
set vx {}

} else {
set vx $node

}
set start [expr $tree($wi d:y)-10]
foreach c $tree($w d: $node: chil dren) {
set y $tree($wid:y)
incr tree($wid:y) 17
$wid create line $in $y [expr $in+10] $y -fill gray50
set icon $tree($wi d: $vx/ $c: i con)
set taglist x
foreach tag $tree($w d: $vx/ $c: tags) {
| append taglist $tag

set x [expr $in+12]

if {[string | ength $icon]>0} {
set k [$wid create image $x $y -image $icon -anchor w -tags $taglist]
incr x 20
set tree($w d:tag: $k) $vx/ $c

}
set | [$wid create text $x $y -text $c -font $tree(font) \
-anchor w -tags $taglist]
set tree($wid:tag: $j) $vx/ $c
set tree($wi d: $vx/ $c:tag) $j
if {[string length $tree($wi d: $vx/$c:children)]} {
it {$tree($w d: $vx/ $c: open)} {
set j [$wid create inmage $in $y -i mage $tree(openbm]
$wid bind $j <1> "set tree::tree($w d: $vx/ $c:open) 0; tree::Build $w d"
tree:: Buil dLayer $wid $vx/ $c [expr $in+18]
} else {
set | [$wid create image $in $y -i mage $tree(cl osedbm]
$wid bind $j <1> "set tree::tree($w d: $vx/ $c:open) 1; tree::Build $w d"

}
) }
set j [$wid create line $in $start $in [expr $y+1] -fill gray50]
$wid | ower $j

Now, after the tree gets displayed, if the user chooses to open any of the branches by clicking the “+” image next to
anode, the following openbr anch routine will arrange to redraw the tree by displaying the node’s children:

tree::openbranch --

#

A cal | back that gets called to open a node to show its children
#

Argunents:

wid - tree w dget

node - the node whose children shoul d be shown
#

Results:

The children of the node will be drawn

#

proc tree::openbranch {w d node} {
variable tree
if {[info exists tree($w d: $node: open)] && $tree($w d: $node: open) ==
&% [info exists tree($w d: $node: chil dren)]
&& [string length $tree($w d: $node: chi l dren)] >0} {
set tree($w d: $node: open) 1
tree::Build $wid
}
}

“ o

Similarly, when the user clicks on the image next to a node, the cl osebr anch routine will arrange for
the tree to be redrawn by closing the branch and undisplaying the children:

tree::closebranch --
The opposite of open branch, see above

Argunent s:

Resul ts:

HHFHFEHHF R

proc tree::closebranch {wi d node} {
variable tree
if {[info exists tree($w d: $node: open)] && $tree($w d: $node: open) ==1} {
set tree($w d: $node: open) 0
tree::Build $wid
}
}

The Dr awSel ect i on routine will highlight the currently selected node.

tree:: DrawSel ection --
Hi ghlights the current selection

Argunent s:
wid - tree w dget

Resul ts:
The current selection will be highlighted with sky bl ue

HHFEHHFEHHF TR

proc tree::DrawSel ection wid {
variable tree
if {[string length $tree($wi d:selidx)]} {
$wi d del ete $tree($wi d: selidx)

set node $tree($wi d: sel ection)

if {[string | ength $node] ==0} return

if {I[info exists tree($w d: $node:tag)]} return

set bbox [$w d bbox $tree($w d: $node: t ag)]

if {[Ilength $bbox]==4} {
set i [eval $wid create rectangle $bbox -fill skyblue -outline {{}}]
set tree($wi d:selidx) S$i
$wid | ower $i

1} else {

) set tree($w d:selidx) {}

}

The Bui | dWhenl dl e routine is used to minimize the drawing refreshes by collecting all the redraw
routines and arranging an event handler to draw the tree.

