
Bonus Chapter B

Programming for X
In this chapter and the next, we’ll take a look at writing programs to run in the usual Linux graphical
environment, the XWindow System or X, http://www.x.org/Xorg.html. Modern UNIX systems and nearly
all Linux distributions are shipped with a version of X.

We’ll be concentrating on the programmer’s view of X, and we’ll assume that you are already comfortable
with configuring, running, and using X on your system.

We’ll cover

❑ X concepts

❑ X Windows managers

❑ X programming model

❑ Tk—its widgets, bindings, and geometry managers

In the next chapter, we’ll move on to the GTK+ toolkit, which will allow us to program user interfaces in C
for the GNOME system.

What Is X?
X was created at MIT as a way of providing a uniform environment for graphical programs. Nowadays it
should be fair to assume that if you’ve used computers, you’ve come across either Microsoft Windows, X,
or Apple MacOS before, so you’ll be familiar with the general concepts underlying a graphical user
interface, or GUI. Unfortunately, although a Windows user might be able to navigate around the Mac
interface, it’s a different story for programmers.

Each windowing environment on each system is programmed differently. The ways that the display is
handled and the programs communicate with the user are different. Although each system provides the
programmer with the ability to open and manipulate windows on the screen, the functions used will be
different. Writing applications that can run on more than one system (without using additional toolkits) is
a daunting task.
To overcome the problems associated with proprietary interface systems on mainframes, minicomputers,
and workstations, The XWindow System was made publicly available and has been implemented on
many systems. It defines a programming style based on a client/server model with a clean separation of
hardware-dependent components and application programs.

The X Windows system comprises four major components, which we’ll discuss briefly in turn:

❑ X server Interacting with the user

❑ X protocol Client/server communications

❑ X library The programming interface

❑ X clients The applications

X Server
The X server, or X display server, is a program that runs on the application user’s computer and is
responsible for controlling the graphical display hardware and looking after input and output. The X
server responds to requests from X client applications to draw on the screen or read from the keyboard or
mouse. It passes input and indications of things like mouse movements and button presses to the client
programs.

Typically, there will be a different X server for each distinct hardware combination that X can run on. The
most common implementation of X for Linux and other PC-based systems is XFree86
(http://www.xfree86.org). This package ships with X servers specially created for the many different video
cards that can be used in PCs, for instance, the XF86_S3 version for S3-based cards. Linux users have
much to thank these guys for.

X Protocol
All interactions between X client applications and the X display server take place via message exchanges.
The types and uses of the messages form the X protocol. One particularly useful feature of the X Windows
system is that the X protocol can be carried across a network as well as between clients and a server
running on the same machine. This means that a user with a fairly low-powered personal computer or an
X terminal (a machine dedicated to running just an X server) can run X client programs on more powerful
networked computers, but conduct the interaction and display the output on his/her own local machine.

Xlib
The X protocol is really of interest only to the programmers who actually implement X servers. Most X
applications ultimately use a C function library as a programming interface. This is Xlib, which provides
an API for X protocol exchanges. Xlib doesn’t add very much on its own—it can just about only draw on
the screen and respond to a mouse. If you want menus, buttons, scrollbars, and all the other goodies, you
have to write them yourself.

On the other hand, neither does Xlib impose any particular GUI style. It acts as a medium through which
you can create any style you choose.

X Clients
X clients are application programs that use the display and input resources of a computer that may not be
the one they’re running on. They do this by requesting access to these resources from the X server that
manages them. The server can typically handle requests from many clients at once, and it must arbitrate
use of the keyboard and mouse between clients. The client programs communicate with the server using X
protocol messages that are sent and received using Xlib functions.

X Toolkits
We won’t linger in the Xlib programming interface, as it’s not the best tool for creating programs quickly
and easily. Because of its low-level interface, like the Microsoft Windows SDK, it can make for some very
complex programs that apparently achieve very little. One book on the author’s shelves contains a version
of the “Hello World” program written for Xlib. It does nothing other than display “Hello World” in a
window, together with a button marked “Exit,” which does the obvious thing when you press it. The
program listing runs to five pages!

Any programmer who has written an Xlib program like this will surely have wondered if there’s a better
way. Of course there is! Common user interface elements such as buttons, scrollbars, and menus have
been implemented many times. Collections of these elements, also known as widgets, are generally called
X toolkits. Of these, the best known are the Xt Intrinsics suite that comes with X and two commercial
products: Sun’s OpenLook and OSF/Motif.

❑ Xt is a free library written on top of X to give it some functionality: an intermediate layer that
simplifies application programming.

❑ OpenLook is a free toolkit from Sun that enforces a different look and feel. It’s built on top of a
library called Xview, which is similar to Xt.

❑ Motif is an OSF standard designed to bring a common look and feel to the UNIX desktop. It’s
built on top of Xt. Motif has two main components: a set of include files that define constants
used in Xt functions and a library of convenient functions to simplify the creation of elements
like dialogs and menus. Motif also defines a programming style that all programmers can
follow, whether they are actually using the Motif toolkit or not.

❑ Qt is a library built by trolltech that forms the basis of the KDE Desktop environment, which is
found with most Linux distributions.

❑ GTK+ is the GIMP toolkit, and the basis of the GNOME system. We’ll look at how to program
this high-level environment in the next chapter.

Each X toolkit implements a set of widgets, usually with a distinctive look and feel. Display elements
might have a flat, plain implementation (as with Xt) or a sculpted, 3D effect (like Motif).
To illustrate the difference a toolkit can make, take a look at two different text editors available for Linux,
xedit and textedit. The first, xedit, is a very simple editor with hardly any user interface
sophistication. To load a file, you need to type a filename into a box and press a button marked Load.

In contrast, the textedit editor provided by Sun’s OpenWindows and written with the OpenLook
toolkit provides a dialog box for opening files. This allows the user to browse the file system for the
appropriate file to open. The toolkit also provides the familiar look and feel of 3D buttons.

X Window Manager
Another important element of any X system is the window manager. This is a special X client that is
responsible for dealing with other clients. It looks after the placement of client windows on the display

and handles management tasks like moving and resizing windows. It also imposes a distinctive look and
feel, depending on the X toolkit it uses.

Examples of window managers follow:

Window Manager Description

twm Tom’s (or Tabbed) Window Manager, a small, fast manager that comes with X.

fvwm An alternative window manager by Robert Nation. The favorite under Linux.
It supports virtual desktops and has configuration files that allow it to emulate
other window managers.

fvwm95 A version of fvwm that emulates the Windows 95 interface.

gwm The generic window manager, programmable in a LISP dialect.

olwm The OpenLook window manager.

mwm The Motif window manager.

All of these are available for most UNIX and Linux systems, although mwm requires a license.

The X Programming Model
We’ve seen that the XWindow System separates responsibilities between client applications and X display
servers using a communications protocol. This method of programming gives rise to a typical structure for
an X application, which we’ll outline briefly below.

Start-up
A typical X application will start by initializing any resources it may need. It will establish a connection
with the X display server, choose which colors and fonts to use, and then create a window on the display.

XOpenDisplay and XCloseDisplay are used by client programs for connecting to and disconnecting
from an X server.

Display *XOpenDisplay(char *display_name);
void XCloseDisplay(Display *display);

The display_name specifies the display to which we want to connect. If it’s null, the environment
variable DISPLAY is used. This is of the form hostname:server[.display], allowing one or more X
servers on a host, each of which can control more than one display. The default display is normally :0.0,
the first available server on the local machine. To specify a second screen, for a truly awesome desktop,
you would use :0.1.

XOpenDisplay returns a Display structure containing information about the X server selected, or null
if no X server could be opened. After a successful return from XOpenDisplay, the client program may
start using the X server.

When the client program has finished using the X server, it must call XCloseDisplay with the display
structure returned from the XOpenDisplay call. This will destroy all windows and other resources that
the client has created on the display, unless (unusually) XSetCloseDownMode has been called to modify
the shutdown behavior. Programs should always call XCloseDisplay before exiting to allow any
pending errors to be reported.

The user can control most of the activities at start-up. Many X applications respond to command line
arguments, environment variables, and configuration file entries to allow the user to customize the
application. We’ll give you some examples.

As we’ve seen, the environment variable DISPLAY is used to direct the application to a particular display
server, which may be on a different networked computer. The following command would cause the
xedit program to run, but to open its display on the machine called alex.

$ DISPLAY=alex:0.0 xedit &

The file .Xresources (or sometimes .Xdefaults) is used to configure the X application. Each
application will use configuration entries in the X resources database, typically created when an X system
starts up and including the user’s own, local preferences. A typical entry in a user’s .Xresources file,
stored in his or her home directory, might be

xedit*enableBackups: on

This entry changes the behavior of edit with respect to making backup files while editing. Each entry has
the general format

Class*Resource: Value

The command line

$ xedit -geometry 400x200

causes xedit to start in a window 400 pixels wide by 200 high. Note that other programs may use the
geometry differently. For example,

$ xterm -geometry 80x50

starts a terminal emulator that has 50 lines, each with 80 columns. Refer to your system documentation
and application manual pages for more details on ways to affect X application behavior.

Main Loop
The bulk of an X application is made up of a main loop and code written to react to events. After starting,
a typical X program waits for the X display server to which it’s connected to send it events. It does this by
calling XNextEvent in a loop.

There are over 30 events that an application may have to deal with. We won’t cover them here because
there are many (very fat) books on the topic of X Windows programming that cover the topic in great
depth. However, we’ll get a flavor of the kinds of events that X uses from this partial list:

Keyboard events Key pressed, key released.

Mouse events Button pressed, button released, mouse moving,
mouse entering/leaving a window.

Window events Window created/destroyed, window gained/lost
focus, window exposed.

A low-level X program must respond to these events and more. A program that uses an advanced toolkit
or application framework will be able to concentrate on the main business of the application and use
sophisticated interface elements like dialog boxes without needing to deal with low-level events like these
explicitly. Of course, that doesn’t mean that the events aren’t still taking place.

Clean-up
When it exits, a well-behaved X program will free up any X display resources it has allocated while it was
running. It’s often sufficient to simply break the connection with the server, but this can result in the
server consuming more memory than required. Also, it’s considered a little rude not to say goodbye!

Fast-Track X Programming
In the rest of this chapter, we’ll leave the low-level considerations of X programming to those who need to
squeeze the ultimate performance from and have the finest control over their applications.

For the rest of us who are simply keen to see immediate results and to produce good-looking highly
functional X applications, we’ll concentrate on a couple of recent innovations in the X programming
world.

With the rise of very fast personal computers and workstations, it has become feasible to write at least the
user interface part of programs in an interpreted language. We’ve seen a couple of these already in the
shell and Tcl. We’ve got the power of Perl to look forward to in now downloadable Chapter D

We’ll now take a look at Tk (for Tool Kit), an extension to Tcl for graphical programming, and in the next
chapter GTK+, developed originally as a toolkit for controlling the GIMP (GNU Image Processor) but
which forms the underlying graphical language in the GNOME desktop.

The Tk approach to X programming also brings the benefit of portability. It is available for non-X
graphical environments (including Microsoft Windows) and is hardware independent. Tk programs
written for one machine should run unchanged on another.

If you are interested in the benefits of a platform-independent programming system and are also looking
for the power of a compiled language, then Java provides an interesting solution. The topic of Java
programming is too vast to cover here, but Ivor Horton’s Beginning Java 2, also from Wrox (ISBN 1-861002-
23-8), is an excellent place to start.

The Tk Toolkit
Tk, created by John Ousterhout to be the companion of Tcl, is a rich collection of graphical user interface
(GUI) abstractions (widgets) designed to simplify the essential components of graphical front-end
programming under X, Microsoft Windows, and Apple MacOS.

Tk is an action-oriented, composition-based, embeddable, extensible, highly portable, event-based toolkit
whose widgets are written in C and use Tcl bindings for event handlers. Tk has already been ported to use
many other languages such as Perl and Python for command bindings.

The current releases of Tk 8.1 and Tk 8.2 work consistently on all the three platforms: Unix, Windows, and
Macintosh.

By default, Tk’s widgets have the native look and feel of the widgets of the platform they run on, but they
are highly-configurable. You can operate Tk’s widgets in strict Motif mode by checking one of toolkit’s
global variables. Because Tk’s interface is consistent, most scripts written for one platform will run
without any modifications on the other two platforms.

All the examples in this section need at least version 8.0 of Tcl and 8.0 of Tk to work.
You can download the latest versions of the software from
http://www.scriptics.com/resource/software/. Most of the programs in this section are
written using Tcl8.0 and Tk8.0 because the latest releases of Jacl and Tcl Blend work
only with the Tcl8.0 version. Jacl is the complete rewrite of Tcl interpreter in pure Java,
and Tcl Blend is a dynamically loadable C extension to Tcl to interact with a Java
Virtual Machine.

Before we dive into Tk programming, you need to make sure that the Tk windowing shell, wish, is
installed on your system with the executable in your PATH. If Tk is not installed at the default location,
you’ll need to set the environment variables TK_LIBRARY and TCL_LIBRARY to point to the right
locations. If you have multiple versions of Tcl installed on your machine, you might want to make sure
that you point the above-mentioned environmental variables correctly. For example, here is the shell script
I use to invoke wishf for version 8.2b3 of Tk.

#!/bin/sh
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/tcl8.2b3/unix:/usr/local/tk8.2b3
/uni
x:
PATH=$PATH:/usr/local/bin:/usr/local/tcl8.2b3/unix:/usr/local/tk8.2b3/unix:
TCL_LIBRARY=/usr/local/tcl8.2b3/library
TK_LIBRARY=/usr/local/tk8.2b3/library
export LD_LIBRARY_PATH PATH TCL_LIBRARY TK_LIBRARY
/usr/local/tk8.2b3/unix/wish $*

When you type wish at the shell prompt, a small and (by default) gray window should
pop up. To suppress this interactive wish window—for example, when running
scripts—invoke Tk using wish -f. wish is basically tclsh with the Tk functions built
in.

http://www.scripts.com/download

Over the next few sections, we’ll take a look at

❑ Basic concepts of Windows programming

❑ Writing our first Tk program

❑ Touring the Tk widget set, with some of their configuration options

❑ Bindings

❑ Geometry managers

❑ Application resource management

❑ Inter-application communication

❑ Window management and application embedding

❑ A mega-widget completely wrtten in Tcl using existing Tk components

❑ A real Tk example for everyday use using Tcl events

Though by no means extensive, the discussion should show you how to get started with Tk, how to
program using its built-in widget set, and where to find out more about Tk as you need it.

Windows Programming
Using Tk, you can quickly create a graphical interface using the widgets provided to deal with the
underlying window system. You then attach event handlers to these widgets (usually using the Tcl
language) so that they react as required to the user’s commands. This fits in with usual visual
programming practice.

First, create the look of your program, adding in components to access the functionality you eventually
want to include. Select a widget from the Tk toolkit, initialize its look, and then use Tk’s geometry
manager to arrange it in relation to other widgets within the screen window. Then code the response of
each GUI component to user commands. What will clicking the Load button do? How will clicking it load
an image into the canvas widget?

This is rather different from the procedural programming we’ve been looking at throughout the rest of the
book. As a programmer, you can never control the order in which the user interacts with the program; the
whole point of GUIs is to provide a more natural and intuitive user interface. The program must wait for
and then act on user-initiated events.

Every time you create a widget in Tk using its class command, the GUI primitive known as the widget is
created, as is a new Tcl command whose name is the name of the widget. You can then invoke methods
(Tk calls them configuration options) on this newly created widget using its widget command. Widget
commands are like objects in an object-oriented system: When the widget is deleted, the widget command
is also deleted.

For example, the widget command

button .b

creates a new widget and a widget command named .b. You can use this new command to communicate
with the widget; thus,

.b configure -text "Hello"

will set the title of the button .b to Hello. If you think of .b as an object, you are invoking the
configure method on the object to set its text attribute to Hello.

Tk widgets are not completely object oriented, as they don’t support inheritance,
polymorphism, and so on. Their only similarity to OOP principles is the way methods
are invoked.

The widget creation and initialization parts of a Tk program will contain Tcl commands to create and
arrange the widgets on the user screen. Once you’ve created and arranged the widgets, they interact with
the user using Tcl scripts known as event handlers.
We’ll try to present all the examples using this approach; however, it’s sometimes difficult to separate the
two stages completely, because event handlers are sometimes bound when you create the widget. For
example, most widgets in Tk support the command widget handler, which is usually set immediately.
Also, it sometimes makes sense to bind the event handlers as soon as you create the widget and manage
the screen layout of the widgets later. No single approach is the best. To manage your design, use
whichever is appropriate or is easier to understand.

To get us started and make more sense of this introduction, let’s look at a program, hello1.tk, probably
the smallest multiline label program ever created!

Try It Out—Saying Hello

Type in the following script file:

#!/usr/bin/wish -f

pack [button .b -text "Hello\nWorld!!!" \
 -justify center \
 -width 20 \
 -command {puts "Hi"}]

Make the script executable and run the hello1.tk program:

$./hello1.tk

This program creates the window shown in the figure and
outputs the string Hi each time you click the button.

How It Works
Let’s dissect the program and see what’s going on in this ubiquitous masterpiece.

After invoking wish -f, we get to the single line that does all the work. It’s remarkably terse, and we’ve
expanded it to make the specified options more obvious. Ignoring the pack command for now, we see
that button... creates a button named .b whose multiline label Hello World!!! is centered. The
button is set to a width of 20 characters. The -command option attaches an event handler to the button to
output the string “Hi” in the parent window when the user clicks the button. Note the backslashes that
allow you to write the command over several lines.

The pack command packs the widget .b into the default top-level window created by the application, so
that it occupies the window. Note that pack [button .b ...] would work just as well if we initialized
the button .b first and then called pack .b.

There’s no particular reason for calling the widget .b. You can name it .foo or anything else, provided
the name begins with a period. An application’s widgets are arranged in a hierarchy, and the default top-
level, “application” widget and its corresponding widget command are named “.”. Each widget’s name is
a dot-separated list describing its position in the application’s hierarchy. For example, the path name
.a.b.c implies that widget .c is a child of .a.b, a grandchild of .a, and a great-grandchild of the
application widget. Currently, all the widgets in Tk can have any number of children, provided all the
path names are listed in this way.

