
Communication protocols

Mariusz Janiak
p. 331 C-3, 71 320 26 44

c© 2015 Mariusz Janiak
All Rights Reserved

Chair of Cybernetics and Robotics



Chair of Cybernetics and Robotics

Contents

1 OSI model

2 Embedded Networking

3 Communication paradigms

4 Data representation and marshalling



Chair of Cybernetics and Robotics

OSI model

1

1http://www.tcpipguide.com

http://www.tcpipguide.com


Chair of Cybernetics and Robotics

OSI model

1 Physical (Bit) – Transmission and reception of raw bit streams over a
physical medium

2 Data link (Bit/Frame) – Reliable transmission of data frames between two
nodes connected by a physical layer

3 Network (Packet/Datagram) – Structuring and managing a multi-node
network, including addressing, routing and traffic control

4 Transport (Segments) – Reliable transmission of data segments between
points on a network, including segmentation, acknowledgement and
multiplexing

5 Session (Data) – Managing communication sessions, i.e. continuous
exchange of information in the form of multiple back-and-forth
transmissions between two nodes

6 Presentation (Data)– Translation of data between a networking service and
an application; including character encoding, data compression and
encryption/decryption

7 Application (Data) – High-level APIs, including resource sharing, remote
file access, directory services and virtual terminals



Chair of Cybernetics and Robotics

OSI model

2

2http://www.tcpipguide.com

http://www.tcpipguide.com


Chair of Cybernetics and Robotics

OSI model

3

3http://ptunotes.com

http://ptunotes.com


Chair of Cybernetics and Robotics

Embedded Networking

Common wired interfaces

RS232

RS485/RS422

CAN

Ethernet

USB

. . .



Chair of Cybernetics and Robotics

Embedded Networking

CAN Bus
Characteristics

8-byte payload
half-duplex
11-bit identifier (CAN 2.0A) or 29-bit extended (CAN 2.0B)
Throughput up to 1Mb/s (to 40m)
Protocol overhead – 64/111 = 0.576 best, 64/135 = 0.473 worst
Hard real-time – hardware arbitration.

Multimaster, MultiCast Protocol without Routing

Good error detection capabilities (method for discriminating
between temporary errors and permanent failures)

Protocols: CANopen, DeviceNet, SAE J1939



Chair of Cybernetics and Robotics

Embedded Networking

Ethernet
Characteristics

1500-byte payload
Usually full-duplex
48-bit addresses
High throughput – now standard is 1GB/s
Bad real-time properties – Carrier Sense Multiple Access with
Collision Detection (CSMA/CD)

Can be used with or without TCP or UDP

Hubs, switches, etc. support large networks

Real-time protocols: RTnet, EtherCAT, ProfiNet, Powerlink,
Ethernet-IP, Sercos, . . .



Chair of Cybernetics and Robotics

Embedded Networking

RTnet
Hard real-time network protocol stack for Xenomai and RTAI
Open source license
Operates on standard Ethernet hardware
Supports several popular NIC chip sets, including Gigabit
Ethernet
Implement UDP/IP, TCP/IP (basic features), ICMP and ARP
in a deterministic way
POSIX socket API for real-time user space processes and kernel
modules
FreeRTOS port is available (RTmac, RTcfg, TDMA, Socket
API, UDP/IP, ARP)

www.rtnet.org

www.rtnet.org


Chair of Cybernetics and Robotics

Communication paradigms

Types of communication paradigms

Inter-Process Communication (IPC)

Remote Invocation

Indirect Communication



Chair of Cybernetics and Robotics

Communication paradigms

Inter-Process Communication
Relatively low-level support for communication

Direct access to internet protocols (Socket API)

Socket is a communication end-point to which an application
can write or read data

Socket abstraction is used to send and receive messages from
the transport layer of the network
Each socket is associated with a particular type of transport
protocol

UDP Socket – Connection-less and unreliable communication
TCP Socket – Connection-oriented and reliable communication



Chair of Cybernetics and Robotics

Communication paradigms

Inter-Process Communication – UDP Sockets

UDP provides connectionless communication, with no
acknowledgements or message transmission retries
Communication mechanism

Server opens a UDP socket SS at a known port sp
Socket SS waits to receive a request
Client opens a UDP socket CS at a random port cx
Client socket CS sends a message to server IP and port sp
Server socket SS may send back data to CS



Chair of Cybernetics and Robotics

Communication paradigms

Inter-Process Communication – UDP Sockets (cont.)