Set the tree widget to be redrawn in future.

tree::Buildwenldle --

#

Function to reduce the nunber of redraws of the tree. Wien a redraw i s not
imediately warranted this function gets called
#

Argunents:

wid - tree wiget

#

Results:

#

#

proc tree::BuildwWenldl e wid {

variable tree
if {I{[info exists tree($w d: buil dpending)]} {
set tree($w d: bui |l dpendi ng) 1
after idle "tree::Build $w d"
}
}

Finally, the tr ee: : | abel at routine will return the node at a given x-y widget position. The magic is to
use the canvas built-in commands:

tree::labelat --

#

Returns the tree node closest to X,y coordinates
#

Argunents:

wi d tree widget

X,y coordi nates

#

Results:

#

The node closest to x,y will be returned.

proc tree::labelat {wid x y} {
set x [$w d canvasx $x]
set y [$wi d canvasy $y]
variable tree
foreach m[$wid find overlapping $x $y $x $y] {
if {[info exists tree($wid:tag:$m1]} {
return $tree($w d:tag: $m

return

Since the underlying widget for the tree is canvas, this tree widget will support all the canvas binding
commands with the same syntax.

Package File Generation

Now that we have defined a tree mega-widget, how do we use it? Before we dive into developing a new
application using the tree widget, we have to generate a pkgl ndex file for the tree widget. To do this,
copy thetree. tcl fileinto/ usr/l ocal /1ib/tcl and run the following command in a wi sh shell:

$ w sh
% cd /usr/local/lib/tcl
% pkg_nkl ndex . tree.tcl

This command will create a pkgl ndex. t cl fileinthe/usr/l ocal /1ib/tcl directory. Make sure that
there is no prior pkgl ndex. t cl file before you create it, because if there is, Tcl will clobber it.

Once you have generated pkgl ndex. t cl file, you need to instruct your application that you want to use
the tree widget. To accomplish this, append / usr/1 ocal /| i b/ tcl to the aut o_| oadpat h by adding
the following lines:

Lappend auto_path /usr/local/lib/tcl
Package require tree

An Application Using the Tree Mega-Widget

Let’s use our tree package and develop a simple application. The application we are going to develop will
display the root system file hierarchy.

We first inform the application of the location of the package file and use it to load the tree package:

#! [/ usr/ | ocal / bi n/ wi sh

#

Sinmple application showi ng the use of tree nega-w dget
#

| append auto_path /usr/local/lib/tk

package require tree

Now we have to inform the tree widget on parent and tail routines. By default, they are normal file
di rname and t ai | routines, because we are displaying a root file system:

#

Create utility procs that tree wi dget uses to query parent
and tail conponents of a node
#
p

roc parent {itent {
return [file dirname $iteni

proc tail {item {
return [file tail $iteni

We create images to display directory and file images:

Create i manges that we use to display directory and a nornal file
#

i mge create photo idir -data {
ROl GODdhEAAQAPI AAAAAAHN4eLi 4uPj 4APj 4+P/ | | WAAAAAAACWAAAAAEAAQAAADPVI 63P4w
LKKCt TTnUs XwQqBt Af h910UU4ugGAEuUCc pgnLNY3CGop7f ol wNOBCei EYQDac Dpp6pGAFAr Vgt
hQQAQ/ / /

}

i mage create photo ifile -data {
ROl GODAdhEAAQAPI AAAAAAHNh4eLi 4uPj 4+P/ | | WAAAAAAAAAAACWAAAAAEAAQAAADPKI xz PCD
yADr WEBqCBVWO+BZAnBq1GMOgwi gXFXCr Gk/ cxj j r 27f Lt out 6n9eM YMIXsFZsogXRKJf 6u
POk CADv/

}

Next, we create a routine that dynamically adds the children of the node if the node happens to be the
directory when the user double-clicks on the item:

#
Dynami cally add entries to the tree w dget

#
proc AddDir {wid dir} {
if I[file isdirectory $dir] {
return;

foreach file [exec |s $dir] {
set file [file join $dir $
if [file isdirectory $file
tree::additem $wid [fi
} else {
tree::additem$wid [file join $dir $file] -inmge ifile
}

file]
1 {
le join $dir $file] -inmage idir

}

The main process creates the tree and sets up the double-click bindings for the tree widget. It also adds the
top-level node to the tree.