Configuration Files
Now let’s add one more line before the widget’s creation:

option add *b.activeForeground brown

The program creates the widget .b and sets up its default activeForeground color to brown. The
asterisk before b means that any widget called b should have the option set, no matter what its parentage.

We can also make it into a more realistic X application by saving the line

*b.activeForeground: brown

into a file called hello.def, and then adding the following line into the hello3.tk script before we
create the widget:

option readfile hello.def

This line reads the application defaults from the file hello.def before the widget’s creation.

More Commands
You might be thinking, “Can’t I create more user interactions to the widget than -command?” We’ll go
right ahead and create one such simple event binding. If the user presses Ctrl along with the mouse button,
the widget will output the string “Help!"

Here’s how to do this:

bind .b <Control-Button-1> {puts "Help!"}

Our final Hello World program, hello4.tk, with all these modifications, reads

#!wish -f

option readfile hello.def
pack [button .b -text "Hello\nWorld!!!" \
 -justify center \
 -width 20 \
 -command {puts "Hi"}]
bind .b <Control-Button-1> {puts "Help!"}

This is a simple three-line program that can do the same job as a 500-line Xlib program or 100+ lines of
Motif code. It has all the features of a basic X application and is still very simple. That’s what Tk is all
about. It removes all the complexity and fear involved in graphical user interface programming.

Tk Widgets
It’s time to look more closely at the set of widgets Tk provides. Before we review the widgets Tk supports,
though, here’s a simple way to find out all the methods and arguments a widget provides. Note that the
symbol % denotes Tk’s wish command shell prompt.

Try It Out—Learning More

First, interactively create a scale widget .s:
$ wish
% scale .s
.s

Call the config method of the widget and see its output to check out what the widget offers:
% .s config

You should see this output:

{-activebackground activeBackground Foreground SystemButtonFace SystemButtonFace} {-
background background Background SystemButtonFace SystemButtonFace} {-bigincrement
bigIncrement BigIncrement 0 0.0} {-bd -borderwidth} {-bg -background} {-borderwidth
borderWidth BorderWidth 2 2} {-command command Command {} {}} {-cursor cursor Cursor
{} {}} {-digits digits Digits 0 0} {-fg -foreground} {-font font Font {{MS Sans Serif}
8} {{MS Sans Serif} 8}} {-foreground foreground Foreground SystemButtonText
SystemButtonText} {-from from From 0 0.0} {-highlightbackground highlightBackground
HighlightBackground SystemButtonFace SystemButtonFace} {-highlightcolor highlightColor
HighlightColor SystemWindowFrame SystemWindowFrame} {-highlightthickness
highlightThickness HighlightThickness 2 2} {-label label Label {} {}} {-length length
Length 100 100} {-orient orient Orient vertical vertical} {-relief relief Relief flat
flat} {-repeatdelay repeatDelay RepeatDelay 300 300} {-repeatinterval repeatInterval
RepeatInterval 100 100} {-resolution resolution Resolution 1 1.0} {-showvalue
showValue ShowValue 1 1} {-sliderlength sliderLength SliderLength 30 30} {-
sliderrelief sliderRelief SliderRelief raised raised} {-state state State normal
normal} {-takefocus takeFocus TakeFocus {} {}} {-tickinterval tickInterval
TickInterval 0 0.0} {-to to To 100 100.0} {-troughcolor troughColor Background
SystemScrollbar SystemScrollbar} {-variable variable Variable {} {}} {-width width
Width 15 15}

Each list pair follows this combination:

option-switch option-name option-class option-default-value option-actual-value.

You can interactively experiment and learn about the widget’s options and their default values. There is,
however, no easy way to learn a widget’s methods without perusing its manual page.

Frames
Frames are the simplest of all the Tk widgets. They are used only as containers, as you can see in the
following example:

#!usr/bin/wish -f

. config -bg steelblue

foreach frame {sunken raised flat ridge groove} {
 frame .$frame -width 0.5i -height 0.5i -relief $frame -bd 2
 pack .$frame -side left -padx 10 -pady 10
}

This script creates five frames with different 3D borders:

Frames are often invisible and are almost always used to create nested layouts.

How It Works
In the above example, the -relief option is used to set the border relief of the frame, and the -bd 2
option sets the widget border width to two pixels. This option is supported by all the Tk widgets and
gives the 3D effect.

As for the rest of the code, you can see the use of a Tcl list to create the five frames. The frames are sized by
setting the -height and -width options to 0.5i (half an inch); they’re packed to the left and padded 10
pixels on each side by the -padx and -pady options.

Top-Level
Top-level widgets are like frames, except they have their own top-level windows whereas frames are
internal windows within a top level.

% toplevel .t -width 1.5i -height 1i -relief ridge -bd 4

will create a top-level window that looks like the following:

Labels
A label is simple widget that can display multiline text. We can create a label using the label command:

% label .l -wraplength 1i -justify right -text "Hello Tk World!"

This creates a multiline label widget with a text length of one inch for each line. Once you pack the label
using

% pack .l

it will create a widget that looks like this:

When you’ve created the label, you can use the widget command to communicate with it. For example,
the following command will query the foreground color of the label widget:

% .l cget -fg
Black

All the Tk widgets support the cget widget command, which retrieves any widget configuration option.
We can also use the configure method of the Tk widgets to set configuration options interactively. For
example,

% .l configure -fg yellow -bg blue

will set the label’s foreground to yellow and background to blue.

Buttons
Tk provides three kinds of buttons: ordinary push buttons, check boxes and radio buttons.

Pressing a push button performs an action. We use check boxes to select or deselect a number of options.
Radio buttons are similar, but they exclusively select one choice from a group of options. You’re most
likely familiar with the widgets, if not the terminology.

Let’s look at the following example, which illustrates most of the uses of Tk buttons.

Try It Out—A Choice of Buttons

After the script header and a couple of global variables, we create a check button to control the
selection of a favorite programming language.

#!/usr/bin/wish -f

set lang tcl
set state 1

checkbutton .lan -text "Language" -command {changeState} -relief flat \
 -variable state -onvalue 1 -offvalue 0

Next, we create a radio button panel, with one button for each language:

radiobutton .c -text "C" -variable lang -value c -justify left
radiobutton .tcl -text "Tcl" -variable lang -value tcl -justify left
radiobutton .perl -text "Perl" -variable lang -value perl -justify left

We need two push buttons to control the output:

button .show -text "Show Value" -command showVars
button .exit -text "Exit" -command {exit}

Having configured the buttons, we need to arrange them on screen. It’s time for a bit of geometry
management.

grid .lan -row 1 -column 0 -sticky "w"
grid .c -row 0 -column 1 -sticky "w"
grid .tcl -row 1 -column 1 -sticky "w"
grid .perl -row 2 -column 1 -sticky "w"
grid .show -row 3 -column 0 -sticky "w"
grid .exit -row 3 -column 1 -sticky "w"

The check button needs a callback procedure, changeState. This is registered by the check button’s -
command option.

proc changeState args {
 global state
 if {$state == "0"} {
 catch {
 .c config -state disabled
 .tcl config -state disabled
 .perl config -state disabled
 }
 } else {
 .c config -state normal
 .tcl config -state normal
 .perl config -state normal
 }
}

The push buttons need a similar procedure, showVars:

proc showVars args {
 global state lang
 if {$state == "0"} {
 puts "No Language is selected"
 } else {
 puts "The Language selected is $lang"
 }
}

When you run the program, you should see this:

How It Works
The program starts off by setting up two global variables, lang and state, to serve as the initial values of
the check boxes and radio buttons.

A check box is declared to select/deselect the “language” option. Every time it’s invoked, its command
will call the changeState procedure. It also sets the global variable state to 1 or 0, depending on the
selection before execution of the command.
Then the program composes the radio button, which is there to select just one of three languages (C, Tcl,
and Perl). If you look at the code, these buttons share the same global variable, lang, which holds the
value of the current selection. This makes sure that the user can select only one radio button at a time.

Finally, we declare two push buttons; one exits the application when the user presses it, and the other
outputs the selection by calling the procedure showVars.

The command changeState is used by the check box to change the state of all three radio buttons
between active and inactive, depending on whether it’s selected or deselected. showVars is used by the
Show Value push button to output the value of the current selection.

Buttons also support many other options, including flash invoke methods. For more information, look at
the button, checkbutton, radiobutton, and options man pages. Labels and buttons also support
bitmaps and images as their labels. We’ll learn about images later.

The lines in the example that start with grid... are used for geometry management of
the created widgets. We’ll cover geometry management later in this chapter.

Messages
Messages are similar to labels and are used to display multiline text. They differ from labels in that they
automatically break up text to display it in a multiline format, using word boundaries and aspect ratio.
Message widgets can justify the text displayed and they can also handle nonprintable characters.

#!/usr/bin/wish -f

message .m -aspect 400 -justify center \
 -text "This is a message widget with aspect ratio 400 and \
 center justification. Message widgets can also \
 display control characters \240 \241 \242 \243 \251 \
 \256 \257 \258 and tabs \t etc..."

pack .m

This example will create a simple message widget containing control characters.

Entrys
Entrys (sic) are single-line text widgets that we can use to type in and display a single line of text. Entrys
also support many key bindings for text editing. For example, here’s a small program, login.tk, to
handle user logins, though it lacks code to verify the user’s password.

 Try It Out—Gaining Entry

First, we set up the look of the login window. We also define a global loginName variable:

#!/usr/bin/wish -f

set loginName "timB"

label .name -text "Login:"
entry .nameEntry -textvariable loginName
label .passwd -text "Password:"
entry .passwdEntry -textvariable passwd -show *

Then we select all the text from .nameEntry:

.nameEntry selection from 1
.nameEntry selection to end

Finally, we arrange the widgets on the screen—we’ll explain it later!

grid .name -row 0 -column 0 -sticky "w"
grid .passwd -row 1 -column 0 -sticky "w"
grid .nameEntry -row 0 -column 1 -columnspan 2 -sticky "W"
grid .passwdEntry -row 1 -column 1 -columnspan 2 -sticky "W"

If you run the program, you’ll see this:

How It Works
After the first five lines, which create two label and two entry widgets, the next two lines show how to
select the text inside the entry. The selection command is Tk’s method for moving information between
widgets. The last four lines arrange the created widgets on the screen in a grid.

X defines a standard mechanism for supplying and retrieving the selection, and the
selection command is Tk’s way of managing inter-client communication. It obeys X’s
Inter-Client Communication Conventions Manual (ICCCM) rules. The reason we
introduce selection here is to show that you can programmatically set the selection so
that another, non-Tk, X client can retrieve the selection using normal X Windows
conventions.

Entry widgets use key bindings for internal navigation through the text. If you read the man page, you’ll
find that the entry widget supports lots of EMACS bindings, along with all the Motif bindings dictated by
the OSF Motif style guide. Here are a few of the more common ones:

Key Binding Description

Ctrl+a Moves the insertion cursor to the beginning of the entry text.

Ctrl+e Moves the cursor to the end of the entry text.

Ctrl+/ Selects all the text in the entry.

List Boxes
A list box widget can display a collection of strings and allows the user to select one or more items. The
following program shows a way to use a list box to design a Motif-like prompt dialog.

Try It Out—Lists

First we create the user interface elements:

#!/usr/bin/wish -f

scrollbar .h -orient horizontal -command ".list xview"
scrollbar .v -command ".list yview"
listbox .list -selectmode single -width 20 -height 10 \
 -setgrid 1 -xscroll ".h set" -yscroll ".v set"
label .label -text "File Selected:" -justify left
entry .e -textvariable fileSelected

To give widgets that Motif-ish look and feel, we use the grid geometry manager:

grid .list -row 0 -column 0 -columnspan 2 -sticky "news"
grid .v -row 0 -column 2 -sticky "ns"
grid .h -row 1 -column 0 -columnspan 2 -sticky "we"
grid .label -row 2 -column 0
grid .e -row 3 -column 0 -columnspan 3 -sticky "we"

grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

We initialize the list box with the contents of the current directory:

foreach file [glob *] {
 .list insert end $file
}

Finally, we bind an event handler to the list box to make it react to the release of mouse button 1. This
corresponds to the left mouse button for right-handed users, and the right mouse button for left-
handed users. We’ll continue to call it mouse button 1 in this section, as this is the convention used in
the code.

bind .list <ButtonRelease-1> \
 {global fileSelected;set fileSelected [%W get [%W curselection]]}

If you run the program, you’ll see this:

How It Works
The program first creates two scrollbars and then attaches them to the list box it creates. The widgets are
interconnected using -command for the scrollbars and -xview and -yview commands for the list box.
This is the way we tell two widgets how to communicate and react to one another’s geometry or state.
We’ll explore more interconnection later in the chapter.

Next, we initialize the list box with the contents of the current directory using the foreach loop. The Tcl
command glob performs pattern matching to return these filenames.

The list box provides many more configuration methods such as delete, get, index, insert, and scan
to manipulate the displayed contents.

Scrollbars
As we saw in the previous example, scrollbars are usually connected to other widgets so that the widget’s
viewing area can be expanded. In the list box example, the viewing area is controlled by the two
scrollbars, .h and .v, like this:

scrollbar .h -orient horizontal -command ".list xview"
scrollbar .v -command ".list yview"

.h controls the horizontal viewing area of the list box using the command .list xview, and similarly
for the vertical scrollbar, .v. The list box is also informed about the interconnection using the command

listbox .list ... -xscroll ".h set" -yscroll ".v set"

This, then, is how we make two widgets communicate with each other by binding them together and
informing each of them about the other’s behavior. You can also use implicit interconnection, as we’ll see
in the next section.

Scales
Scales display integer values and allow the user to select a particular value by moving a slider. Let’s look
at a simple example:

#!/usr/bin/wish -f

set foo 100
label .l -text "Choose a Value:" -justify left
scale .s -orient horizontal -from 0 -to 2000 -tickinterval 500 \
 -showvalue true -length 3i -variable foo
entry .e -width 6 -justify left -textvariable foo

pack .l -side top -anchor nw
pack .s .e -side left -padx 4m -fill x

When you run this program, you’ll see this screen:

Here, the scale and the entry have an implicit interconnection through the global variable foo. If you
update the value of the scale, the value in the entry is automatically updated.

All the variables used explicitly in Tk’s widget event handlers are of global scope. If
the bound variable doesn’t exist, Tk will automatically create one for you. So in the
above example the variable foo is a global variable, and scale and entry share the
same variable, creating an implicit interconnection in their behavior.

Text
Tk’s very versatile text widgets are used to create multiline, editable text. They support three types of
annotations, tags, marks, and embedded windows, which affect what is displayed.

❑ Tags allow different portions of text to be displayed with different fonts, colors, and reliefs. Tcl
commands can be associated with tags to make them react to user actions.

❑ Marks are used to keep track of various interesting positions in the text as it’s edited.

❑ Embedded window annotations are used to insert widgets (windows) at particular points in the
text. You can have any number of embedded windows in the text. All the embedded windows
in the text require the text to be the parent of embedded windows.

Let’s look at a demonstration of some of the text widget features.

Tk’s text widget is so powerful that we can use it as an HTML widget without much
effort. The well-known hypertext man page viewer TkMan uses Tk’s text widget to
display normal Linux man pages in hyper-linked form.

 Try It Out—Manipulating Text

1. First of all, we create a vertical scrollbar, which we attach to the text widget. Then we pack
them side by side and tell the text window to expand to fill the available window space.

We make sure that the text window continues to fill the window even when resizing occurs by telling the
packer, if there’s extra vertical space, to expand both widgets to occupy that space. However, if some extra
horizontal space is made available, only the text widget will be expanded.

#!/usr/bin/wish -f

scrollbar .y -command ".t yview"
text .t -wrap word -width 80 -spacing1 1m -spacing2 0.5m -spacing3 1m \
 -height 25 -yscrollcommand ".y set"

pack .t -side left -fill both -expand yes
pack .y -side left -fill y

2. Next, we want to create embedded windows. We don’t have to worry about managing them
because the text widget will look after them internally.

set image [image create photo -file mickey.gif -width 200 -height 200]
label .t.l -image $image
button .t.b -text "Hello World!" -command "puts Hi"

3. Then we configure all the tags that we’re going to associate with the text window:

.t tag configure bold -font -*-Courier-Bold-O-Normal--*-120-*-*-*-*-*-*
.t tag configure yellowBg -background yellow
.t tag configure blueFg -foreground blue
.t tag configure yellowBgBlueFg -background yellow -foreground red
.t tag configure underline -underline 1
.t tag configure raised -relief raised -borderwidth 2
.t tag configure sunken -relief sunken -borderwidth 2
.t tag configure center -justify center
.t tag configure left -justify left
.t tag configure right -justify right
.t tag configure super -offset 4p
.t tag configure sub -offset -2p
.t tag bind colorOnEnter <Any-Enter> ".t tag configure colorOnEnter \
 -background yellow"
.t tag bind colorOnEnter <Any-Leave> ".t tag configure colorOnEnter \
 -background {}"

4. Having configured the tags, we now insert text with those tags to show off the widget’s
potential, if not our graphic design.