Messages may be delivered out-of-order

Communication is not reliable

Sender must explicitly fragment a long message into smaller
chunks before transmitting (a maximum size of 548 bytes is
suggested for transmission)

Receiver should allocate a buffer that is big enough to fit the
sender’s message



Chair of Cybernetics and Robotics

Communication paradigms

Inter-Process Communication – TCP Sockets

TCP provides in-order delivery, reliability and congestion control
Communication mechanism

Server opens a TCP socket SS at a known port sp
Server waits to receive a request (accept call)
Client opens a TCP socket CS at a random port cx
CS initiates a connection initiation message to server IP and
port sp
Server socket SS allocates a new socket NSS on random port
nsp for the client
CS can send data to NSS



Chair of Cybernetics and Robotics

Communication paradigms

Inter-Process Communication – TCP Sockets (cont.)

TCP Sockets ensure in-order delivery of messages

Applications can send messages of any size

TCP Sockets ensure reliable communication using
acknowledgements and retransmissions

Congestion control of TCP regulates sender rate, and thus
prevents network overload



Chair of Cybernetics and Robotics

Communication paradigms

Remote Invocation
An entity runs a procedure that typically executes on an another
computer without the programmer explicitly coding the details
for this remote interaction

A middleware layer will take care of the raw-communication
Programmer can transparently communicate with remote entity

Two types of remote invocations
Remote Procedure Call (RPC) – Sun’s RPC (ONC RPC),
XML/RPC
Remote Method Invocation (RMI) — CORBA, Java RMI

RMI strongly resembles RPC but in a world of distributed
objects



Chair of Cybernetics and Robotics

Communication paradigms

Remote Invocation (cont.)

4

4http://blog.facilelogin.com/2011/02/rpc-with-java.html

http://blog.facilelogin.com/2011/02/rpc-with-java.html


Chair of Cybernetics and Robotics

Communication paradigms

Remote Invocation (cont.)

RPC enables a sender to communicate with a receiver using a
simple procedure call – no communication or message-passing is
visible to the programmer

Parameter passing via Marshaling – procedure parameters and
results have to be transferred over the network as bits

Data representation – data representation has to be uniform

Passing Parameters by: value, reference (only RMI)



Chair of Cybernetics and Robotics

Communication paradigms

Remote Invocation (cont.)
Synchronous vs Asynchronous

Synchronous blocks the client until the server returns – blocking
wastes resources at the client
Asynchronous are used if the client does not need the result from
server – server immediately sends an ACK back to client
deferred synchronous RPCs – client triggers an asynchronous
RPC on server, on completion, server calls-back client to deliver
the results



Chair of Cybernetics and Robotics

Communication paradigms

Remote Invocation (cont.)

Space Coupling – where the procedure resides should be known
in advance

Time Coupling – on the receiver, a process should be explicitly
waiting to accept requests for procedure calls

Lack robustness – cascading points of failure

Typically built on top of TCP – impacts scalability and
time-determinism

Best-suited to smaller, closely-coupled systems



Chair of Cybernetics and Robotics

Communication paradigms

Indirect Communication
Indirect communication uses middleware to

Provide one-to-many communication
Some mechanisms eliminate space and time coupling

Sender and receiver do not need to know each other’s identities
Sender and receiver need not be explicitly listening to
communicate

Supports a variety of transports including multicast UDP

Better suited for high-performance and real-time
Types of indirect communication

Group communication
Publish-subscribe
Data-Distribution



Chair of Cybernetics and Robotics

Communication paradigms

Indirect Communication – Group communication

One-to-many communication – Multicast communication
Abstraction of a group

Group is represented in the system by a groupId
Recipients join the group
A sender sends a message to the group which is received by all
the recipients

Middleware services
Group membership
Handling the failure of one or more group members