#

mai n proc

#

#

Create tree widget and set up bindings
#

tree::create .t -width 150 -hei ght 400

#
open a node when gets doubl e-clicked.
#

.t bind x <Doubl e-1> {
puts "Callled"
set child [tree::|abelat 9%V 9% %]

AddDi r %W $child
tree: : openbranch %WV $child

AddDir .t /
manage the wi dget

pack .t -fill both -expand 1

updat e
When you run the program you should see something similar to the
following;:

i L

([boot
(£ drom
([dev
[ete

(27 foppy
(7] horne
[ian
(7 initrd
[t

(£ lost+found
3 mnt
[proc
[root
(L] shin
[tmp

[

[var
wlinuz

Tk Process Log Viewer

Now that we have seen how to create a mega-widget, how about creating an application using Tcl 8.0's
new features, such as the event mechanism? More often than not, Linux users find themselves running the
tail —f orfind / -print command every day. So why don’t we develop an application to display
the outputs of those commands in a text window? We will also create shortcuts (nicks) to the commands
they run, so that they can rerun them by clicking on the shortcut.

This application supports two types of logs: file logs and command logs. File logs aret ai | —f

fil ename-type commands, and command logs are of the type ‘fi nd / - pri nt’. For file log outputs,
the user will specify a filename and a nick (shortcut). A command of the typetai | —f fil ename will be
constructed and associated with the given nick. For command logs, the user has to specify the entire
command name and nickname.

Let’s call this application “Tk Process Log Viewer.” So what do we need to build such an application? User
interface-wise, we need a menu bar for process commands, a text widget to display the output, a status
bar to display error messages, a couple of entry boxes to specify commands and their nicknames, and an
option button to display currently available nicks. We also need a stop button to stop the current view
process, and a delete button in the menu bar to delete any unwanted shortcuts.

Let’s start by declaring the global variables that we will use to build the application. We store all these
global variables in an array called t ai | Opt s.

I'/usr/local /bin/w sh8.0
logView. tk --
Essentially a general -purpose GU wapper to tail, gui, and any conmmands

that will output data continuously. This GUI has the ability to record
the commands as smart buttons, so that you can rerun the sane commands
again and again wi thout having to retype.

HHEHFEHHHE

set tailRc "~/.tailrc"
wnmtitle . "Process Log Viewer"
wm i connanme . "Log Viewer"

global tailSize textw fileNane tailFd curNi ck tail Opts statusl ngWn

tailSize --> size in lines of tail output to display

fileNane --> File name: variable

tail Fd -->proc fd or file fd of current tail process

curNick --> current nick being shown; nick essentially a shortcut to a cnd.

tail Opts --> saved options

statuslmgWn --> wi ndow showi ng what kind of error it is!

set tail Size 20

set fileNane "/usr/local/processl og/logView tk"; #i ncl ude your own path here
#

file types for the file selection dialog box.
#

set ta| I Cpts(types) {

{"Al'l files" *

{" Text files" {.txt .doc} 1
{"Text files" {} TEXT}
{"Tcl Scripts" {.tcl} TEXT}
{"C Source Files" {.c .h} }
{"Al'l Source Files" {.tcl .c .h} }

{"I mage Files" {.qgif} }
{"lI'mage Files" {.jpeg .jpa} }
{"lImage Files" {3 FF JPEG }

}set tai | Opts(wins) {}

Next, we will build the user interface. We start with the menu bar with “File” and “Edit” commands. The
File menu will support the addition of new command nicks through an “Add New...” command button.
The File menu will also contain an exit button to exit the application. The Edit menu will contain a “Delete
Nicks” button to edit the current nicks.

proc BuildTail Gui {w} {
gl obal tail Size textw fileNane tail Fd curNick tail Opts statuslngWn
gl obal vi ewOpt Menu

if {$w=="."}{
set w"";
}
#
Build Menu for file
#

menu $w. nenu -tearoff 0

File nenu

set m $w. nenu.file

menu $m -tearoff 0O

$w. menu add cascade -label "File" -menu $m -underline 0O

$m add command -l abel "Add New ..." -command {AddNew} -underline 0
$m add command -1l abel "Exit" -command {exit} -underline 0

Edit Menu

set m $w. nmenu. edi t

menu $m -tearoff 0O

$w. menu add cascade -label "Edit" -menu $m -underline O

$m add command -l abel "Delete Nicks.." -command {Del eteNi cks} -underline O

Hel p Menu

set m $w. menu. hel p

nmenu $m -tearof f 0

$w. menu add cascade -l abel "Help" -menu $m -underline 0O

$m add commrand -1 abel "About..." -underline O -comrand {

tk_nessageBox -parent . -title "Process Log Viewer" -type \

ok -nessage "Tk Tail Tool \nby Krishna Vedati (kvedati @ahoo.com"
}

The routine then adds a text widget to display the output of any log process and a status bar to display
error and informational messages.