.t insert end "Tk text widget is so versatile that it can support many \
 display styles:\n"
.t insert end "Background: " bold
.t insert end " You can change the "
.t insert end "background" yellowBg
.t insert end " or "
.t insert end "foreground" blueFg
.t insert end " or "
.t insert end "both" yellowBgBlueFg
.t insert end "\nUnderlining. " bold
.t insert end "You can "
.t insert end "underline" underline
.t insert end "\n3-D effects: " bold
.t insert end "You can make the text appear "
.t insert end "raised" raised
.t insert end " or "
.t insert end "sunken" sunken
.t insert end " Text"
.t insert end "\nJustification" bold

.t insert end "\nright justification" right

.t insert end "\n center justification " center

.t insert end "\nleft justification " left

.t insert end "\nSuper and Subscripts: " bold

.t insert end "Text can be "

.t insert end "super" super

.t insert end " or "

.t insert end "sub" sub

.t insert end " scripted"

.t insert end "\nBindings: " bold

.t insert end "Text can be made to react to the user interactions" colorOnEnter

.t insert end "\nEmbedded Windows: " bold

.t insert end "You can insert labels "

.t window create end -window .t.l

.t insert end " or any kind of windows "

.t window create end -window .t.b

If you run this program,
this is what you’ll see:

How It Works
In this example, the first text window and a scrollbar are created and managed to create the basic interface.
All the internal windows (.t.l and .t.b) are created, but not explicitly managed, because we’re going to
insert them into the text widget. Next, all the binding tags that we’re going to use are configured using
various configuration options. For example,

.t tag configure bold -font -*-Courier-Bold-O-Normal--*-120-*-*-*-*-*-*

will create a tag called bold. The characters inserted with the tag will have the font -*-Courier-Bold-
O-Normal--*-120-*-*-*-*-*-*. We’ll look at the way Tk handles fonts later on. Similarly, characters
inserted with blueFg will be displayed in blue.

We don’t need to create the text tag explicitly. When we insert a piece of text with tag
foo, foo will be created automatically. Here, we’ve configured the tags beforehand and
the program has created them.

We then insert text using tags with the following format:

text_widget insert index chars taglist chars taglist...

An index is a string used to indicate a particular place within a section of text, such as a place to insert
characters, or one endpoint of a range of characters with blue background. Indices have the syntax

base modifier modifier modifier...

base gives the starting point and the modifiers shift or adjust the index from the starting point. Modifiers
can move the index in either direction from the starting point.

The base for the index must have one of the following forms:

Index Base Description

line.char Indicates the charth character of the line line.

@x,y Indicates the character that covers the pixel within the text window whose
co-ordinates are x and y.

mark Indicates the character just after the mark.

tag.first Indicates the first character in the text that has been tagged tag.; Ssimilarly for
tag.last.

pathname Indicates the position of the embedded window whose path name is pathname.

Modifiers can have these forms:

Modifier Description

+count chars Adjusts the index forward by count chars.

-count chars Adjusts the index backward by count chars.

+count lines Adjusts the index forward by count lines.

-count lines Adjusts the index backward by count lines.

Linestart Adjusts the index to refer to the first char on the line.

Lineend Adjusts the index to refer to the last char on the line.

Wordstart Adjusts the index to first char of the word containing the current index.

Wordend Adjusts the index to last char of the word containing the current index.

We can associate a particular piece of text with more than one tag. For example, text can be bold and italic
at the same time. When you insert text, you need to specify the location. In our last example, end means
“insert after the last character displayed.” In text, indices can also be tags and marks, so the text command

.t insert end "right justification" right

will insert the text right justification at the end of all the text in the text widget and will right-
justify it.

Text supports lots of features, and we recommend that you read the text man page and
take a look at the text demos that come with the Tk distribution. Before we finish
covering text, though, think about what it would take to implement the last example in
Motif or Xlib. In Motif, it would take a couple of hundred lines and in Xlib, perhaps
several thousand. The power of Tk can be pretty mind boggling!

Canvases
Tk’s canvas widget is used to implement structured graphics. Canvases can display any number of items,
including rectangles, circles, lines, text, and embedded windows, which can be manipulated (moved or
colored) and bound to user interactions. For example, we can make a particular item change its
background color when the user clicks the mouse button over it.

Before we play with the canvas widget, we need to cover some concepts: identifiers and tags.

When we create each item in the canvas, it’s assigned a unique integer identifier. Items can have any
number of tags associated with them. A tag is a string of characters that can take any form except an
integer. Tags are used for item grouping, identifying, and manipulating purposes. The same tag can be
associated with many items to group them under one category. Every item inside the canvas can be
identified by its ID, or a tag associated with it. The tag all is implicitly associated with every item in the
canvas. The tag current is automatically managed by Tk. It refers to the topmost item whose drawn area
lies at the position of the mouse cursor.

When we specify items in canvas widget commands, if the specifier is an integer, we assume that it refers
to a single item with that ID. If the specifier isn’t an integer, we assume that it refers to all the items in the
canvas that have the tag matching the specifier. In the next example, we use the tagOrId symbol to
specify either an ID that selects a single item or a tag that selects zero or more items.

When we create any item on the canvas, we specify its location. The locations are floating-point numbers
optionally suffixed with one of the letters m, c, i, and p:

❑ m stands for millimeters.

❑ c stands for centimeters.

❑ i stands for inches.

❑ p stands for points.

If we don’t follow the coordinate with one of these letters, the program assumes that the item location is in
pixels. Let’s look at some of the canvas commands and see what they do. In the following commands, the
pathName identifier refers to the canvas path name:

pathName create arc x1 y1 x2 y2 ?option value option value ...?

This creates an arc item on the canvas, with x1 y1 x2 y2 specifying the coordinates of a rectangular
region enclosing the oval that defines the arc. Command options in this example include -extent, -
fill, and -outline. For example, the command

% set k [.c create arc 10 10 50 50 -fill red -outline blue -tags redArc]

creates an arc item inside canvas .c with $k giving the value of the ID. Its outline is drawn in blue. This
arc is enclosed inside a rectangle with canvas coordinates 10 10 50 50 and is filled in with red. A tag,
redArc, is also associated with the arc item.

pathName itemconfigure tagOrId ?option value option value ...?

This command is similar to the -configure widget command, except that we can use it to modify only
specific options for the item denoted by tagOrId, instead of modifying the whole canvas widget. For
example,

% .c itemconfigure redArc -fill yellow

will change all the fill colors of items associated with tag redArc to yellow.

pathName type tagOrId

will return the type of first item in the list of items referred to by tagOrId. For example,

% .c type redArc
arc

pathName bind tagOrId ?sequence? ?command?
works just like the bind command, but instead of applying the sequence to the whole canvas, it applies it
just to the item specified by tagOrId. If command isn’t given, it returns all the commands associated with
the binding sequence sequence for canvas item tagOrId. If neither sequence nor command is specified,
all the sequences bound to the item are returned.

% .c bind $k <Enter> ".c itemconfigure redArc -fill blue"
% .c bind redArc <Leave> ".c itemconfigure redArc -fill red"

In this example, the first binding will fill in the item associated with tagOrId $k with blue when the
mouse enters the item. The second binding fills in all the items associated with tag redArc with red when
the mouse leaves them.

Text and canvases support so many commands that it would take much more than one chapter to explain
them all. We strongly advise that you refer to the canvas and text man pages for the mastery of these
two widgets. Here’s a small example that shows a few of their features.

Try It Out—Text on Canvas

First we create the canvas and then some objects to display on it: an image of a teapot, a line of text over
the image, another text object to exhort users to move the items around, and a rectangle. We pack the
canvas so it will fill the window.

#!/usr/bin/wish -f

set c [canvas .c -width 300 -height 300 -relief sunken -bd 2]

set image [image create photo -file teapot.ppm -width 200 -height 200]
$c create image 150 150 -anchor center -image $image -tags item

$c create text 150 150 -text " Image Object" -fill white

$c create text 10 10 -text " Move any Item \n using Mouse " -justify center \
 -anchor nw -tags item -fill red
$c create rectangle 200 10 250 40 -fill yellow -outline blue -tags item

pack .c

Next, we bind the canvas so that we can operate on the items shown on it. We’ll define the
itemDragStart and dragItem procedures:

bind $c <1> "itemDragStart $c %x %y"
bind $c <B1-Motion> "dragItem $c %x %y"

For the procedure’s benefit, we need to define two global variables, lastX and lastY.

global lastX lastY

event handler for the <1> event
proc itemDragStart {c x y} {
 global lastX lastY
 set lastX [$c canvasx $x]
 set lastY [$c canvasy $y]
}
event handler for the <B1-Motion> event
proc dragItem {c x y} {
 global lastX lastY
 set x [$c canvasx $x]
 set y [$c canvasy $y]
 $c move current [expr $x-$lastX] [expr $y-$lastY]
 set lastX $x
 set lastY $y
}

The program produces this output:

How It Works
It’s really a very simple example. We created a few canvas item types and bound the mouse buttons so
that the user can move them with the mouse. For example, the line

$c create image 150 150 -anchor center -image $image -tags item

creates an image on the canvas at the canvas location (150, 150). This image is an object in its own right, so
you can move it and make it react to the user by binding event handlers to the tag associated with the
item. Like text, canvas supports many features, so it’s very difficult to explain them comprehensively in a
simple 20-line example. We’ll look at some more canvas features in the final applications.

Before we leave canvas objects, we’ll mention a few of their properties:

❑ Canvas items can have event handlers attached to them.

❑ An item can have many tags associated with it, but will have one unique ID.

❑ If an item is a widget, it should be the child of the canvas that contains it.

❑ If items are widgets, you can configure them just as you would had they been outside the
canvas. Embedding them within the canvas doesn’t change their methods.

❑ As you place items on the canvas, you can stack them on top of one another, obscuring some of
the items beneath. You can change the stacking order using canvas raise and lower
commands.

Finally, to make things simpler in the last example, we don’t bind the procedures to the objects through
tags, but directly through the canvas. If you look at the dragItem procedure, the line

set x [$c canvasx $x]

sets the values of x to a canvasx coordinate from the real screen coordinate x. The line

$c move current [expr $x-$lastX] [expr $y-$lastY]

moves the current object under the mouse cursor (denoted by the index current) to a new location, from
lastX to x. lastX was saved when the user event handler itemDragStart was invoked, through the
binding

bind $c <1> "itemDragStart $c %x %y"

Here, the bind means that when the user clicks on the canvas with mouse button 1, the itemDragStart
event handler is invoked with arguments canvas, %x (the value of x at the mouse click), and %y (the
value of y at the mouse click). We’ll discuss bindings later in the chapter.

Images
Tk can display images of two built-in types: photo and bitmap. The photo type can display gif and ppm /
pgm files, while the bitmap format can display xbm files. The image command can be used to create
images. The general format of the image command is

image option ?arg arg ...?

where option can be used to create, delete, and set such options as height, names, image type, and so on.
Next we’re going to develop an example based on the sliding block example that comes with the Tk
distribution, but we are going to jazz up the original example by using the image command.

Try It Out—Manipulating Images

First we create the image. Then we configure the frame that will hold the pieces of the image that form
the puzzle. This we pack with a little padding:
#!/usr/bin/wish -f

set image [image create photo -file mickey.gif -width 160 -height 160]

frame .frame -width 120 -height 120 -borderwidth 2 -relief sunken \
-bg grey
pack .frame -side top -pady 1c -padx 1c

Now we create the individual pieces of the puzzle. This involves 15 loops of the code, which crops
portions of the original image to fit on the buttons.
set order {3 1 6 2 5 7 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
 set num [lindex $order $i]
 set xpos($num) [expr ($i%4)*.25]
 set ypos($num) [expr ($i/4)*.25]

 set x [expr $i%4]
 set y [expr $i/4]

 set butImage [image create photo image-${num} -width 40 -height 40]
 $butImage copy $image -from [expr round($x*40)] \
 [expr round($y*40)] \
 [expr round($x*40+40)] \
 [expr round($y*40+40)]
 button .frame.$num -relief raised -image $butImage \
 -command "puzzleSwitch $num" \
 -highlightthickness 0
 place .frame.$num -relx $xpos($num) -rely $ypos($num) \
 -relwidth .25 -relheight .25
}

Finally, we have the event handler that deals with the user’s input. The two global variables are set to
show that the initial space in the puzzle is at the bottom right-hand corner.
set xpos(space) .75
set ypos(space) .75

proc puzzleSwitch { num} {
 global xpos ypos
 if {(($ypos($num) >= ($ypos(space) - .01))
 && ($ypos($num) <= ($ypos(space) + .01))
 && ($xpos($num) >= ($xpos(space) - .26))
 && ($xpos($num) <= ($xpos(space) + .26)))
 || (($xpos($num) >= ($xpos(space) - .01))
 && ($xpos($num) <= ($xpos(space) + .01))
 && ($ypos($num) >= ($ypos(space) - .26))
 && ($ypos($num) <= ($ypos(space) + .26)))} {
 set tmp $xpos(space)
 set xpos(space) $xpos($num)
 set xpos($num) $tmp
 set tmp $ypos(space)
 set ypos(space) $ypos($num)
 set ypos($num) $tmp
 place .frame.$num -relx $xpos($num) -rely $ypos($num)

 }
}

When you run the program, you’ll get this 15-piece image puzzle output:

How It Works
The first line in the program creates a photo image, using the mickey.gif file and assigns it to the
variable image. Portions of this image are then copied on to the buttons with the
set butImage line and those following in a for loop. The result is 15 buttons with 15 associated images,
taken from the big image held in $image. The rest of the program deals with event handlers to arrange
the buttons when the user clicks them. We’ll return to that part when we deal with geometry
management.

The gist of the puzzleSwitch algorithm logic is based on the fact that when the user clicks a button, if
the button is next to an empty space, the button and empty space will be swapped. If you play with the 15-
piece puzzle, you will notice that the piece that can take the place of the empty space will obey one of the
following rules:

❑ It will have the same x position as the empty space, and its y position will be 0.25 units away (up
or down) from the empty space. (The piece is on the same column as the empty space, and it is
directly above or below the empty space.)

❑ It will have the same y position as the empty space, and its x position will be 0.25 units away
(left or right) from the empty space. (The piece is on the same row as the empty space, and it is
directly to the left or right of the emtpy space.)

The preceding algorithm makes use of these properties to decide whether to switch the piece with the
empty space.

Buttons and labels support images as labels. Also, these labels can be embedded inside canvas and text
widgets. Refer to the bitmap, photo, and image man pages for more information on Tk’s image
support.

Menu
Traditionally, menus are used to provide users with a set of choices in an application without changing
much of the application’s appearance. Menus give users convenient access to various features of the
application without the user having to move away from the main window. Tk’s menu command creates a
widget that displays a list of entries in a separate top-level window. Menu is not a container widget; it is a
single widget with different objects embedded in it.

Menus can have three types of entries embedded in them:

❑ Command entries, to run commands

❑ Radio entries, to select one of many choices

❑ Option entries, to select one or more choices from a group of options

Menus can also hold other menus in a recursive way, by using cascade entries.

Menu entries can be displayed with up to three separate fields: a label (in the form of text), a bitmap, or an
image, using the –label, –bitmap, or –image option, respectively. A second field may use the –
accelerator option to specify an accelerator sequence next to the label. The -accelerator option
describes a key sequence that is used to invoke a particular entry associated with a menu entry. A third
option is an indicator that radio and option entries display to the left of the label. Note that Tk does not
automatically create a key binding when the –accelerator option is specified. The binding should be
explicitly set using the bind command for the sequence to take effect; setting
-accelerator simply displays the key combination in the menu.

Menu entries can be configured with different options, such as foreground and background colors and
fonts, using the entryconfigure option of the widget command. Entries can also be disabled using the
–state option. If a menu entry is disabled, it will not respond to the user action.

Tk menus are very flexible. You can enable the –tearoff option of the menu so that the user can tear the
menu off from the menu bar and use it as a top-level window. You can also specify commands that get
called when a menu is posted or torn off.

Menus are indexed using either their position numerically in the menu, their label , or “last” and “end”
tags. Menus can be posted programmatically by calling the post and unpost menu commands. Tk’s
documentation refers to menus as being posted; to say “pulled down” or “popped up” only describes the
behavior of certain menus on certain platforms. Posting is a more generic term.

Each top-level widget in Tk can have one menu widget act as the default menu bar for that window. A
menu bar is a list of menus arranged side by side in a frame. Menu bars can be attached using the –menu
widget option associated with top-level windows.

The Tk library provides a <<MenuSelect>> virtual event that is triggered whenever a menu or one of its
entries becomes active. The menu command provides lots of options; for a complete list of options, refer to
the menu command manual page.

The menu system was overhauled in Tk version 4.0, and many improvements were
made in Tk version 8.0. Prior to Tk 8.0, to create menu bars users had to use functions
such as

tk_menuBar frame ?menu menu ...

tk_bindForTraversal arg arg ..

These functions are deprecated and have no effect in Tk versions beyond 4.0.

Try It Out—Menus

Let’s look at an example that illustrates most of the command features. This example will make use

 will create the main window components, including a text widget with an associated
idgets

menu
of the text widget features. Using the menus, we will change the background color and the properties of
the font used to display the text. We will also create a menu to insert bitmap images inside the text widget.