Efficient use of bandwidth

Identity of the group members need not be available at all nodes

Time coupling – data are not buffered



Chair of Cybernetics and Robotics

Communication paradigms

Indirect Communication – Publish-subscribe
Message-based, anonymous communication

Message sent to Topic
Multiple readers can subscribe to Topic with or without filters
Each message delivered to all subscribers that pass filter

Participants are decoupled
in space: no need to be connected or even know each other
in flow: no need to be synchronized
in time: no need to be up at the same time

Large number of producers distribute information to large
number of consumers

Good solution for highly dynamic, decentralized systems



Chair of Cybernetics and Robotics

Communication paradigms

Indirect Communication – Publish-subscribe (cont.)

Only messages no concept of data

Each message is interpreted without context

Messages must be delivered FIFO or according to some
“priority” attribute

No Caching of data

Simple QoS: filters, durability, lifespan



Chair of Cybernetics and Robotics

Communication paradigms

Indirect Communication – Data distribution
Provides a Global Data Space that is accessible to all interested
applications

Data objects addressed by Domain, Topic and Key
Subscriptions are decoupled from Publications
Contracts established by means of QoS
Automatic discovery and configuration

Subsystems are decoupled in time, space, and synchronization

Messages represent update to data-objects

Data-Objects identify by a key

Middleware maintains state of each object

Objects are cached. Applications can read at leisure

Smart QoS: Ownership, History, Deadline



Chair of Cybernetics and Robotics

Communication paradigms

Network frameworks

Adaptive Communication Environment (ACE)
http://www.dre.vanderbilt.edu/~schmidt/ACE.html

ZeroC Ice
https://zeroc.com

ZeroMQ
http://zeromq.org/

OpenDDS
http://www.opendds.org

RTI Connext DDS
https://www.rti.com

. . .

http://www.dre.vanderbilt.edu/~schmidt/ACE.html
https://zeroc.com
http://zeromq.org/
http://www.opendds.org
https://www.rti.com


Chair of Cybernetics and Robotics

Data representation and marshalling

Heterogeneity (everybody is different)
Different operation systems
Different programming languages
Different hardware architectures

Problem when data structures must be sent in message in
distribueted system



Chair of Cybernetics and Robotics

Data representation and marshalling

Different hosts may use different data representations
Sizes of integers, floating points, characters (ASCII vs Unicode)
Big vs. Little endian
Data structure layout in memory

Padding of arrays and structs

Pointers and structured data
Pointer representation might differ
Trees, lists, etc. must be serialized

Objects and functions (contain code!)
Typically don’t transmit code



Chair of Cybernetics and Robotics

Data representation and marshalling

Marshalling is the process of taking a collection of data items
and assembling them into a form suitable for transmission

Unmarshalling is the process of disassembling them on arrival to
produce an equivalent collection of data items at the destination
Strategy 1: Receiver Makes Right

Send data in sender’s native form
Receiver fixes it up if necessary

Strategy 2: Canonical Intermediate Representation
Sender marshals data into common format
Receiver unmarshals data into its own format

External data representation is an agreed standard for the
representation of data structures and primitive values



Chair of Cybernetics and Robotics

Data representation and marshalling

Data Schema
Explicit typing – self-describing data (tags)

additional information added to message to help in decoding
e.g., ONC XDR (RFC 4506)

Implicit: typing – the code at both ends “knows” how to decode
the message

interoperability depends on well defined protocol specification
very difficult to change
e.g., ISO’s ASN.1, XML, protocol buffers, JSON



Chair of Cybernetics and Robotics

Data representation and marshalling

Data Representation and Marshalling frameworks

Sun XDR (representation of most used data types)

ASN.1/BER (ISO standard, based on “type-tags”, open)

CDR (used in CORBA RMI, binary layout of IDL types)

Java Object Serialization (JOS)

XML (used in SOAP: “RMI” protocol for Web Services)

Google Protocol Buffers

Apache Thrift

Boost Serialization

MessagePack (CMP – C without heap allocation)

Lightweight Communications and Marshalling (LCM)

. . .



Chair of Cybernetics and Robotics

The End

Thank you for your kind attention.


	OSI model
	Embedded Networking
	Communication paradigms
	Data representation and marshalling