Next, the routine builds rows of widgets. The first row will enable users to add file-type nicks to the
application. The second row will enable users to add command-type nicks. The last row contains a stop
button to stop the current log process and an option button to quickly choose a shortcut.

#
Create status/error message w ndow
#

frame $w. status -relief sunken -bd 2

set statuslmgWn [l abel $w. status.flag -bitmap info]

| abel $w.status.lab -textvariable statusText -anchor w -bg "wheat"
pack $w. status.flag -side left

pack $w. status.lab -side left -fill both -expand 1

#
File nane: entry panel
#

frame $w.file

| abel $w.file.label -text "File name:" -width 13 -anchor w
entry $w.file.entry -width 30 -textvariable fil eNanme
button $w.file.choose -text "..." -command \

"set fileName \[tk _getOpenFile -filetypes \$tail Opts(types) \
-parent \[winfo toplevel $w file\]\];"

button $w. file.button -text "Tail File" \
-command "AddToView file \$fileNanme"
pack $w.file.label $w file.entry -side left
pack $w. file.choose -side |left -pady 5 -padx 10
pack $w. file.button -side left -pady 5 -padx 10
bind $w.file.entry <Return> " AddToView file \$fileNane"
focus $w. file.entry

#

Command entry panel

#

frame $w.fil eC

| abel $w. fileC cLabel -text "Command:" -wi dth 13 -anchor w
entry $w.fileC cEntry -width 40 -textvari abl e command

| abel $w. fileC nLabel -text "Nick:" -anchor w

entry $w.fileC nEntry -width 15 -textvariabl e ni ck

button $w. fileC add -text "Add" -conmand "AddToVi ew \"conmmand\ "\
\ $command \ $ni ck; "

pack $w. fileC cLabel $w fileC cEntry -side |eft

pack $w. fileC nLabel -side |left -pady 5 -padx 10

pack $w.fileC nEntry -side left -pady 5 -padx 5

pack $w. fileC add -side left -pady 5 -padx 5

Option Menu conmand panel

frane $w. opt F

| abel $w. optF.label -text "View " -width 12 -anchor w
set vi ewOpt Menu [tk_optionMenu $w. opt F. opt B curNick " "]
button $w. optF.stop -text "Stop" -conmand Stop

pack $w. optF.label -side |eft
pack $w. optF.optB -side |left -pady 5
pack $w. optF.stop -side left -pady 5

create text w dget
frame $w. textf -bg red
text $w. textf.text -height [expr $tail Size] -xscrollcomrmand \

"$w. textf.scrollh set" -yscrollcommand "$w. textf.scrollv set" -bg |ightblue
set textw $w textf.text
scrol | bar $w. textf.scrollh -orient horizontal -command "$w textf.text xview'
scrol I bar $w. textf.scrollv -orient vertical -command "$w. textf.text yview'

pack $w. textf.scrollv -side right -fill y -expand 1
pack $w. textf.scrollh -side bottom-fill x -expand 1
pack $w. textf.text -fill x -fill y -expand 1

pack all the franes

[winfo toplevel $w textf] configure -menu $w nmenu
pack $w. status -side bottom-fill x -pady 2m
pack $w.file -side top -fill x -expand 1

pack $w. fileC -side top -fill x -expand 1

pack $w. optF -side top -fill x -expand 1

pack $w. textf -side top -fill x -fill y -expand 1

Once the user sets up a command- or file-type nick, the Tai | Fi | e method will get called. This method
makes sure that the specified file exists. It creates the command and opens it as a process. Then it binds a
read event to the file descriptor and returns. The read event will call Tai | Updat e every time the file
identifier associated with the process is readable.

TailFile --

Show the tail of the request file.

Argunent s:
file name to be tailed.

Resul ts:
The tail of the file is shown in the w ndow.