First, we
scrollbar, and a status widget to display menu traversal and error messages. We arrange these w
on the screen using the grid command. We will also create a new font named myFont. We will use the
menu to manipulate the font attributes so that the text in the text widget will change its appearance.

wm title . "Menu demonstration"
wm iconname . "Menu demo"

create the basic UI
scrollbar .yscroll -orient vertical -command ".text yview"
font create myfont -family Courier -size 10 -weight bold -slant italic \
 -underline 1
text .text -height 10 -width 40 -bg white -yscrollcommand ".yscroll set" -font myfont
label .msg -relief sunken -bd 2 -textvariable message -anchor w -font "Helvetica 10"
.text insert end "Menu Demonstration!"

manage the widgets using the grid geometry manager.
grid .text -row 0 -column 0 -sticky "news"
grid .yscroll -row 0 -column 1 -sticky "ns"
grid .msg -row 1 -columnspan 2 -sticky "ew"

grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

Next, we will develop callback functions, which will be associated with the menu entries. The

SetBg

procedure will change the background color of the text. ConfigureFont will change the attributes of
myFont. InsertImage will insert the named bitmap into the text buffer. The InsertImage
procedure has a side effect: If the named bitmap already exists in the text buffer, it will be deleted and a
new bitmap will be inserted. The OpenFile procedure will prompt the user for a file, and if the user
selects a file, its contents will be displayed in the text widget.

procedure to set text background color
proc SetBg {} {
 global background
 .text configure -bg $background
}

procedure to configure the previously created font.

proc ConfigureFont {} {
 global bold italic underline
 expr {$bold ? [set weight bold]: [set weight normal]}
 expr {$italic? [set slant italic]: [set slant roman]}
 expr {$underline? [set underline 1]: [set underline 0]}
 font configure myfont -weight $weight -slant $slant -underline $underline
}

Procedure to insert images in the text widget

proc InsertImage {image} {
 catch {destroy .text.$image}

 label .text.$image -bitmap $image
 .text window create end -window .text.$image
}

Callback for open menubutton

proc OpenFile {} {
 global message
 set file [tk_getOpenFile]
 if {$file == ""} {
 set message "No file selected..."
 return;
 }
 .text delete 0.0 end
 set fd [open $file "r"]
 while {[eof $fd] != 1} {
 gets $fd line
 .text insert end $line
 puts $line
 update idletasks
 }
 close $fd
}

Now we focus on the menu widget and its components. First, we create a menu that will become the

menu bar for the top-level window.

create toplevel menu

menu .menu -tearoff 0 -type menubar

Create File menu

set m .menu.file

 File submenu with open and exit entries. The open entry will prompt the user with

ot

binding in order for the accelerator

We will add a
an “open file” dialog. If the user chooses a file, that file will be displayed in the text widget using the
OpenFile procedure. The exit menu entry is used to exit the application. As you can see, Tk does n
create a default global binding for the menu entry just by using the
–accelerator menu entry option. We have to explicitly create the
to take effect.

menu $m -tearoff 0
.menu add cascade -label "File" -menu $m -underline 0
set modifier Meta
$m add command -label "Open..." -accelerator $modifier+o -command "OpenFile" -
underline 0 -command OpenFile
bind . <$modifier-o> "OpenFile"
$m add separator
$m add command -label "Exit..." -accelerator $modifier+x -command "exit" -underline 0
bind . <$modifier-x> "exit"

We next add an Options submenu to the main menu. This submenu contains Background and Font

o
cascade menus. The Background cascade menu contains a group of radio buttons to change the
background color of the text widget. The Font cascade menu provides a group of check buttons t
manipulate myfont menu attributes.

Create options menu

set m .menu.options
menu $m -tearoff 1

.menu add cascade -label "Options" -menu $m -underline 0
$m add cascade -label "Background" -menu .menu.options.bg -underline 0
$m add cascade -label "Font" -menu .menu.options.font -underline 0

create Radio button cascade menu

set m .menu.options.bg
menu $m -tearoff 0
$m add radio -label "Red" -background red -variable background -value red \
 -command SetBg
$m add radio -label "Yellow" -background yellow -variable background \
 -value yellow -command SetBg
$m add radio -label "Blue" -background blue -variable background -value blue \
 -command SetBg
$m add radio -label "White" -background white -variable background -value white \
 -command SetBg
$m invoke 3

Insert option button cascade Menu

set m .menu.options.font
menu $m -tearoff 0
$m add check -label "Bold" -variable bold -command ConfigureFont
$m add check -label "Italic" -variable italic -command ConfigureFont
$m add check -label "Underline" -variable underline -command ConfigureFont
$m invoke 3

As you can see from the code, the entries in a menu can be configured to have different backgrounds and

to the main menu to insert bitmaps into the text
foregrounds, as well as other standard widget options.

Next, we will proceed to add yet another cascade entry
widget. As explained earlier, these bitmap entry commands have a limitation: Only one instance of
these bitmaps can be present in the text widget at any given time.

Create insert menu option

set m .menu.insert
menu $m -tearoff 0
.menu add cascade -label "Insert" -menu $m -underline 0
foreach i {info questhead error} {
 $m add command -bitmap $i -command "puts {You invoked the $i bitmap}"\
 -hidemargin 1 -command "InsertImage $i"
}
$m entryconfigure 2 -columnbreak 1

ne thing to observe from the above code snippet is that entries in a menu can be arranged in a tabular

ill attach the menu to the top-level widget to make it the default menu bar. We also make

O
fashion using the entryconfigure command with the –columnbreak option.

Finally, we w
use of the <<MenuSelect>> virtual event, which is activated when any menu or one of its entries is
selected. The <<MenuSelect>> virtual event will display a message in the message label, indicating
that a particular entry has been selected:

Attach the menu to the toplevel menu

. configure -menu .menu

Bind global tags

bind Menu <<MenuSelect>> {
 global message
 if {[catch {%W entrycget active -label} label]} {
 set label " "
 }
 set message "You have selected $label..."
}

When you run the preceding example using the command
$ wish menu.tcl

you will see the

following
screen:

 like normal buttons with menus associated with them. They are very useful in graphical

ted

enu buttons can also be organized into groups to make menu bars, which can be placed anywhere inside

menubutton pathName ?options?

Menu Button
Menu buttons are
user interfaces to provide a set of choices grouped together by one button. Unlike menu bars, which
usually have more than one cascade menu associated with them, a menu button has only one associa
menu. There is only one menu bar associated with a top-level window, but menu buttons can be
embedded anywhere in the user interface.

M
a user interface (unlike top-level menus). These can be used to build toolbars and similar functionality into
your user interfaces. Usually, a menu button can also be configured to behave like an option menu by
setting the –indicator option. The menu button command syntax is as follows:

Try It Out—Menu Buttons

To illustrate MenuButtons’ features, we will create a simple application that draws circles and rectangles
 on a canvas with a specified fill color. First, we will develop a utility procedure that will draw a circle or a

rectangle on the canvas. It uses three global variables: x, y, and sqsize. x-y coordinates are used to
specify where on the canvas the object needs to be drawn. The variable sqsize is used either as the
diameter or the side of the square.

Let’s start off with the basics needed to draw circles and squares.

wm title . "Menubutton demonstration"
wm iconname . "Menubutton demo"

Initial parameters to draw circles and squares

set x 50
set y 50
set sqsize 30

procedure to draw canvas objects

proc AddObject {type} {
 global x y sqsize sqsize fillc
 if {$type == "circle"} {
 .c create oval $x $y [expr $x+$sqsize] [expr $y+$sqsize] \
 -tags item -fill $fillc
 } elseif {$type == "square"} {
 .c create rectangle $x $y [expr $x+$sqsize] [expr $y+$sqsize] \
 -tags item -fill $fillc
 }
 incr x 10
 incr y 10
}

Next, we create a canvas with a frame, a menu button, and a dismiss button. The frame widget will
hold the menu and dismiss buttons. We pack all the elements to create the main user interface.
create the basic User Interface canvas, 2 menu buttons and a dismiss button
set c [canvas .c -width 200 -height 200 -bd 2 -relief ridge]

frame .f -bd 2

menubutton .f.m1 -menu .f.m1.menu -text "Draw" -relief raised -underline 0 \
 -direction left
button .f.exit -text "Dismiss" -command "exit"

manage the widgets using the grid geometry manager.
pack .c -side top -fill both -expand yes
pack .f -side top -fill x -expand yes

pack .f.m1 .f.exit -side left -expand 1

Finally, we add a menu to the menu button. We create a menu and add three entries to it: two
command entries to draw circle and square objects, and a cascade widget for fill color selection.
set m .f.m1.menu
menu $m -tearoff 0

$m add command -label "Circle" -command "AddObject circle" -accelerator "Meta-c"
bind . <Meta-c> "AddObject circle"
$m add command -label "Square" -command "AddObject square" -accelerator "Meta-s"
bind . <Meta-s> "AddObject square"
$m add separator
$m add cascade -label "Fill Color.." -menu .f.m1.cascade

set m .f.m1.cascade
menu $m -tearoff 0
$m add radio -label "Red" -background red -variable background -value red \
 -command "set fillc red"
$m add radio -label "Yellow" -background yellow -variable background \
 -value yellow -command "set fillc yellow"
$m add radio -label "Blue" -background blue -variable background -value blue \

 -command "set fillc blue"
$m add radio -label "White" -background white -variable background -value white \
 -command "set fillc white"
$m invoke 1

As you can see from the code, we have not only added the accelerators to the menu entries; we also have
created the bindings explicitly using the bind command.

Pop-up Menu
Tk also supports pop-up menus. Unlike menu buttons and menu bars, which provide static menus, pop-
up menus are used to provide a context-sensitive menu system. For example, if you are designing a text
editor, when the user selects a block of text and clicks the right mouse button, you can programmatically
create a menu with items such as “Spell...,” “"Format...,” “Copy,” and “Delete.” Pop-up menus help
facilitate such tasks. Pop-up menus are very helpful in associating menus with any type of widgets, such
as text and canvas widgets. Pop-up menus don’t have any menu buttons associated with them. They are
plain menus that get posted programmatically by associating a binding to a specific widget and invoking
the tk_popup command in the event handler of that binding. Since the menus are posted dynamically,
the entries inside a pop-up menu can be created dynamically to display only relevant items.
The general creation format of an pop-up menu is

tk_popup menu x y ?entry?

where menu is the menu that needs to be posted, x and y specify the coordinates, and entry gives the
index of an entry in menu. The menu will be located so that the entry is positioned over the given point.
Let’s build some pop-up menus.

Try It Out—Pop-up Menus

First, create a menu and add a binding to the top-level window associated with the menu so that the
menu will get posted when the user clicks on the window using the third mouse button.

set w .menu
catch {destroy $w}
menu $w
bind . <Button-3> {
 tk_popup .menu %X %Y
}

The rest of the example creates menu entries to show that pop-up menus have exactly the same
capabilities as regular menus.

Add menu entries

$w add command -label "Print hello" \
 -command {puts stdout "Hello"} -underline 6

$w add command -label "Red" -background red

Add a Cascade menu

set m $w.cascade

$w add cascade -label "Cascades" -menu $m -underline 0
menu $m -tearoff 0

$m add cascade -label "Check buttons" \
 -menu $w.cascade.check -underline 0
set m $w.cascade.check
menu $m -tearoff 0
$m add check -label "Oil checked" -variable oil
$m add check -label "Transmission checked" -variable trans
$m add check -label "Brakes checked" -variable brakes
$m add check -label "Lights checked" -variable lights
$m add separator
$m invoke 1
$m invoke 3

$m add cascade -label "Radio buttons" \
 -menu $w.cascade.radio -underline 0
set m $w.cascade.radio
menu $m -tearoff 0

$m add radio -label "10 point" -variable pointSize -value 10
$m add radio -label "14 point" -variable pointSize -value 14
$m add radio -label "18 point" -variable pointSize -value 18
$m add radio -label "24 point" -variable pointSize -value 24
$m add radio -label "32 point" -variable pointSize -value 32
$m add sep
$m add radio -label "Roman" -variable style -value roman
$m add radio -label "Bold" -variable style -value bold
$m add radio -label "Italic" -variable style -value italic
$m invoke 1
$m invoke 7

When you run the preceding
example using the command
wish popup.tk, you will see
the following:

Option Menu
Tk’s option menu is written completely in Tk to emulate the Motif option button and has the following
syntax:

tk_optionMenu w varName value ?value value...?

The tk_optionMenu command creates an options menu button w and associates a menu with it.
Together, the menu button and the menu allow the user to select one of the values given by the value
arguments. The current value will be stored in the global variable varName, which users can use to
manipulate the options button. Calling tk_optionMenu returns the menu associated with the options
button.

Let’s use options buttons to reimplement our earlier buttons example.

Try It Out—Menu Options

We set the global variable state equal to 1, and create a check button and an options menu. These are
packed side by side:
#!/usr/bin/wish -f

set state 1

checkbutton .lan -text "Language" -command {changeState} -relief flat \
 -variable state -onvalue 1 -offvalue 0
set optMenu [tk_optionMenu .opt lang Tcl C Lisp C++]

pack .lan .opt -side left

now make C As the default using lang variable
set lang C++

We need a procedure to handle the application’s event:
proc changeState {} {
 global state
 if $state {
 .opt config -state normal
 } else {
 .opt config -state disabled
 }
}

In this example, we’ve used an options menu instead of three radio buttons. This example works the same
way as buttons.tk, but is much terser. It also reduces the amount of space needed to display the options
on the screen. When you run this example, it will look like this:[Auth: Note that art is missing from this
file.]

If you wanted to, as before, you could add two push buttons to output the value of the selection. This
example also shows that we can control option menus using the global variable with which they are
associated. The line

set lang C++

sets the selection to C++ by setting the variable.

Dialogs
Dialogs are used extensively in a user interface design cycle. Tk provides a custom dialog called
tk_dialog. It’s very simple but can be used in many clever ways to implement most tasks. tk_dialog
has the syntax

tk_dialog window title text bitmap default string string ..

This will create a modal dialog with title title, with message text text, and with the specified bitmap
inside. It will also create buttons with titles given by the string arguments. When the user presses one of
the buttons, tk_dialog will return that button number and then destroy itself.
Let’s look at a simple example:

#!/usr/bin/wish -f

wm withdraw .

set i [tk_dialog .info "Info" "Simple Info Dialog" info 0 Ok Cancel]
if {$i==0} {
 puts "Ok Button Pressed"
} else {
 puts "Cancel Button Pressed"
}
exit

The first line unmaps the default top-level window, created by wish. This is necessary because
tk_dialog creates a top-level window itself, and we don’t want to have two windows popping up in this
simple example. The next line creates a modal dialog .info with title “Info” and message “Simple Info
Dialog” and adds in a built in info bitmap. It also creates two buttons, “Ok” and “Cancel,” and makes
button number 0 (Ok) the default.

When we were explaining the dialog, we used the word modal. What’s that? It means that the user’s range
of choices is restricted. The user won’t be able to do anything with the application unless they first
respond to the dialog by clicking either Ok or Cancel. Once the user has clicked on one of these buttons,
control passes back to the application, where i is set depending on the button the user invoked.

We can achieve modal interactions using the grab and tkwait commands. Take a look at the man pages
or Tk books for more information on these topics.

Tk’s Built-in Dialogs
In addition to providing the tk_dialog command, Tk provides many utility dialog procedures. Most GUI-
based applications have lots of common functionality, such as prompting users for input or output files,
color choices, and the like. Tk provides utility dialog boxes for these operations. Also, these built-in
dialogs are written in such a way that they have the native look and feel of whichever operating system
the Tcl script is run on. We will explore the utility dialogs in this section. These utility dialogs are not Tk’s
built-in commands, but rather utility scripts that provide a specific dialog functionality.

Color Chooser
tk_chooseColor ?option value ...?

Most GUI-based applications provide their users with ways to customize the look feel of the application
using color and font choices. Humans are accustomed to using descriptive names for colors, but
underneath, most graphic systems deal with color using different schemes such as RGB or CMYK. RGB is
a Red, Green, Blue color scheme. Any color in the system can be represented using a combination of these
three colors.

Tk describes colors in a similar way to HTML. If you’ve programmed Web pages before, you may be
familiar with the notation. There are also a large number of valid color names that directly refer to specific
color values. However, if you want to control Tk’s colors more precisely, you’ll have to become familiar
with the way it represents them internally.
All colors in Tk are represented as hexadecimal integers. You can use various lengths of hex number,
either 3, 6, 9, or 12 digits. For example, you could use 6-digit hex numbers between #000000 and #ffffff.
Each pair of digits represents the level of red, green, or blue, in that order. So #ff9900, for example, would
represent a red value of #ff, a green value of #99, and a blue value of #00. In fact, the resulting color would
be a shade of orange. In this system, #000000 is black and #ffffff is white. Values such as #a5a5a5, where
all three components are the same, will lead to shades of gray. Any other value will be a color of some
sort.

The other hex number lengths acceptable to Tk are, of course, divided into three equal-length hex numbers
to form the three components in exactly the same way as for the six-digit example.

tk_chooseColor dialog provides a simple way to choose a color using the RGB color scheme. This
dialog also provides a way to inquire about the RGB values for a given color by name. The procedure
tk_chooseColor pops up a dialog box for the user to select a color. The following option-value pairs are
possible as command line arguments:

-initialcolor color Specifies the color to display in the color dialog when it pops up.

color must be in a form acceptable to the Tk_GetColor function,
for example, red or #ff0000. (#ff0000 is the RGB equivalent of
red.)

-parent window Makes window the logical parent of the color dialog. The color dialog
is displayed on top of its parent window.

-title titleString Specifies a string to display as the title of the dialog box. If this option
is not specified, a default title will be displayed.

If the user selects a color, tk_chooseColor will return the name of the color in a form acceptable to Tk
widget commands. If the user cancels the operation, both commands will return the empty string.

The following scripts illustrate the use of tk_chooseColor dialog box.

tk_chooseColor demo

label .l -text "Set my background color:"
button .b -text "Choose Color..." -command ".l config -bg \[tk_chooseColor\]"
pack .l .b -side left -padx 10

When you run the above script and click
the “Choose Color…” button, you will see
the following:

Get Open/Save Files
tk_getOpenFile and tk_getSaveFile are convenience functions to prompt the user for input or
output file selection, respectively. In most GUI-based operating systems, all applications provide some
dialog boxes for selecting input and output files. Tk makes this functionality available to all Tk-based
applications by providing these convenience functions. These dialog boxes have native look, feel, and
behavior. The dialog boxes handle most error conditions so that the programmer does not have to do
much other than create and initialize these dialogs. They provide interfaces so that developers can specify
filters to select only those files matching certain patterns. The Tk_getOpenFile command is usually
associated with the “Open” command in the File menu, and tk_getSaveFile is usually associated with
the “Save as…” command.

If the user enters a file that already exists, the dialog box prompts the user for confirmation as to whether
or not the existing file should be overwritten. The syntax of these commands is as follows:

tk_getOpenFile ?option value ...?
tk_getSaveFile ?option value ...?

For a complete list of options for these commands, refer to the tk_getOpenFile manual page.

The following example illustrates the use of these commands.

tk_getOpenFile demo
tk_getSaveFile demo

label .o -text "File to open:"
entry .oe -textvariable open
set types {
 {{Text Files} {.txt} }
 {{TCL Scripts} {.tcl} }
 {{C Source Files} {.c} TEXT}
 {{GIF Files} {.gif} }
 {{GIF Files} {} GIFF}
 {{All Files} * }}

button .ob -text "Open..." -command "set open \[tk_getOpenFile -filetypes \$types \]"

label .s -text "File to save:"
entry .se -textvariable save
button .sb -text "Save..." -command "set save \[tk_getSaveFile\]"

Create a dismiss button

button .b -text "Dismiss" -command "exit"

Manage the widgets

grid .o -row 0 -column 0 -sticky e -padx 10
grid .oe -row 0 -column 1 -padx 10
grid .ob -row 0 -column 2 -padx 10
grid .s -row 1 -column 0 -sticky e -padx 10
grid .se -row 1 -column 1 -padx 10
grid .sb -row 1 -column 2 -padx 10

As you can see from the code,
these dialog routines have a
way of specifying file filters
using patterns. When you
run the above example and
click “Open...,” you will see
the following:

grid .b -row 2 -pady 10

Color Schemes
When you create new widgets using Tk widget commands in Tk 4.0 and later versions, all the widgets
have a black foreground and a gray background. So if you create a complete application (like most of the
examples above), that application will have a gray background and a black foreground. What if you
wanted to create an application with a light blue background? One way to accomplish this is to configure
all of the created widgets’ backgrounds to light blue. This will make the application code bloated and
unreadable, however, since most of the commands in the code will be configuration commands—
obscuring the application logic. To solve this problem, Tk provides a convenient way of globally changing
the color scheme of the application. The following commands are used to set overall color scheme for any
application.

tk_setPalette background
tk_setPalette name value ?name value ...?
tk_bisque

If tk_setPalette is invoked with one argument, then that argument is taken as the default background
color for all widgets and Tk_setPalette will compute the color palette using this color. For example,
the commands

tk_setPalette steelblue
button .b -text "Linux is cool!"
pack .b

will create a button and display it in a steel blue background. It will also set the background color of any
future widgets in the same application to steel blue.

Alternatively, the arguments to tk_setPalette may consist of any number of name-value pairs, where
the first argument of the pair is the name of an option in the Tk option database and the second argument
is the new value to use for that option. The following option database names can be specified currently.

activeBackground disabledForeground foreground

highlightColor highlightBackground insertBackgroun
d

selectBackground
background

selectColoractiveForeground selectForegroun
d

troughColor

Refer to the options(n) manual page on the option database description. tk_setPalette tries to
compute reasonable defaults for any options that you don’t specify. You can specify options other than the
ones above and Tk will change those options on widgets as well.

The procedure tk_bisque is provided for backward compatibility: It restores the application’s colors to
the light brown (“bisque”) color scheme used in Tk 3.6 and earlier versions.

Fonts
If you have ever programmed using Xlib or Motif on an X Window System, you know that fonts are one of
the murkier areas of X. You have to specify font names in X Logical Font Description (XLFD) structures.
For example, in applications created with pre–Tk 8.0 versions, if a button had to be created with a specific
font, the command would look something like this:

Button .b –text "Hello" –font -font -*-Courier-Bold-O-Normal--*-120-*-*-*-*-*-*

We actually encountered this notation earlier, but we’re going to see how we can get around this ugly
format now. The reason X was designed this way was to adhere to the requirement that X client
applications be portable across server implementations, with very different file systems, naming
conventions, and font libraries. X clients must also be able to dynamically determine the fonts available on
any given server, so that understandable information can be presented to the user and intelligent fallbacks
can be chosen. XLFD provides an adequate set of typographic font properties, such as FOUNDRY,
FAMILY_NAME, WEIGH_NAME, and SLANT. To learn more about XLFD, refer to its specification in the X
Windows system documentation or play with the xfontsel command on your Linux box.

Even though XLFD is extremely powerful and flexible, it is not simple and intuitive. As in the case of
colors, humans tend to associate simple names with fonts, such as “Helvetica 12-point italic.” Porting Tk
to other, non-X platforms introduced another complexity because other windowing systems do not use
XLFD, so the users were forced to learn XLFD. In addition, XLFD does not support a way of creating fonts
by name.

Tk 8.0 introduced a new mechanism to deal with fonts, using the font command. New named fonts can
be created using human-readable metrics. Tk internally will take care of translating these fonts to system-
specific interfaces. One advantage of the new font command is that it gives a platform-independent way

of specifying fonts. It also provides a way to associate names with created fonts. The font command
syntax is as follows:

font create ?fontname? ?option value ...?
font configure fontname ?option? ?value option value ...?

The font command takes options such as –family, -size, and –slant. For a complete list of font
command options, take a look at the font manual page.

For example, you can create a font called myfont using this command:

font create myfont -family Courier -size 20 -weight bold -slant italic\
 -underline 1 -overstrike 1

Once the font is created, you can use that font name to specify a value for a –font widget option. After
creating the font, if you run the following code using wish,

button .b -text "Hello World!" -font myfont
pack .b

You should see the following:

Bindings
Once we’ve created widgets, we can attach event handlers to them to make them respond to the user. For
example, in the final “Hello World” program, we attached an event handler to the button:

bind .b <Control-Button-1> {puts "Help!"}

We use the bind command to attach these event interactions to the widgets. The bind command
associates Tcl scripts with X events and is very powerful. Its general syntax is

bind tag
bind tag sequence
bind tag sequence script
bind tag sequence +script

The tag argument determines which window(s) the binding applies to. If tag begins with a dot, as in
.a.b.c, then it must be the path name for a window; otherwise, it may be an arbitrary string. Each
window has an associated list of tags, and a binding applies to a particular window. If its tag is among
those specified for the window, the default binding tags provide the following behavior:

❑ If tag is the name of an internal window, the binding applies to that window.

❑ If tag is the name of a top-level window, the binding applies to the top-level window and all its
internal windows.

❑ If tag is the name of a class of widgets, such as button, the binding applies to all widgets in
that class.

❑ If tag has the value all, the binding applies to all windows in the application.

For example, let’s see what happens if we invoke bind on the button class:

% bind Button
<Key-space> <ButtonRelease-1> <Button-1> <Leave> <Enter>

The result says that there are bindings for these five event sequences in the button class. Let’s experiment
further and see what happens when we invoke the second form of bind command on one of these
bindings:

% bind Button <Key-space>

 tkButtonInvoke %W

The result says that <Key-space> binding on the button widget class (all the push buttons belong to
this button class) will invoke the Tcl script tkButtonInvoke with the button path as the argument.

We can also use class names when we associate the binding. For example,

% bind Button <Control-Button-1> {puts "Help!"}

will set the <Control-Button-1> binding on all the button widgets in the application. It’s possible for
several bindings to match a given X event. If the bindings are associated with different tags, each of the
bindings will be executed in order. By default, a widget class binding will be executed first if it exists,
followed by a binding for the widget, a binding for its top level, and finally, an all binding if one exists
for that event. We can use the bindtags command to change this order for a particular window, or to
associate additional binding tags with the window.

When a binding matches a particular sequence, the script associated with that binding will be invoked.
While we’re invoking the script, we can inform the bind command to pass some arguments to that script
from the X event that invoked the binding. For this we use special modifiers. For example, in the canvas
example, we had a binding

bind $c <1> "itemDragStart $c %x %y"

There we informed bind that while invoking the itemDragStart command, it should pass $c, %x, and
%y, which bind replaces with the x and y coordinates of the X event structure. The bind command
supports lots of substitution parameters; for a complete listing, refer to the bind man page.

Binding Tags
As just described, the bind command is used to associate an action with a binding. When an association is
created with the bind command, a tag is specified. The tag argument specifies which windows the
binding applies to. Usually, tag is the name of the widget, the name of the widget class, the keyword all,
or any other text string. Each window has an associated list of tags, and a binding applies to a particular
window if its tag is among those specified for the window. When an event occurs in a window, it is
applied to each of the window’s tags in order; for each tag, the most specific binding that matches the
given tag and event is executed. For example, after executing the following code snippet in the wish shell,

bind . <F1> "puts Toplevel"
entry .e
pack .e
bind .e <F1> "puts Entry"

if you press the F1 key inside the entry widget, you will see the strings “Entry” and “Toplevel” printed
in that order, because if you invoke the bindtags command on .e, the result will be .e Entry . all;
this means that when an event is triggered on .e, it is first checked in the .e tag and later in the top level
that includes the entry. What if you want to make the top-level binding fire before the entry’s binding?
You can use the bindtags command to change the order:

Bindtags .e {. .e Entry all}

By default, each window has four binding tags consisting of the following, in order:

❑ The name of the window

❑ The window’s class name

❑ The name of the window’s nearest top-level ancestor

❑ All

Top-level windows have only three tags by default, since the top-level name is the same as that of the
window.

The bindtags command can be used to introduce arbitrary additional binding tags for a window. In fact
this function of bindtags accomplishes many things. It aids in creating a binding once and and
associating it with as many widgets as needed by simply inserting the binding tag in the widget’s bind
tags list. Second, it allows widgets to have more than the standard four binding tags. Tags aid in
identifying an action by name rather than by a key sequence. The following example illustrates a practical
use for binding tags.

set count 0
button .b -text "Tick(ms)"
label .ticker -textvariable count
pack .b .ticker

bind timer <ButtonPress-1> {
 set count 0
 StartTimer %W
}

bind timer <ButtonRelease-1> {
 StopTimer %W
}

proc StartTimer { widget } {
 global pending count
 incr count 200
 set pending [after 200 [list StartTimer $widget]]
}

proc StopTimer { widget } {
 global pending
 after cancel $pending
}

bindtags .b [linsert [bindtags .b] 0 timer]

In this example we first created a simple user interface with a button and a label to display timer ticks.
Next we created a binding with a tag timer. We added two key sequences to the tag timer. The first
sequence, <ButtonPress-1>, starts the timer, and <ButtonRelease-1> stops the timer. The code is
pretty simple to understand. The point to observe here is the use of bindtags. We have easily added
these key sequences to the button .b in a single line. Without the bindtags command, we would have to
do something like

bind .b <ButtonPress-1> "+{set count 0; StartTimer %W}"

and the same for the binding <ButtonRelease-1>. Also, these bindings do not really imply what we are
trying to achieve. Using the bindtags command, we have identified these sequences with the name
timer. If we create another button to handle another timer, all we have to do is invoke the bindtags
command on that button and insert the binding.

Geometry Management
After we’ve created the widgets and bound the event handlers using bind, we need to arrange the
widgets on the screen in a way that makes the GUI meaningful and useful. Geometry managers perform
this job. Tk currently supports three explicit geometry managers:

❑ Packer, using the pack command

❑ Placer, using the place command

❑ Table or grid manager, using the grid command

Packer
We use the pack command to arrange the slave widgets of a master window or widget in order around
the edges of the master. The syntax of the pack command takes one of these forms:

pack option arg ?arg ...?
pack slave ?slave ...? ?options?
pack configure slave ?slave ...? ?options?

Let’s look at an example and explore some of the pack options:

#!/usr/bin/wish -f

foreach i {1 2 3 4 } {
 button .b$i -text "Btn $i"
 pack .b$i -side left -padx 2m -pady 1m
}

This will produce the following output:

Here the buttons are packed to the left, with a horizontal space of two millimeters between them and with
a space of one millimeter vertically to the master’s boundary.

In the pack sequence

#!/usr/bin/wish -f

foreach i {1 2 3 4 } {
 button .b$i -text "Btn $i"
 pack .b$i -side left -ipadx 2m -ipady 1m
}

-ipadx specifies that the slaves be internally padded with two millimeters horizontally. Internal padding
causes the slave (button) to expand to fill the extra space created.

There are many more combinations of the pack command. Refer to the pack man page
and Ousterhout’s Tcl and the Tk Toolkit, Addison-Wesley (ISBN 0-201-63337-X), for
more information.

Placer
The placer geometry manager is used for fixed placement of windows, where you specify the exact size
and location of one window (the slave) within another window (the master). We’ll use the image example
to explain the placer geometry manager. The following code fragment shows how the buttons are created
in the puzzle.

set order {3 1 6 2 5 7 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
 set num [lindex $order $i]
 set xpos($num) [expr ($i%4)*.25]
 set ypos($num) [expr ($i/4)*.25]

 set x [expr $i%4]
 set y [expr $i/4]

 set butImage [image create photo image-${num} -width 40 -height 40]
 $butImage copy $image -from [expr round($x*40)] \
 [expr round($y*40)] \
 [expr round($x*40+40)] \
 [expr round($y*40+40)]
 button .frame.$num -relief raised -image $butImage \
 -command "puzzleSwitch $num" \
 -highlightthickness 0
 place .frame.$num -relx $xpos($num) -rely $ypos($num) \
 -relwidth .25 -relheight .25
}

This loop creates buttons and places them relative to the master, .frame. Here, -relx 0 is the left edge
of the master and -relx 1 is the right edge of the master, and similarly for -rely 0 and -rely 1. Now
if you decipher the loop code, you’ll see how all the buttons are arranged to form the puzzle.

Grid
The grid geometry manager arranges widgets (slaves) in rows and columns inside another window, called
the geometry master. Grid is a very powerful geometry manager; using it, we can create complex layouts
with ease. Let’s see just see how simple it is to create an entry for personnel information using 10 lines of
Tk code:

#!/usr/bin/wish -f

set row 0
foreach item {name email address phone} {
 label .$item-label -text "${item}:"
 entry .$item-entry -width 20
 grid .$item-label -row $row -column 0 -sticky e
 grid .$item-entry -row $row -column 1 -columnspan 2 -sticky "ew"
 incr row
}

grid columnconfigure . 1 -weight 1

If you run this program, you’ll see output like this:

Here the slaves .$item-label and .$item-entry are arranged in the master, using the -row $row
and -column options. You can also specify row and column span options for the slave using the -
rowspan and -columnspan options. These options will span the slaves to occupy span number of rows
or columns or both. The line

grid .$item-entry -row $row -column 1 -columnspan 2 -sticky "ew"

specifies that the entry widget will occupy two columns, and -sticky "ew" implies that the slave will
stretch from east to west in the parcel space available for it. If you specify just one letter in the -sticky
option, it behaves as an anchoring option. The last line,

grid columnconfigure . 1 -weight 1

specifies that if the master (.) is resized horizontally, then column 1 should get the resized portion.

In developing these examples, we’ve made much use of the grid geometry manager.
This is because grid makes it so much easier to design and understand layouts. It’s been
in Tk since version 4.1.

Focus and Navigation
When you have multiple top-level windows on your computer screen and you press a key, which one of
the windows will receive the key press event? The answer is the top-level window with the focus. So focus
determines the target of the keyboard input. Top-level window focus management is done automatically
by the window manager. For example, some window managers automatically set the input focus to a top-
level window whenever the mouse enters it; others redirect the input focus only when the user clicks on a
window. Usually, the window manager will set the focus only to top-level windows, leaving it up to the
application to redirect the focus among the children of the top level.

Tk provides two application-level focus models: implicit, which sets the focus to the widget the mouse
is currently on, and explicit, where the user must either explicitly click on the widget or navigate to

that widget using the keyboard. By default, tab keys are used to navigate focus between widgets in an
explicit model.

Tk remembers one focus window for each top level (the most recent descendant of that top level to receive
the focus); when the window manager gives the focus to a top level, Tk automatically redirects it to the
remembered window. Within a top level, by default, Tk uses an explicit focus model. Moving the mouse
within a top level does not normally change the focus; the focus changes only when a widget decides
explicitly to claim the focus (e.g., because of a button click) or when the user types a key, such as Tab, that
moves the focus.

The focus command syntax is as follows:

focus
focus window
focus option ?arg arg ...?

For a complete list of the focus command’s usage, refer to focus manual page.

Once the application or any of its top-level windows gets focus, the Tcl procedure
tk_focusFollowsMouse may be invoked to create an implicit focus model. It reconfigures Tk so that
the focus is set to a window whenever the mouse enters it. For example, the following example will
instruct the window manager to give focus to whichever component the mouse is on, once the application
top level gets the focus. If you run the example, you will notice that the buttons get focus as soon as the
mouse is moved over them without a mouse click.

tk_focusFollowsMouse

button .b1 -text "Button 1"
button .b2 -text "button 2"
button .b3 -text "button 3"

pack .b1 .b2 .b3 -side left -padx 10

The Tcl procedures tk_focusNext and tk_focusPrev implement a focus order among the children of a
top level; among other things, these are used in the default bindings for Tab and Shift+Tab.

The syntax of the tk_focusNext and tk_focusPrev commands is as follows:

tk_focusNext window
tk_focusPrev window

tk_focusNext is a utility procedure used for keyboard traversal. It returns the “next” window after
window in focus order. The focus order is determined by the stacking order of windows and the structure
of the window hierarchy. Among siblings, the focus order is the same as the stacking order, with the
lowest window being first. If a window has children, the window is visited first, followed by its children
(recursively) and then by its next sibling. Top-level windows other than window are skipped, so that
tk_focusNext never returns a window in a different top level from window.

After computing the next window, tk_focusNext examines the window’s -takefocus option, to see
whether it should be skipped. If so, tk_focusNext continues on to the next window in the focus order
until it eventually finds a window that will accept the focus or returns back to window.

The tk_focusPrev command is similar to tk_focusNext, except that it returns the window just before
the window in the focus order.

The following example illustrates how a widget can avoid the focus by specifying the –takefocus 0
option. When you run the example, the “skip focus” button does not take focus, even though the mouse is
on it.

tk_focusFollowsMouse

button .b1 -text "Button 1"
button .b2 -text "skip focus" -takefocus 0
button .b3 -text "button 3"

pack .b1 .b2 .b3 -side left -padx 10

Option Database
Just as in Motif or Xt, every widget in Tk has a class, which can be retrieved using the command

winfo class widget-path-name

These class names are used to specify application defaults and class bindings for the widget. Tk uses a
special database, called the option database, to store and retrieve application resources. For example, in the
very first program, we used the line

option add *b.activeForeground brown

This informed the option database that buttons with name .b (it can have any parent) should have a
brown activeForeground color. We could have specified the button class instead and had the same
effect:

option add *Button.activeForeground brown

The reason these commands change activeForeground is that when Tk creates a widget, after setting
the command line it searches the option database to set the appropriate resources. If it finds a match to the
resource, it will use that option; otherwise it will use a default value.