HHEHHHH TR

proc TailFile { type file {nick ""}} {
gl obal tailSize tail Fd textw curNi ck
set w $textw
catch {
fileevent $tail Fd readable {}
close $tail Fd
updat e

$w delete 1.0 end

if {$type == ""} {
$w insert end "Illegal type...";
return
}
if {$type == "file"} {
if {$file ==""} {
$w insert end "pl ease specify a valid filenane..."
return
}
if '[file exists $file] {
Del et eFronVi ew $file
$w insert end "file $file does not exist..."
return
set nick $file
} elseif {$type == "command"} {
if {$file ==""} {
$w insert end "please specify a comand..."
return
}
}
if {$type == "file"} {

set tail Fd [open "|tail -f $file" r]
wntitle [wnfo toplevel $w] "Tail tool \[tail -f $file\]"
} elseif {$type == "command"} {
if [catch {set tailFd [open "|$file" r]}] {
Set Status error "can't execute conmmand $file..."
Del et eFronVi ew $ni ck
set curNick ""
return

wntitle [winfo toplevel $w] "Tail tool \[tail |$file\]"
}
fconfigure $tail Fd - bl ocking O

set lines 0
fileevent $tail Fd readabl e "Tail Update \ $tail Fd"

The Tai | Updat e procedure gets called as part of the event handler on the current log process read status.
When this procedure gets called, it collects the output from the process and inserts it into the text widget.
It also makes sure that at any given time, no more than $t ai | Si ze lines are shown in the text window.

proc Tail Update {fileFd} {
gl obal textw curN ck
global tailSize tailFd

set w $textw

if [eof $tailFd] {
fileevent $tail Fd readable {}
$w insert end "Tailing \"$curN ck\" done..."
return

set line [gets $tail Fd]

$w insert end $line
$w insert end "\n"

set lines [lindex [split [$w index end] .] 0]
if {$lines == [expr $tail Size+l]} {
$w delete 1.0 2.0

$w yvi ew noveto 1.0

}
The St op call-back is used to stop the current | ogPr ocess.
#
Stop the current tailing process
#
proc Stop {} {
gl obal tail Fd
set pid [pid $tail F d]
catch {exec kill -9 $pid}

The AddNew procedure gets called every time the user adds a new shortcut through the File menu’s
“Add New...” menu command. It creates a simple GUI for the user to create a new command nick:

Add new tail file... = 1O]x|

Mickname for item: |find

Command: [find / printf

Add Dismiss

AddNew - -
Add a new tail file to the system

Argument s:
none.

Resul ts:

HHEHEHHFH R

proc AddNew {args} {
topl evel .addnew
set w .addnew
wntitle $w "Add new tail file..."

frame $w top

frame $w.sep -bd 2 -relief ridge
frame $w. bot

set k $w. top

| abel $k.nanme -text "N cknane for item"
| abel $k.command -text "Conmand:"

grid $k.name -row 0 -colum 0 -sticky e
grid $k.command -row 1 -colum 0 -sticky e

entry $k. naneE -textvari abl e naneE -w dth 40
entry $k.commandE -textvariabl e commandE -w dth 50

grid $k.naneE -row 0 -colum 1 -sticky ew
grid $k.commandE -row 1 -colum 1 -sticky ew

grid columconfigure $k 1 -wei ght 1
grid propagate $k 1

pack $w.top -side top -f
pack $w.sep -side top -f
pack $w. bot -side top -f

ill both -expand 1
Il x -expand 1 -pady 5
Il x

i
i -expand 1

button $w. bot.apply -text "Add" -command "AddToVi ew \"command\" \"\$comandiE\"
\"\ $narmeg\ " "

button $w. bot. di smiss -text "Disniss" -command {destroy .addnew}

pack $w. bot. apply $w bot.disnmiss -side |left -expand

Posi ti onW ndow $w

The Set St at us procedure is used to set GUI status messages in the status window. It's a general-purpose
routine to display both error and informational messages. If a type error occurs, an error bitmap will be
displayed in the status window.

proc SetStatus {type text {timer 5000}} {
gl obal statusText statuslngWn
set statusText $text
after $timer "set statusText \"\""
$statuslngWn config -bitmap $type
after $tinmer "$statuslngWn config -bitmap \"\""
}