The option command does the same things as an X resource file. In fact, we can store all the resources in
a file and let the option command read the file, just as we did with hello4.tk program. We can also
use the option command to query the options stored, using the syntax

option get window name class

The option database is very versatile, much more so than the simple .Xdefaults file. We can use it to
simulate the same application default loading mechanism that is supported by any Xt-based application.
For example, before the application is loaded, the defaults file can be located in the directories specified by
X Windows environment variables, such as XFILESEARCHPATH, XAPPLRESDIR,
XUSERFILESEARCHPATH and XENVIRONMENT.

We can now assign priorities to the application defaults file found in those directories while reading them
into the application using the option readfile ... command. The code for this emulation would
look something like this:

global env

if [info exists env(XFILESEARCHPATH)] {
 look for the app-defaults file in XFILESEARCHPATH dir
 load the file with priority 1
 } else {
 look in one of {/usr/lib/X11/app-defaults, /usr/openwin/lib/app-defaults,
/usr/lib/app-defaults..} directories and load the file with priority 1
 }
 if [info exists env(XUSERFILESEARCHPATH)] {
 look for the app-defaults file in XUSERFILESEARCHPATH dir
 load the file with priority 2 over riding XFILESEARCHPATH priority
 } elseif [info exists env(XAPPLRESDIR)] {
 look for the app-defaults file in XAPPLRESDIR dir
 load the file with priority 2 over riding XFILESEARCHPATH priority
 } elseif

 load app defaults file if exists from current dir with priority 2
 }
 if [the defaults exist in .Xdefaults] {
 load them with priority 3 }
 if [info exists env(XENVIRONMENT)] {
 load the file XENVIRONMENT as the app defaults file with second-highest priority
 }
 finally load command-line options with the highest priority

Inter-application Communication
Tk provides a very powerful mechanism for two applications that share a display server (though they can
be on different screens) to communicate with each other, using the send command. For example,
application A can send application B (i.e., with Tcl interpreter name B) a command to output the string
“hello”:

send B [list puts "hello"]

Application B will receive this command and execute the puts "hello" command. For more
information on this, refer to the send man page.

Selection
Imagine the scenario where a user is operating on a desktop with multiple xterms. The user highlights a
selection of text in one xterm, using the left mouse button, and then pastes the selection in another xterm,
using the middle button. There are a lot of things going on under the covers during this transaction.

When the user decides to select something in an xterm, the xterm must first of all figure out what
information is being selected and then it should become the selection owner. Being the selection owner
means that when another application decides to request the selection, the owner should convert the
selection to the type specified by the requested application. A client wishing to obtain the selection in a
particular format requests the selection from the selection owner. All of these cooperative interactions
between X clients is described in the X Inter-Client Communication Conventions Manual (ICCCM).

Selection can be of various types: PRIMARY, SECONDARY, and CLIPBOARD. By default, the PRIMARY
selection, named XA_PRIMARY, is used by all the clients. A SECONDARY selection, named
XA_SECONDARY, is used when applications need more than one selection. The CLIPBOARD selection is
usually used to hold deleted data.

The selection command provides a Tcl interface to the X selection mechanism and implements the full
selection functionality described in the X Inter-Client Communication Conventions Manual (ICCCM). The
following example shows selection manipulation. It creates a new slave Tk interpreter, with a text widget.

It automatically selects the text inside the text widget using the sel tag of text. Using the sel tag of the
text command will make the selection by default PRIMARY. So when the slave interpreter calls the
selection own, it is owning the primary selection. The master interpreter then retrieves the selection
and outputs it to stdout.

#!wish
interp create foo

foo eval {
 load {} Tk
 text .t
 pack .t
 .t insert end "Hello World!"
 .t tag add sel 0.0 end

 selection own
 .t insert end "\n"
.t insert end "[selection get -selection SECONDARY]"
 .t insert end "[selection get]"

}
puts "[selection get]"

If the commented line in the above example is uncommented, the application will output an error because
there is no secondary selection. A selection owner can also reject selection retrievals by any other
application or component.

Clipboard
In X, CLIPBOARD is another type of selection mechanism. The CLIPBOARD selection can be used to hold
deleted data. For example, a client can post deleted data to the clipboard and exit. Another client can
retrieve the deleted selection from the clipboard, even thought the original client no longer exists. This is
not possible with the PRIMARY and SECONDARY selection types, because when a client requests PRIMARY
or SECONDARY selection, the owner will be sent a request. If the owner no longer exists, the selection
request will fail.

The clipboard command provides a Tcl interface to the Tk clipboard, which stores data for later
retrieval, using the selection mechanism. Tk_clipboard is not the same as the system clipboard that
you see on various operating systems. Tk_clipboard is designed to hold deleted data between
applications developed using the Tk toolkit. To copy data to the clipboard, clipboard clear must be
called, followed by a sequence of one or more calls to clipboard append. The following command
illustrates the use of the clipboard command.

#!wish
interp create foo

foo eval {
 load {} Tk
 clipboard clear
 clipboard append -type STRING "Clipboard Data"

}
 interp delete foo
puts "[selection get -selection CLIPBOARD]"

This example creates a new Tk interpreter called foo. foo appends data to the clipboard. The master
interpreter deletes the slave interpreter and retrieves the data from the clipboard. As you can see, even
though the slave does not exist, the selection can still be retrieved.

Window Manager
Tk provides the wm command so that windows can communicate with the window manager. Window
manager functions typically include managing the keyboard focus between application windows, setting
up top-level window properties, allocating colormaps to windows, and positioning top-level windows on
the screen. Since window manager deals only with the top-level windows of any application and leaves
the internal window management to the application, wm command arguments must be top-level windows.
The kinds of functions that a client can request from the window manager include the following:

❑ Iconifying and de-iconifying top-level windows

❑ Positioning top-level windows at a particular point on the screen

❑ Requesting the initial sizes of top-level windows

❑ Setting the titles of top-level windows

❑ Setting the focus model of an application

❑ Requesting the height and width of a top-level window

❑ Overriding the default window manager decorations

For example, using the wm command, one can query the state of a top-level window in an application as
follows:

% wm iconify .
% puts "[wm state .]"
iconic

Users can also set up window manager protocols on a top-level window. For example, we can set up a
handler on a top-level window that will get called when the window receives focus or when the window
is deleted.

% wm protocol . WM_TAKE_FOCUS {puts "window . got focus"}
% wm protocol . WM_DELETE_WINDOW {puts "window . is being deleted"; exit}

When run, this code snippet will output the string “window . got focus” when the top-level window
“.” gets focus, and the string “window . is being deleted” when the top-level window “.” is
deleted using the window manager delete button.

wm commands can also be used to set or query the title of a top-level window as follows:

wm title ?newtitle?.

A client can also request that a window manager not decorate a top-level window. When the client makes
such a request, the window manager will not display the iconify, de-iconify, or resize button on the
window manager frame of the requested top level. The following code snippet requests the window
manager not to add any decorations to the top-level window.

toplevel .t
wm withdraw .t
wm transient .t .
wm deiconify .t

When this code is run, you will see the following
output:

Actually, the code snippet shows more than one functionality of the window manager command. The
application first requests the window manager to withdraw the top-level window, it then asks the
window manager to remove the minimize/maximize decorations for the top-level window, and finally it
asks the window manager to map the window back to the screen.

Dynamic/Static Loading
In the previous sections, we created new interpreters and loaded Tk statically. There are two ways in
which interpreters can load the Tk toolkit—statically and dynamically, using the load command. For
static loading, the executable should be preloaded with Tk. For example, the code

interp create debugInterp

debugInterp eval {
 load {} Tk
 text .t
 pack .t
 update
}

proc debug {interp args} {
 debugInterp eval [list .t insert end "$args"]
}

debug . "hello world!"

statically loads the Tk executable to a newly created interpreter. The example also shows how to
communicate between interpreters. The master interpreter creates a debug routine, which communicates
with debugInterp to display debugging information.

So how do we load a Tk interpreter dynamically into a tclsh application? The following examples
illustrate how.

interp create debugInterp

debugInterp eval {
 load /usr/local/tk8.2b3/unix/libtk8.2.so Tk
 text .t
 pack .t
 update
}

proc debug {interp args} {
 debugInterp eval [list .t insert end "$args"]
}

debug . "hello world!"
vwait foob

This code assumes that you have compiled the Tcl/Tk distributions so that they are dynamically loadable
and that the Tk dynamic library libtk8.2.so is located in the /usr/local/tk8.2b3/unix/
directory. As you can see from the code, tclsh creates a new interpreter and loads Tk dynamically into
the newly created interpreter, and the master interpreter enters the event loop using the vwait command.
If the master interpreter does not enter the event loop, the application exits without warning. If you run
the preceding code using the command

Tclsh8.0 dynamicLoad.tk

the Tk interpreter will be loaded dynamically!

Safe Tk
Suppose you download a Tcl script from the network and execute it. If the script is malicious, it can do a
lot of damage to your system. For example, it can delete all of your files or transfer files to another
computer. How do you ensure that untrusted scripts do not do any damage? In 1994 Marshall and Rose
created Safe-Tcl, which was originally conceived as a mechanism to allow e-mail messages to contain Tcl
scripts that would execute on the receiver’s computer. Safe-Tcl was incorporated into the core code in Tcl
version 7.5.

The goal of Safe-Tcl is to create a sandbox that allows users to safely execute untrusted Tcl scripts in the
sandbox without having to worry about any side effects.

Safe interpreters have a restricted command set. The following commands are hidden in a safe interpreter.

cd exec exit fconfigure

glob load open socket

source vwait pwd file

The safe base Tcl manual page describes how to create these safe interpreters. Sometimes it might be
necessary to give the newly created safe interpreter some restricted access; for example, it might be
allowed to open files in a particular directory. Safe-Tcl provides mechanisms for allowing such restricted
access. Interpreters created with the ::safe::interpCreate command give mediated access to
potentially dangerous functionality through untrusted scripts by using the alias mechanism. Thus, Safe-
Tcl is a mechanism for executing untrusted Tcl scripts safely and for providing mediated access by such
scripts to potentially dangerous functionality.

Just as with Safe-Tcl, it is necessary to create sandboxes to execute untrusted Tk scripts. For example, you
don’t want the Tk applet to delete all of your top-level windows or to steal your X selection. Safe Tk adds
the ability to configure the interpreter for safe Tk operations and load the Tk script into a safe interpreter.
By default, you can’t load Tk into a safe interpreter, because the safe interpreter does not allow load
commands. Safe Tk also isolates the untrusted Tk scripts to be executed in a sandbox so that no damage
can be done.

The ::safe::loadTk command initializes the required data structures in the named safe interpreter and
then loads Tk into it. The command returns the name of the safe interpreter. ::safe::loadTk adds the
value of tk_library taken from the master interpreter to the virtual access path of the safe interpreter,
so that auto-loading will work in the safe interpreter.

The following examples show that you cannot load Tk into a safe interpreter unless you use the
::safe::loadTk command.

::safe::interpCreate safeInterp

::safe::interpAddToAccessPath safeInterp /tmp

::safe::loadTk safeInterp

interp create -safe safeInterp2

puts " 1 -> [interp hidden safeInterp]"
puts " 2 -> [interp hidden safeInterp2]"

puts " 1 -> [interp aliases safeInterp]"
puts " 2 -> [interp aliases safeInterp2]"

safeInterp eval {
 text .t
 pack .t
 update
}

safeInterp2 eval {
 load {} Tk
 }

When you run this script, you’ll see the error message:

$ wish safeInterp.tk
 1 -> file socket send open pwd glob exec encoding clipboard load fconfigure source
exit toplevel wm grab menu selection tk bell cd
 2 -> file socket open pwd glob exec encoding load fconfigure source exit cd
 1 -> file load source exit encoding
 2 ->
Error in startup script: invalid command name "safeInterp2"
 while executing
"safeInterp2 eval {
 load {} Tk
 }"
 (file "safeInterp.tk" line 26)

This informs you that you cannot load Tk into a safe interpreter unless it is created using the
::safe::createInterp command. If you want to see how safe interpreters are used, take a look at the
safeDebug.tk example in the distribution.

A Mega-Widget

We have now seen how to use various widget commands to create applications. Sometimes people need to
display their information in ways that require new types of widgets, such as panes, spreadsheets,
notebooks, and spinboxes. Although the Tk team at Scriptics is planning to add these widgets to the core,
as of this writing they have not been added. So the question is, how does one go about creating custom
widgets?

There are two ways to do this. One way is to use Tcl’s and Tk’s C extension API, also known as TEA. The
other way is to use pure Tcl and existing Tk widgets. Since we have not yet discussed Tcl’s and Tk’s C
API, and it would in fact merit far more coverage than we can give it here, let’s go ahead and use pure Tcl
and existing Tk widgets to create a mega-widget. The mega-widget that we are going to create is a tree
widget. As of now, Tk does not have a built-in tree widget. This widget example is by no means complete,
but it is quite useful and will steer you in the right direction.

The rendering algorithm and some of the interface ideas in this example are taken from
GPLed comp.lang.tcl posts. None of the other implementations I have encountered
have the flexibility of this package/namespace-based implementation.

We will use Tcl’s package and namespace mechanisms to encapsulate our tree widget into an abstract data
structure. The next question is, what kind of widget and configuration commands should we provide for
this tree widget? We should provide most of the standard configuration options such as –font, –
backgroundcolor, and some more tree-specific options. Since the tree widget supports hierarchies, we
should provide methods such as additem, delitem, config, setselection, and getselection. So
let’s go ahead and define the tree widget package as follows.

Sample tree mega-widget.Can be used to display hierachies. The clients
who use this package need to specify parent and tail procedures for any
element of the tree hierarchy. All the nodes that get stored inside the
tree are complete path names separated by '/'. The top-level node is
always /

package provide tree 1.0

namespace eval tree {
 variable tree

 #
 # default font setup
 #

 switch $tcl_platform(platform) {
 unix {
 set tree(font) \
 -adobe-helvetica-medium-r-normal-*-11-80-100-100-p-56-iso8859-1
 }
 windows {
 set tree(font) \
 -adobe-helvetica-medium-r-normal-*-14-100-100-100-p-76-iso8859-1
 }
 }

 #
 # Bitmaps used to show which parts of the tree can be opened/closed
 #

 set maskdata "#define solid_width 9\n#define solid_height 9"
 append maskdata {

 static unsigned char solid_bits[] = {
 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01,
 0xff, 0x01, 0xff, 0x01, 0xff, 0x01
 };

 }
 set data "#define open_width 9\n#define open_height 9"
 append data {
 static unsigned char open_bits[] = {
 0xff, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7d, 0x01, 0x01, 0x01,
 0x01, 0x01, 0x01, 0x01, 0xff, 0x01
 };
 }

 set tree(openbm) [image create bitmap openbm -data $data \
 -maskdata $maskdata \
 -foreground black -background white]

 set data "#define closed_width 9\n#define closed_height 9"
 append data {
 static unsigned char closed_bits[] = {
 0xff, 0x01, 0x01, 0x01, 0x11, 0x01, 0x11, 0x01, 0x7d, 0x01, 0x11, 0x01,
 0x11, 0x01, 0x01, 0x01, 0xff, 0x01
 };
 }
 set tree(closedbm) [image create bitmap closedbm -data $data \
 -maskdata $maskdata \
 -foreground black -background white]

 namespace export create additem delitem config setselection getselection
 namespace export openbranch closebranch labelat
}

As shown in the example, the tree widget exports one package variable called tree as well as methods
such as additem, delitem, config, and setselection. A tree package variable is used to hold
instance information for all the trees created. As you can see from the code, tree also creates some images
to display open and closed branches and stores them inside the tree data structure.

Our next step is to define the widget commands. First, we will define the tree::create command. This
command basically parses the configuration options and creates a canvas with the path name specified by
the create command. The create command also looks for –parent and –tail widget creation
options. These options are procedures specified by the client so that the tree command can determine the
parent and tail of any of its nodes. The tail is basically the end part of the node name. For example,
suppose the node is named a/b/c. The tail command will return c (presuming the character “/” is used
as a path separator). The parent command will return /a/b. The tree mega-widget enforces “/” to be the
path separator and all nodes are represented with absolute paths.
The philosophy behind these –parent and –tail option commands is to allow the tree to display any
hierarchical information, and not just directory structures. The create command also initializes variables,
such as selection and selidx, which are the currently selected node and its tag. The create
command arranges the tree to be redrawn at a later time.

tree::create --

Create a new tree widget. Canvas is used to emulate a tree
widget. Initialized all the tree-specific data structures. $args become
the configuration arguments to the canvas widget from which the tree is
constructed. #

Arguments:
-paren proc

sets the parent procedure provided by the application. tree
widget will use this procedure to determine the parent of an
element. This procedure will be called with the node as an
argument

-tail proc [Given a complete path this proc will give the end-element
name]

Results: A tree widget with the path $w is created.

proc tree::create {w args} {
 variable tree
 set newArgs {}

 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch -glob -- $arg {
 -paren* {set tree($w:parenproc) [lindex $args [expr $i +1]]; incr i}
 -tail* {set tree($w:tailproc) [lindex $args [expr $i +1]]; incr i}
 default {lappend newArgs $arg}
 }
 }

 if ![info exists tree($w:parenproc)] {
 set tree($w:parenproc) parent
 }

 if ![info exists tree($w:tailproc)] {
 set tree($w:tailproc) tail
 }

 eval canvas $w -bg white $newArgs
 bind $w <Destroy> "tree::delitem $w /"
 tree::DfltConfig $w /
 tree::BuildWhenIdle $w
 set tree($w:selection) {}
 set tree($w:selidx) {}
}

When the tree is created, a root node by the name of / is automatically created. Every time a new node is
added, the nodes are initialized with some default configuration, including, for example, the children
associated with the node, whether the node should be displayed open, and the icon and tags associated
with the node. tree::DfltConfig is for node initialization.

tree::DfltConfig --

Internal function used to initialize the attributes associated with an item/node.
Usually called when an item is added into the tree

Arguments:
wid tree widget
node complete path of the new node

Results:
Initializes the attributes associated with a node.

proc tree::DfltConfig {wid node} {
 variable tree
 set tree($wid:$node:children) {}
 set tree($wid:$node:open) 0
 set tree($wid:$node:icon) {}
 set tree($wid:$node:tags) {}

}

Just like any other Tk widget, tree widget should support the –config widget method. Tree widget
supports this using the tree::config class method.

tree::config --

Function to set tree widget configuration options.

Arguments:
args any valid configuration option a canvas widget takes

Results:
Configures the underlying canvas widget with the options

proc tree::config {wid args} {
variable tree
 set newArgs {}
 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch -glob -- $arg {
 -paren* {set tree($w:parenproc) [lindex $args [expr $i +1]]; incr i}
 -tail* {set tree($w:tailproc) [lindex $args [expr $i +1]]; incr i}
 default {lappend newArgs $arg}
 }
 }
 eval $wid config $newArgs
}

Now that we are done with the creation and configuration of the tree widget, the next step is to add an
item. This routine makes sure that a duplicate item is not added to the tree. It finds out the parent of the
new item and adds it into its children. The routine also parses the item tags, such as –image and –tags,
and sets the attributes of the item. The –image option is used to display an icon next to the item during
rendering. The –tags option attaches tags to the newly added item. The additem routine also arranges
the tree widget to be drawn when the application is not busy.

tree::additem --

Called to add a new node to the tree.

Arguments:
wid tree widget
node complete path name of the node (path is separated by /)
args can be -image val, -tags {taglist} to identify the item

Results:
Adds the new item and configures the new item

proc tree::additem {wid node args} {
 variable tree
 set parent [$tree($wid:parenproc) $node]
 set n [eval $tree($wid:tailproc) $node]
 if {![info exists tree($wid:$parent:open)]} {
 error "parent item \"$parent\" is missing"
 }
 set i [lsearch -exact $tree($wid:$parent:children) $n]
 if {$i>=0} {
 return
 }
 lappend tree($wid:$parent:children) $n
 set tree($wid:$parent:children) [lsort $tree($wid:$parent:children)]
 tree::DfltConfig $wid $node
 foreach {op arg} $args {
 switch -exact -- $op {
 -image {set tree($wid:$node:icon) $arg}
 -tags {set tree($wid:$node:tags) $arg}
 }

 }
 tree::BuildWhenIdle $wid
}

delitem does the opposite of additem and removes the item from the tree data structure and from its
parent’s children list. It also arranges the tree widget to be drawn at a later time.

tree::delitem --

Deletes the specified item from the widget

Arguments:
wid tree widget
node complete path of the node

Results:
If the node exists, it will be deleted.

proc tree::delitem {wid node} {
 variable tree
 if {![info exists tree($wid:$node:open)]} return
 if {[string compare $node /]==0} {
 # delete the whole widget
 catch {destroy $wid}
 foreach t [array names tree $wid:*] {
 unset tree($t)
 }
 }
 foreach c $tree($wid:$node:children) {
 catch {tree::delitem $wid $node/$c}
 }
 unset tree($wid:$node:open)
 unset tree($wid:$node:children)
 unset tree($wid:$node:icon)
 set parent [$tree($wid:parenproc) $node]
 set n [eval $tree($wid:tailproc) $node]
 set i [lsearch -exact $tree($wid:$parent:children) $n]
 if {$i>=0} {
 set tree($wid:$parent:children) [lreplace $tree($wid:$parent:children) $i $i]
 }
 tree::BuildWhenIdle $wid
}

The user has control over which node in the item can be assigned as a selection. The setselection and
getselection routines are used to accomplish the job. The selection object is drawn with a highlighted
background.

 tree::setselection --

Makes the given node the currently selected node.

Arguments:
wid - tree widget
node - complete path of the one of nodes

Results:
The given node will be selected

proc tree::setselection {wid node} {
 variable tree
 set tree($wid:selection) $node
 tree::DrawSelection $wid
}

tree::getselection --

Get the currently selected tree node

Arguments:
wid - tree widget

Results:
If a node is currently selected it will be returned; otherwise NULL

proc tree::getselection wid {
 variable tree
 return $tree($wid:selection)
}

The next task is building/rendering the tree. The algorithm recursively calls each node to draw itself and
its children. After the tree is drawn, it will set the scroll region so that when the tree widget is associated
with scrollbars it will behave properly. It also draws the current selection.

tree::Build --

Internal function to rebuild the tree

Arguments:
wid - tree widgets

Results:

This routine has no complex logic in it. Deletes all the current items
on the canvas associated with the tree and rebuilds the tree. #

proc tree::Build wid {
 variable tree
 $wid delete all
 catch {unset tree($wid:buildpending)}
 set tree($wid:y) 30
 tree::BuildNode $wid / 10
 $wid config -scrollregion [$wid bbox all]
 tree::DrawSelection $wid
}

The meat of the tree-drawing algorithm is BuildNode. It is a basic algorithm that draws the parent and
each of its children if the open attribute of the parent node is set. If the open attribute of any of the child
nodes is set, BuildNode will be called recursively to display its children. The rendering algorithm should
be pretty self-explanatory.

tree::BuildNode --

Function called by tree::build to incrementally build each node

Arguments:
wid - tree widget
node - complete path of the node
in - the starting x-coordinate

Results:
The node gets drawn

proc tree::BuildNode {wid node in} {
 variable tree

 if {$node=="/"} {
 set vx {}
 } else {
 set vx $node
 }
 set start [expr $tree($wid:y)-10]
 foreach c $tree($wid:$node:children) {
 set y $tree($wid:y)
 incr tree($wid:y) 17
 $wid create line $in $y [expr $in+10] $y -fill gray50
 set icon $tree($wid:$vx/$c:icon)
 set taglist x
 foreach tag $tree($wid:$vx/$c:tags) {
 lappend taglist $tag
 }
 set x [expr $in+12]
 if {[string length $icon]>0} {
 set k [$wid create image $x $y -image $icon -anchor w -tags $taglist]
 incr x 20
 set tree($wid:tag:$k) $vx/$c
 }
 set j [$wid create text $x $y -text $c -font $tree(font) \
 -anchor w -tags $taglist]
 set tree($wid:tag:$j) $vx/$c
 set tree($wid:$vx/$c:tag) $j
 if {[string length $tree($wid:$vx/$c:children)]} {
 if {$tree($wid:$vx/$c:open)} {
 set j [$wid create image $in $y -image $tree(openbm)]
 $wid bind $j <1> "set tree::tree($wid:$vx/$c:open) 0; tree::Build $wid"
 tree::BuildLayer $wid $vx/$c [expr $in+18]
 } else {
 set j [$wid create image $in $y -image $tree(closedbm)]
 $wid bind $j <1> "set tree::tree($wid:$vx/$c:open) 1; tree::Build $wid"
 }
 }
 }
 set j [$wid create line $in $start $in [expr $y+1] -fill gray50]
 $wid lower $j
}

Now, after the tree gets displayed, if the user chooses to open any of the branches by clicking the “+” image next to
a node, the following openbranch routine will arrange to redraw the tree by displaying the node’s children:

tree::openbranch --

A callback that gets called to open a node to show its children

Arguments:
wid - tree widget
node - the node whose children should be shown

Results:
The children of the node will be drawn

proc tree::openbranch {wid node} {
 variable tree
 if {[info exists tree($wid:$node:open)] && $tree($wid:$node:open)==0
 && [info exists tree($wid:$node:children)]
 && [string length $tree($wid:$node:children)]>0} {
 set tree($wid:$node:open) 1
 tree::Build $wid
 }
}

Similarly, when the user clicks on the “–” image next to a node, the closebranch routine will arrange for
the tree to be redrawn by closing the branch and undisplaying the children:

tree::closebranch --

The opposite of open branch, see above

Arguments:

Results:

proc tree::closebranch {wid node} {
 variable tree
 if {[info exists tree($wid:$node:open)] && $tree($wid:$node:open)==1} {
 set tree($wid:$node:open) 0
 tree::Build $wid
 }
}

The DrawSelection routine will highlight the currently selected node.

tree::DrawSelection --

Highlights the current selection

Arguments:
wid - tree widget

Results:
The current selection will be highlighted with sky blue

proc tree::DrawSelection wid {
 variable tree
 if {[string length $tree($wid:selidx)]} {
 $wid delete $tree($wid:selidx)
 }
 set node $tree($wid:selection)
 if {[string length $node]==0} return
 if {![info exists tree($wid:$node:tag)]} return
 set bbox [$wid bbox $tree($wid:$node:tag)]
 if {[llength $bbox]==4} {
 set i [eval $wid create rectangle $bbox -fill skyblue -outline {{}}]
 set tree($wid:selidx) $i
 $wid lower $i
 } else {
 set tree($wid:selidx) {}
 }
}

The BuildWhenIdle routine is used to minimize the drawing refreshes by collecting all the redraw
routines and arranging an event handler to draw the tree.

tree::BuildWhenIdle --

Function to reduce the number of redraws of the tree. When a redraw is not
immediately warranted this function gets called

Arguments:
wid - tree wiget

Results:
Set the tree widget to be redrawn in future.

proc tree::BuildWhenIdle wid {

 variable tree
 if {![info exists tree($wid:buildpending)]} {
 set tree($wid:buildpending) 1
 after idle "tree::Build $wid"
 }
}

Finally, the tree::labelat routine will return the node at a given x-y widget position. The magic is to
use the canvas built-in commands:

tree::labelat --

Returns the tree node closest to x,y coordinates

Arguments:
wid tree widget
x,y coordinates

Results:
The node closest to x,y will be returned.

proc tree::labelat {wid x y} {
 set x [$wid canvasx $x]
 set y [$wid canvasy $y]
 variable tree
 foreach m [$wid find overlapping $x $y $x $y] {
 if {[info exists tree($wid:tag:$m)]} {
 return $tree($wid:tag:$m)
 }
 }
 return ""
}

Since the underlying widget for the tree is canvas, this tree widget will support all the canvas binding
commands with the same syntax.

Package File Generation
Now that we have defined a tree mega-widget, how do we use it? Before we dive into developing a new
application using the tree widget, we have to generate a pkgIndex file for the tree widget. To do this,
copy the tree.tcl file into /usr/local/lib/tcl and run the following command in a wish shell:

$ wish
% cd /usr/local/lib/tcl
% pkg_mkIndex . tree.tcl

This command will create a pkgIndex.tcl file in the /usr/local/lib/tcl directory. Make sure that
there is no prior pkgIndex.tcl file before you create it, because if there is, Tcl will clobber it.

Once you have generated pkgIndex.tcl file, you need to instruct your application that you want to use
the tree widget. To accomplish this, append /usr/local/lib/tcl to the auto_loadpath by adding
the following lines:

Lappend auto_path /usr/local/lib/tcl
Package require tree

An Application Using the Tree Mega-Widget
Let’s use our tree package and develop a simple application. The application we are going to develop will
display the root system file hierarchy.

We first inform the application of the location of the package file and use it to load the tree package:

#!/usr/local/bin/wish

Simple application showing the use of tree mega-widget

lappend auto_path /usr/local/lib/tk
package require tree

Now we have to inform the tree widget on parent and tail routines. By default, they are normal file
dirname and tail routines, because we are displaying a root file system:

Create utility procs that tree widget uses to query parent
and tail components of a node

proc parent {item} {
 return [file dirname $item]
}
proc tail {item} {
 return [file tail $item]
}

We create images to display directory and file images:

Create imanges that we use to display directory and a normal file

image create photo idir -data {
 R0lGODdhEAAQAPIAAAAAAHh4eLi4uPj4APj4+P///wAAAAAAACwAAAAAEAAQAAADPVi63P4w
 LkKCtTTnUsXwQqBtAfh910UU4ugGAEucpgnLNY3Gop7folwNOBOeiEYQ0acDpp6pGAFArVqt
 hQQAO///
}
image create photo ifile -data {
 R0lGODdhEAAQAPIAAAAAAHh4eLi4uPj4+P///wAAAAAAAAAAACwAAAAAEAAQAAADPkixzPOD
 yADrWE8qC8WN0+BZAmBq1GMOqwigXFXCrGk/cxjjr27fLtout6n9eMIYMTXsFZsogXRKJf6u
 P0kCADv/
}

Next, we create a routine that dynamically adds the children of the node if the node happens to be the
directory when the user double-clicks on the item:

Dynamically add entries to the tree widget

proc AddDir {wid dir} {
 if ![file isdirectory $dir] {
 return;
 }
 foreach file [exec ls $dir] {
 set file [file join $dir $file]
 if [file isdirectory $file] {
 tree::additem $wid [file join $dir $file] -image idir
 } else {
 tree::additem $wid [file join $dir $file] -image ifile
 }

 }
}

The main process creates the tree and sets up the double-click bindings for the tree widget. It also adds the
top-level node to the tree.

main proc

Create tree widget and set up bindings

tree::create .t -width 150 -height 400

open a node when gets double-clicked.

.t bind x <Double-1> {
 puts "Callled"
 set child [tree::labelat %W %x %y]
 AddDir %W $child
 tree::openbranch %W $child
}

AddDir .t /

manage the widget

pack .t -fill both -expand 1
update

When you run the program you should see something similar to the
following:

Tk Process Log Viewer
Now that we have seen how to create a mega-widget, how about creating an application using Tcl 8.0’s
new features, such as the event mechanism? More often than not, Linux users find themselves running the
tail –f or find / -print command every day. So why don’t we develop an application to display
the outputs of those commands in a text window? We will also create shortcuts (nicks) to the commands
they run, so that they can rerun them by clicking on the shortcut.

This application supports two types of logs: file logs and command logs. File logs are tail –f
filename–type commands, and command logs are of the type ‘find / -print’. For file log outputs,
the user will specify a filename and a nick (shortcut). A command of the type tail –f filename will be
constructed and associated with the given nick. For command logs, the user has to specify the entire
command name and nickname.

Let’s call this application “Tk Process Log Viewer.” So what do we need to build such an application? User
interface–wise, we need a menu bar for process commands, a text widget to display the output, a status
bar to display error messages, a couple of entry boxes to specify commands and their nicknames, and an
option button to display currently available nicks. We also need a stop button to stop the current view
process, and a delete button in the menu bar to delete any unwanted shortcuts.

Let’s start by declaring the global variables that we will use to build the application. We store all these
global variables in an array called tailOpts.

#!/usr/local/bin/wish8.0
logView.tk --

Essentially a general-purpose GUI wrapper to tail, gui, and any commands
that will output data continuously. This GUI has the ability to record
the commands as smart buttons, so that you can rerun the same commands
again and again without having to retype.

set tailRc "~/.tailrc"
wm title . "Process Log Viewer"
wm iconname . "Log Viewer"

global tailSize textw fileName tailFd curNick tailOpts statusImgWin

tailSize --> size in lines of tail output to display
fileName --> File name: variable
tailFd --> proc fd or file fd of current tail process
curNick --> current nick being shown; nick essentially a shortcut to a cmd.
tailOpts --> saved options
statusImgWin --> window showing what kind of error it is!

set tailSize 20
set fileName "/usr/local/processlog/logView.tk"; #include your own path here

file types for the file selection dialog box.

set tailOpts(types) {
 {"All files" *}
 {"Text files" {.txt .doc} }
 {"Text files" {} TEXT}

 {"Tcl Scripts" {.tcl} TEXT}
 {"C Source Files" {.c .h} }
 {"All Source Files" {.tcl .c .h} }

 {"Image Files" {.gif} }
 {"Image Files" {.jpeg .jpg} }
 {"Image Files" "" {GIFF JPEG}}
}
set tailOpts(wins) {}

Next, we will build the user interface. We start with the menu bar with “File” and “Edit” commands. The
File menu will support the addition of new command nicks through an “Add New…” command button.
The File menu will also contain an exit button to exit the application. The Edit menu will contain a “Delete
Nicks” button to edit the current nicks.

proc BuildTailGui {w} {
 global tailSize textw fileName tailFd curNick tailOpts statusImgWin
 global viewOptMenu

 if {$w == "."} {
 set w "";
 }

 #
 # Build Menu for file
 #

 menu $w.menu -tearoff 0

 # File menu
 set m $w.menu.file
 menu $m -tearoff 0
 $w.menu add cascade -label "File" -menu $m -underline 0
 $m add command -label "Add New ..." -command {AddNew} -underline 0
 $m add command -label "Exit" -command {exit} -underline 0

 # Edit Menu

 set m $w.menu.edit
 menu $m -tearoff 0
 $w.menu add cascade -label "Edit" -menu $m -underline 0
 $m add command -label "Delete Nicks.." -command {DeleteNicks} -underline 0

 # Help Menu
 set m $w.menu.help
 menu $m -tearoff 0
 $w.menu add cascade -label "Help" -menu $m -underline 0
 $m add command -label "About..." -underline 0 -command {
 tk_messageBox -parent . -title "Process Log Viewer" -type \
 ok -message "Tk Tail Tool \nby Krishna Vedati(kvedati@yahoo.com)"
 }

The routine then adds a text widget to display the output of any log process and a status bar to display
error and informational messages.

Next, the routine builds rows of widgets. The first row will enable users to add file-type nicks to the
application. The second row will enable users to add command-type nicks. The last row contains a stop
button to stop the current log process and an option button to quickly choose a shortcut.