The AddToVi ewcommand will add a nick to the option button. Before it adds the item to the option
menu, it makes sure that the user has supplied the required information.

proc AddToView {type command {nick ""}} {
gl obal tailOpts viewOpt Menu

catch {Stop}

if {$type == "file"} {
set ni ck $conmmand
if {$command == ""} {
Set Status error "Please supply File nane..."
}
} elseif {$type == "command"} {
if {($nick =="") || ($command == "") } {
Set Status error "Please supply both nick and comrand nanes..."
return

set | [list "S$type" "$nick" "$command"]
if I'linfo exists tail Opts(wi ns)] {
set tail Opts $I

return
} else {
foreach item $tail Opts(w ns) {
if {$nick == [lindex $item 1]} {

if {$type == "file"} {

SetStatus info "File $nick is all ready in the tail list...."
} else {

SetStatus info "Nick $nick is all ready in the tail list...."
return;

}
| append tail Opts(w ns) $I

Updat eOpt i onMenu
$vi ewOpt Menu i nvoke end

The Del et eNi cks routine will create a simple listbox- Delete Entry ||l B3
based user interface for the user to delete the nicks: :

Celete Cizmiss

proc Del eteNicks {} {
gl obal tail Opts

if 'l[info exists tail Opts(wi ns)] {
SetStatus info "No entries to delete..."
return;

}

if {$tail Opts(wins) == {}} {
SetStatus info "No entries to delete..."
return;

}
catch {destroy .del ent}
topl evel . del ent
set w . del ent
wntitle $w "Del ete Entry"

scrol I bar $w. h -orient horizontal -command "$w. |ist xview'

scrol I bar $w. v -orient vertical -command "$w. |ist yview'

l'istbox $w. | -sel ectnpde single -width 20 -height 10 \
-setgrid 1 -xscroll "$w. h set" -yscroll "$w. v set"

frame $w. buts

button $w. buts.d -text "Delete" -command {
set index [.delent.l curselection];
if {$index == ""} {return}
set sel [.delent.| get $index];
puts "sel $sel ; index $index"
Del et eFr omVi ew $sel ;
.delent.| delete $index

button $w. buts.disnmss -text "Dismss" -conmmand "destroy $w'

grid $w.l -row 0 -colum 0 -columspan 2 -sticky "news"
grid $w.v -row 0 -colum 2 -sticky "ns"

grid $w.h -row 1 -colum 0 -col umspan 2 -sticky "we"
grid $w. buts -row 2 -colum 0 -col umspan 3

pack $w. buts.d $w buts.disnmiss -side |left -padx 10
foreach ent $tail Opts(w ns) {

$w. | insert end [lindex $ent 1]
}

Posi ti onW ndow $w

The Del et eFr onVi ewroutine is an internal routine that removes the specified nick from the data
structures and updates the option button:

proc Del et eFronVi ew {ni ck} {
global tail Opts

if {$nick == ""} {
return

}

set newList {}

if 'linfo exists tail Opts(wi ns)] {
return

foreach item $tail Opts(wi ns) {

if {$nick !'=[lindex $item1]} {
| append newLi st $item

}
set tail Opts(w ns) S$newli st
Updat eOpt i onMenu

}

The Posi t i onW ndowroutine centers a top-level dialog box around its parent. It is used to map dialog
boxes on the main window, instead of some far-away corner of the screen.

Posi ti onW ndow - -
Position the top-level w ndow centered on its parent.

Argunent s:
t opl evel wi ndow.

Resul ts:
Posi tions the w ndow

HHFHHEHHHF R

proc PositionW ndow {w} {

set paren [w nfo parent $w

wm iconify $w

set parenConf [wm geonetry $paren]

set parenConf [split $parenConf {+ - x}]

set winConf [split [wm geonetry $wj {+ - x}]

set X [expr [lindex $parenConf 2] + [lindex $parenConf 0]/2 - \
[winfo regwi dth $w /2]

set Y [expr [lindex $parenConf 3] + [lindex $parenConf 1]/2 - \
[wi nfo regheigh $w /2]

wm geonetry $w +$X+$Y

wm dei coni fy $w

}

The Updat eQpt i onMenu command updates the nicks option menu widget with the current set of active
nicks:

Updat eOpti onMenu - -

#
#
#
#
Argunents:
#
#
#

Resul t s:

proc Updat eOpti onMenu {} {

gl obal tail Opts curN ck vi ewOpt Menu
$vi ewOpt Menu del ete 0 end

if 'Tinfo exists tail Opts(wi ns)] {
return

}
if {$tail Opts(wins) == {}} {
set curNick ""
return
}
foreach item $tail Opts(w ns) {
$vi ewOpt Menu add command -1 abel [lindex $item 1] -command “"catch Stop; TailFile
\"[lindex $item O]\" \"[lindex $item2]\" \"[lindex $item 1]\" "
set curNick [lindex $item 1]

}

Finally, we map the main window:

wm wi t hdraw .
topl evel .t

Bui | dTai | Gui .t

When you run this application, you should see the following;:

Tail tool [tail [find f printf] Y [m] 5

Eile Edit Help
File name: |fhnmefkrishnaﬁurnxﬁkﬁlugview.tk | Tail File |
Cammand: | Mick: | At

Vigw: fire .-| Stap |

|fu=r /share fapp=/Games /same-gnome. desktop
Asr fshare fapps Games /. directory

/st fshare fappsAudio

Ast fshare fapps Audio fgnizx. desktop

/st fshare fapps/Audiofgtcd. desktop

Aast fshare fappsAudio/. directory

st fshare fapps /Systen

Ast fshare fapps /Systen/Inlih config. desktop
fsr fshare fapps /Systenssession. desktop

Asr fshare fapps /Systengneny. desktop

fst fshare fapps//Systens. directory

Aast fshare fapps Sqnome-help. desktop

Mzt fshare fappsApplications

fusrSshare fapps/Applications Metscape. desktop
Azt fshare fapps Applications /Emacs. desktop
fustSshare fapps/Applications/ directory
fsc fshare fapps/Graphics

Internationalization

One thing we have not covered in this survey of Tk widgets is internationalization. Tcl 8.1 has lots of new
features such as Unicode support, functions to create and access message catalogs (so you can store the
text of all your dialog boxes in multiple languages), support for different language encodings, and
generalized string manipulation. Beginning in Tcl 8.1, all Tcl string manipulation functions expect and
return Unicode strings encoded in UTF-8 format. Because the use of Unicode/UTF-8 encoding is internal
to Tcl, you should see no difference in Tcl 8.0 and 8.1 string handling in your scripts. In fact, all the
commands in Tcl 8.1 onward handle Unicode seamlessly. For example, you can read a file that uses
shiftjis encoding into Tcl, and the file read command converts the shi ftj i s encoding to UTF-8
encoding automatically.

set fd [open $file r]

fconfigure $fd -encoding shiftjis

set jstring [read $fd] cl ose $fd

close $fd

Furthermore, the regular expression implementation introduced in Tcl 8.1 handles the full range of

Unicode characters.

Since all strings in Tcl are encoded in Unicode, Tk widgets automatically handle any encoding conversions
necessary to display the characters in a particular font. For example, the code snippet

set str "\u592a\u9177"
?7?
% button .b -text S$str

.b
% pack .b

should display the Chinese transliteration of “Tcl” (TAI-KU) as the button label, provided you have the
correct X fonts installed to display this text. If the master font that you set for a widget doesn’t contain a
glyph for a particular Unicode character that you want to display, Tk attempts to locate a font that does.
Tk attempts to locate a font that matches as many characteristics of the widget’s master font as possible
(weight, slant, etc.). Once Tk finds a suitable font, it displays the character in that font. In other words, the
widget uses the master font for all characters it is capable of displaying, and alternative fonts only as
needed.

Internationalization is a fascinating topic. Unfortunately it requires more space than we have in this
chapter.

Where Now?

If you ever get stuck in Tk, in addition to the man pages, there’s always the Tk Widget Tour with its
examples of how to use the Tk widget set. Run the program by typing wi dget .

Some notable programs written in Tk include Xadm n, Exrrh, i cal , TkMan, TKEI m TKWAY and Sur f I T.
t KVWWis an HTML editor, so you can use it to prepare pages for the World Wide Web, and Surf | Tisa
Web browser written in Tcl that has the distinction of being able to download and execute Tcl programs
directly from Web pages. This, of course, can be a dangerous facility to allow with unknown hosts! | cal
is an X-based calendar program

At the time of writing, there are many things happening within the Tk community, so we'll finish off with
a brief survey of some notable projects.