 #
 # Create status/error message window
 #

 frame $w.status -relief sunken -bd 2
 set statusImgWin [label $w.status.flag -bitmap info]
 label $w.status.lab -textvariable statusText -anchor w -bg "wheat"
 pack $w.status.flag -side left

 pack $w.status.lab -side left -fill both -expand 1

 #
 # File name: entry panel
 #

 frame $w.file
 label $w.file.label -text "File name:" -width 13 -anchor w
 entry $w.file.entry -width 30 -textvariable fileName
 button $w.file.choose -text "..." -command \
 "set fileName \[tk_getOpenFile -filetypes \$tailOpts(types) \
 -parent \[winfo toplevel $w.file\]\];"

 button $w.file.button -text "Tail File" \
 -command "AddToView file \$fileName"
 pack $w.file.label $w.file.entry -side left
 pack $w.file.choose -side left -pady 5 -padx 10
 pack $w.file.button -side left -pady 5 -padx 10
 bind $w.file.entry <Return> " AddToView file \$fileName"
 focus $w.file.entry

 #
 # Command entry panel
 #

 frame $w.fileC
 label $w.fileC.cLabel -text "Command:" -width 13 -anchor w
 entry $w.fileC.cEntry -width 40 -textvariable command
 label $w.fileC.nLabel -text "Nick:" -anchor w
 entry $w.fileC.nEntry -width 15 -textvariable nick
 button $w.fileC.add -text "Add" -command "AddToView \"command\"\
 \$command \$nick;"
 pack $w.fileC.cLabel $w.fileC.cEntry -side left
 pack $w.fileC.nLabel -side left -pady 5 -padx 10
 pack $w.fileC.nEntry -side left -pady 5 -padx 5
 pack $w.fileC.add -side left -pady 5 -padx 5

 # Option Menu command panel

 frame $w.optF
 label $w.optF.label -text "View:" -width 12 -anchor w
 set viewOptMenu [tk_optionMenu $w.optF.optB curNick " "]
 button $w.optF.stop -text "Stop" -command Stop

 pack $w.optF.label -side left
 pack $w.optF.optB -side left -pady 5
 pack $w.optF.stop -side left -pady 5

 # create text widget
 frame $w.textf -bg red
 text $w.textf.text -height [expr $tailSize] -xscrollcommand \
 "$w.textf.scrollh set" -yscrollcommand "$w.textf.scrollv set" -bg lightblue
 set textw $w.textf.text
 scrollbar $w.textf.scrollh -orient horizontal -command "$w.textf.text xview"
 scrollbar $w.textf.scrollv -orient vertical -command "$w.textf.text yview"

 pack $w.textf.scrollv -side right -fill y -expand 1
 pack $w.textf.scrollh -side bottom -fill x -expand 1
 pack $w.textf.text -fill x -fill y -expand 1

 # pack all the frames
 [winfo toplevel $w.textf] configure -menu $w.menu
 pack $w.status -side bottom -fill x -pady 2m
 pack $w.file -side top -fill x -expand 1
 pack $w.fileC -side top -fill x -expand 1
 pack $w.optF -side top -fill x -expand 1
 pack $w.textf -side top -fill x -fill y -expand 1

}

Once the user sets up a command- or file-type nick, the TailFile method will get called. This method
makes sure that the specified file exists. It creates the command and opens it as a process. Then it binds a
read event to the file descriptor and returns. The read event will call TailUpdate every time the file
identifier associated with the process is readable.

TailFile --

Show the tail of the request file.

Arguments:
file name to be tailed.

Results:
The tail of the file is shown in the window.

proc TailFile { type file {nick ""}} {
 global tailSize tailFd textw curNick

 set w $textw
 catch {
 fileevent $tailFd readable {}
 close $tailFd
 update
 }
 $w delete 1.0 end

 if {$type == ""} {
 $w insert end "Illegal type...";
 return
 }
 if {$type == "file"} {
 if {$file == ""} {
 $w insert end "please specify a valid filename..."
 return
 }
 if ![file exists $file] {
 DeleteFromView $file
 $w insert end "file $file does not exist..."
 return
 }
 set nick $file
 } elseif {$type == "command"} {
 if {$file == ""} {
 $w insert end "please specify a command..."
 return
 }
 }

 if {$type == "file"} {
 set tailFd [open "|tail -f $file" r]
 wm title [winfo toplevel $w] "Tail tool \[tail -f $file\]"
 } elseif {$type == "command"} {
 if [catch {set tailFd [open "|$file" r]}] {
 SetStatus error "can't execute command $file..."
 DeleteFromView $nick
 set curNick ""
 return
 }

 wm title [winfo toplevel $w] "Tail tool \[tail |$file\]"
 }
 fconfigure $tailFd -blocking 0
 set lines 0
 fileevent $tailFd readable "TailUpdate \$tailFd"
}

The TailUpdate procedure gets called as part of the event handler on the current log process read status.
When this procedure gets called, it collects the output from the process and inserts it into the text widget.
It also makes sure that at any given time, no more than $tailSize lines are shown in the text window.

proc TailUpdate {fileFd} {
 global textw curNick
 global tailSize tailFd

 set w $textw
 if [eof $tailFd] {
 fileevent $tailFd readable {}
 $w insert end "Tailing \"$curNick\" done..."
 return
 }

 set line [gets $tailFd]

 $w insert end $line
 $w insert end "\n"

 set lines [lindex [split [$w index end] .] 0]
 if {$lines == [expr $tailSize+1]} {
 $w delete 1.0 2.0
 }
 $w yview moveto 1.0

}

The Stop call-back is used to stop the current logProcess.

Stop the current tailing process

proc Stop {} {
 global tailFd
 set pid [pid $tailFd]
 catch {exec kill -9 $pid}
}

The AddNew procedure gets called every time the user adds a new shortcut through the File menu’s
“Add New...” menu command. It creates a simple GUI for the user to create a new command nick:

AddNew --
Add a new tail file to the system

Arguments:
none.

Results:

proc AddNew {args} {
 toplevel .addnew
 set w .addnew
 wm title $w "Add new tail file..."

 frame $w.top

 frame $w.sep -bd 2 -relief ridge
 frame $w.bot

 set k $w.top

 label $k.name -text "Nickname for item:"
 label $k.command -text "Command:"

 grid $k.name -row 0 -column 0 -sticky e
 grid $k.command -row 1 -column 0 -sticky e

 entry $k.nameE -textvariable nameE -width 40
 entry $k.commandE -textvariable commandE -width 50

 grid $k.nameE -row 0 -column 1 -sticky ew
 grid $k.commandE -row 1 -column 1 -sticky ew

 grid columnconfigure $k 1 -weight 1
 grid propagate $k 1

 pack $w.top -side top -fill both -expand 1
 pack $w.sep -side top -fill x -expand 1 -pady 5
 pack $w.bot -side top -fill x -expand 1

 button $w.bot.apply -text "Add" -command "AddToView \"command\" \"\$commandE\"
\"\$nameE\""
 button $w.bot.dismiss -text "Dismiss" -command {destroy .addnew}
 pack $w.bot.apply $w.bot.dismiss -side left -expand 1
 PositionWindow $w
}

The SetStatus procedure is used to set GUI status messages in the status window. It’s a general-purpose
routine to display both error and informational messages. If a type error occurs, an error bitmap will be
displayed in the status window.

proc SetStatus {type text {timer 5000}} {
 global statusText statusImgWin
 set statusText $text
 after $timer "set statusText \"\""
 $statusImgWin config -bitmap $type
 after $timer "$statusImgWin config -bitmap \"\""
}

The AddToView command will add a nick to the option button. Before it adds the item to the option
menu, it makes sure that the user has supplied the required information.

proc AddToView {type command {nick ""}} {
 global tailOpts viewOptMenu

 catch {Stop}
 if {$type == "file"} {
 set nick $command
 if {$command == ""} {
 SetStatus error "Please supply File name..."
 }
 } elseif {$type == "command"} {
 if {($nick == "") || ($command == "") } {
 SetStatus error "Please supply both nick and command names..."
 return
 }
 }

 set l [list "$type" "$nick" "$command"]
 if ![info exists tailOpts(wins)] {
 set tailOpts $l

 return
 } else {
 foreach item $tailOpts(wins) {
 if {$nick == [lindex $item 1]} {
 if {$type == "file"} {
 SetStatus info "File $nick is all ready in the tail list...."
 } else {
 SetStatus info "Nick $nick is all ready in the tail list...."
 }
 return;
 }
 }
 lappend tailOpts(wins) $l
 }

 UpdateOptionMenu
 $viewOptMenu invoke end
}

The DeleteNicks routine will create a simple listbox-
based user interface for the user to delete the nicks:

proc DeleteNicks {} {
 global tailOpts

 if ![info exists tailOpts(wins)] {
 SetStatus info "No entries to delete..."
 return;
 }
 if {$tailOpts(wins) == {}} {
 SetStatus info "No entries to delete..."
 return;
 }
 catch {destroy .delent}
 toplevel .delent
 set w .delent
 wm title $w "Delete Entry"

 scrollbar $w.h -orient horizontal -command "$w.list xview"
 scrollbar $w.v -orient vertical -command "$w.list yview"
 listbox $w.l -selectmode single -width 20 -height 10 \
 -setgrid 1 -xscroll "$w.h set" -yscroll "$w.v set"

 frame $w.buts
 button $w.buts.d -text "Delete" -command {

 set index [.delent.l curselection];
 if {$index == ""} {return}
 set sel [.delent.l get $index];
 puts "sel $sel ; index $index"
 DeleteFromView $sel;
 .delent.l delete $index
 }

 button $w.buts.dismiss -text "Dismiss" -command "destroy $w"

 grid $w.l -row 0 -column 0 -columnspan 2 -sticky "news"
 grid $w.v -row 0 -column 2 -sticky "ns"
 grid $w.h -row 1 -column 0 -columnspan 2 -sticky "we"
 grid $w.buts -row 2 -column 0 -columnspan 3

 pack $w.buts.d $w.buts.dismiss -side left -padx 10

 foreach ent $tailOpts(wins) {
 $w.l insert end [lindex $ent 1]
 }

 PositionWindow $w
}

The DeleteFromView routine is an internal routine that removes the specified nick from the data
structures and updates the option button:

proc DeleteFromView {nick} {
 global tailOpts

 if {$nick == ""} {
 return
 }
 set newList {}
 if ![info exists tailOpts(wins)] {
 return
 }
 foreach item $tailOpts(wins) {
 if {$nick != [lindex $item 1]} {
 lappend newList $item
 }
 }
 set tailOpts(wins) $newList
 UpdateOptionMenu
}

The PositionWindow routine centers a top-level dialog box around its parent. It is used to map dialog
boxes on the main window, instead of some far-away corner of the screen.

PositionWindow --

Position the top-level window centered on its parent.

Arguments:
toplevel window.

Results:
Positions the window

proc PositionWindow {w} {
 set paren [winfo parent $w]
 wm iconify $w
 set parenConf [wm geometry $paren]
 set parenConf [split $parenConf {+ - x}]
 set winConf [split [wm geometry $w] {+ - x}]
 set X [expr [lindex $parenConf 2] + [lindex $parenConf 0]/2 - \
 [winfo reqwidth $w]/2]

 set Y [expr [lindex $parenConf 3] + [lindex $parenConf 1]/2 - \
 [winfo reqheigh $w]/2]
 wm geometry $w +$X+$Y
 wm deiconify $w

}

The UpdateOptionMenu command updates the nicks option menu widget with the current set of active
nicks:

UpdateOptionMenu --

Arguments:

Results:

proc UpdateOptionMenu {} {
 global tailOpts curNick viewOptMenu

 $viewOptMenu delete 0 end
 if ![info exists tailOpts(wins)] {
 return
 }
 if {$tailOpts(wins) == {}} {
 set curNick ""
 return
 }
 foreach item $tailOpts(wins) {
 $viewOptMenu add command -label [lindex $item 1] -command "catch Stop; TailFile
\"[lindex $item 0]\" \"[lindex $item 2]\" \"[lindex $item 1]\" "
 set curNick [lindex $item 1]
 }
}

Finally, we map the main window:

wm withdraw .

toplevel .t

BuildTailGui .t

When you run this application, you should see the following:

Internationalization
One thing we have not covered in this survey of Tk widgets is internationalization. Tcl 8.1 has lots of new
features such as Unicode support, functions to create and access message catalogs (so you can store the
text of all your dialog boxes in multiple languages), support for different language encodings, and
generalized string manipulation. Beginning in Tcl 8.1, all Tcl string manipulation functions expect and
return Unicode strings encoded in UTF-8 format. Because the use of Unicode/UTF-8 encoding is internal
to Tcl, you should see no difference in Tcl 8.0 and 8.1 string handling in your scripts. In fact, all the
commands in Tcl 8.1 onward handle Unicode seamlessly. For example, you can read a file that uses
shiftjis encoding into Tcl, and the file read command converts the shiftjis encoding to UTF-8
encoding automatically.

set fd [open $file r]
fconfigure $fd -encoding shiftjis
set jstring [read $fd] close $fd
close $fd

Furthermore, the regular expression implementation introduced in Tcl 8.1 handles the full range of
Unicode characters.

Since all strings in Tcl are encoded in Unicode, Tk widgets automatically handle any encoding conversions
necessary to display the characters in a particular font. For example, the code snippet

set str "\u592a\u9177"
??
% button .b -text $str
.b
% pack .b

should display the Chinese transliteration of “Tcl” (TAI-KU) as the button label, provided you have the
correct X fonts installed to display this text. If the master font that you set for a widget doesn’t contain a
glyph for a particular Unicode character that you want to display, Tk attempts to locate a font that does.
Tk attempts to locate a font that matches as many characteristics of the widget’s master font as possible
(weight, slant, etc.). Once Tk finds a suitable font, it displays the character in that font. In other words, the
widget uses the master font for all characters it is capable of displaying, and alternative fonts only as
needed.

Internationalization is a fascinating topic. Unfortunately it requires more space than we have in this
chapter.

Where Now?
If you ever get stuck in Tk, in addition to the man pages, there’s always the Tk Widget Tour with its
examples of how to use the Tk widget set. Run the program by typing widget.

Some notable programs written in Tk include Xadmin, Exmh, ical, TkMan, TkElm, TkWWW, and SurfIT.
tkWWW is an HTML editor, so you can use it to prepare pages for the World Wide Web, and SurfIT is a
Web browser written in Tcl that has the distinction of being able to download and execute Tcl programs
directly from Web pages. This, of course, can be a dangerous facility to allow with unknown hosts! Ical
is an X-based calendar program

At the time of writing, there are many things happening within the Tk community, so we’ll finish off with
a brief survey of some notable projects.

Tix
Tix extends Tk with over 40 professional Motif look-and-feel widgets. Tix widgets are so powerful that
they even give Motif 2.0 a run for its money. Check out Tix at http://tix.sourceforge.net

[incr Tk]
[incr Tcl] and [incr Tk] form an object-oriented extension to Tcl/Tk. Version 3.0 has recently been
announced and is available at http://www.tcltk.com/itcl/. The following description is from their Web pages:

“[incr Tcl] provides the extra language support needed to build large Tcl/Tk applications. It introduces
the notion of objects, which act as building blocks for an application. Each object is a bag of data with a set
of procedures or ‘methods’ that are used to manipulate it. Objects are organized into ‘classes’ with
identical characteristics, and classes can inherit functionality from one another. This object-oriented
paradigm adds another level of organization on top of the basic variable/procedure elements, and the
resulting code is easier to understand and maintain.

[incr Tk] is a framework for building ‘mega-widgets’ using the [incr Tcl] object system. Mega-widgets are
high-level widgets like a file browser or a tab notebook that act like simple Tk widgets but are themselves
constructed using Tk widgets as component parts, without having to write any C code. In effect, a mega-
widget looks and acts exactly like a Tk widget, but is considerably easier to implement.”

BLT
The BLT-2.1 toolkit extends Tk by providing many new widgets—for example, blt_graph, which is used
to plot line and bar graphs, and blt_htext, a hypertext widget, and widgets for background execution.
The BLT homepage is http://www.tcltk.com/blt.

Finally, comp.lang.tcl and comp.lang.tcl.announce are the best places to post Tk questions. Usually, people
are quite friendly and somebody will always answer your questions. Before posting your questions to
comp.lang.tcl, though, please read its frequently asked questions (FAQ) list, which is posted regularly to
the newsgroup.

Lots of Tk resources can be found at Tcl’s new home, the Scriptics Corporation Web page:
http://www.scriptics.com/resource.

That about completes our survey of Tk. There is far more to Tk than this brief survey can do justice to, as
John Ousterhout intended Tcl/Tk to be an extensible and embeddable tool. Tcl commands and Tk widgets
are written in C, and you can code your own and add them in, or take advantage of the widget extensions
available on the Internet. This is an advanced topic and space prevents us from covering it here, but it is
the way in which you would access a C program from your graphical Tcl/Tk front end. Please refer to
John Ousterhout’s book for details and, in the meantime, happy Tcl/Tk’ing!

Summary
In this chapter, we rushed through the world of X Windows programming.

After an overview of the thinking behind X Windows and the different ways in which this was
implemented, we learned enough Tk to complement the Tcl that we learned in Chapter 15 and enable us
to rapidly develop GUI front ends to our applications using Tk’s rich widget set.

Next we’re going to look at an exciting new way to program graphical applications in C: the GTK+
GNOME toolkit.

	Bonus Chapter B: Programming for X
	What Is X?
	X Server
	X Protocol
	Xlib
	X Clients
	X Toolkits

	X Window Manager
	The X Programming Model
	Start-up
	Main Loop
	Clean-up

	Fast-Track X Programming
	The Tk Toolkit
	Windows Programming
	Configuration Files
	More Commands
	Tk Widgets
	Frames
	Top-Level
	Labels
	Buttons
	Messages
	Entrys
	List Boxes
	Scrollbars
	Scales
	Text
	Canvases
	Images
	Menu
	Menu Button
	Pop-up Menu
	Option Menu
	Dialogs

	Tk’s Built-in Dialogs
	Color Schemes
	Fonts
	Bindings
	Binding Tags
	Geometry Management
	Packer
	Placer
	Grid

	Focus and Navigation
	Option Database
	Inter-application Communication
	Selection
	Clipboard
	Window Manager
	Dynamic/Static Loading
	Safe Tk

	A Mega-Widget
	An Application Using the Tree Mega-Widget
	Tk Process Log Viewer
	Internationalization
	Where Now?

	Summary