Tix
Tix extends Tk with over 40 professional Motif look-and-feel widgets. Tix widgets are so powerful that
they even give Motif 2.0 a run for its money. Check out Tix at http://tix.sourceforge.net

[incr Tk]

[incr Tcl] and [incr Tk] form an object-oriented extension to Tcl/ Tk. Version 3.0 has recently been
announced and is available at http://www.tcltk.com/itcl/. The following description is from their Web pages:

“[incr Tcl] provides the extra language support needed to build large Tcl/ Tk applications. It introduces
the notion of objects, which act as building blocks for an application. Each object is a bag of data with a set
of procedures or ‘methods’ that are used to manipulate it. Objects are organized into ‘classes” with
identical characteristics, and classes can inherit functionality from one another. This object-oriented
paradigm adds another level of organization on top of the basic variable/procedure elements, and the
resulting code is easier to understand and maintain.

[incr Tk] is a framework for building ‘mega-widgets” using the [incr Tcl] object system. Mega-widgets are
high-level widgets like a file browser or a tab notebook that act like simple Tk widgets but are themselves
constructed using Tk widgets as component parts, without having to write any C code. In effect, a mega-

widget looks and acts exactly like a Tk widget, but is considerably easier to implement.”

BLT

The BLT-2.1 toolkit extends Tk by providing many new widgets —for example, bl t _gr aph, which is used
to plot line and bar graphs, and bl t _ht ext , a hypertext widget, and widgets for background execution.
The BLT homepage is http://www.tcltk.com/blt.

Finally, comp.lang.tcl and comp.lang.tcl.announce are the best places to post Tk questions. Usually, people
are quite friendly and somebody will always answer your questions. Before posting your questions to
comp.lang.tcl, though, please read its frequently asked questions (FAQ) list, which is posted regularly to
the newsgroup.

Lots of Tk resources can be found at Tcl’s new home, the Scriptics Corporation Web page:
http://www.scriptics.com/resource.

That about completes our survey of Tk. There is far more to Tk than this brief survey can do justice to, as
John Ousterhout intended Tcl/ Tk to be an extensible and embeddable tool. Tcl commands and Tk widgets
are written in C, and you can code your own and add them in, or take advantage of the widget extensions
available on the Internet. This is an advanced topic and space prevents us from covering it here, but it is
the way in which you would access a C program from your graphical Tcl/Tk front end. Please refer to
John Ousterhout’s book for details and, in the meantime, happy Tcl/Tk'ing!

Summary

In this chapter, we rushed through the world of X Windows programming.

After an overview of the thinking behind X Windows and the different ways in which this was
implemented, we learned enough Tk to complement the Tcl that we learned in Chapter 15 and enable us
to rapidly develop GUI front ends to our applications using Tk’s rich widget set.

Next we're going to look at an exciting new way to program graphical applications in C: the GTK+
GNOME toolkit.

	Bonus Chapter B: Programming for X
	What Is X?
	X Server
	X Protocol
	Xlib
	X Clients
	X Toolkits

	X Window Manager
	The X Programming Model
	Start-up
	Main Loop
	Clean-up

	Fast-Track X Programming
	The Tk Toolkit
	Windows Programming
	Configuration Files
	More Commands
	Tk Widgets
	Frames
	Top-Level
	Labels
	Buttons
	Messages
	Entrys
	List Boxes
	Scrollbars
	Scales
	Text
	Canvases
	Images
	Menu
	Menu Button
	Pop-up Menu
	Option Menu
	Dialogs

	Tk’s Built-in Dialogs
	Color Schemes
	Fonts
	Bindings
	Binding Tags
	Geometry Management
	Packer
	Placer
	Grid

	Focus and Navigation
	Option Database
	Inter-application Communication
	Selection
	Clipboard
	Window Manager
	Dynamic/Static Loading
	Safe Tk

	A Mega-Widget
	An Application Using the Tree Mega-Widget
	Tk Process Log Viewer
	Internationalization
	Where Now?

	Summary

