
Component based approach for
distributed control system

Mariusz Janiak
p. 331 C-3, 71 320 26 44

c© 2015 Mariusz Janiak
All Rights Reserved

Chair of Cybernetics and Robotics



Chair of Cybernetics and Robotics

Contents

1 Component-Based Software Engineering

2 SysML



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is an approach that
has arisen in the software engineering community in the last decade.
It aims to shift the emphasis in system building from traditional
requirement analysis, system design, and implementation to
composing software systems from a mixture of reusable off-the-shelf
and custom-built components1. It emerged from the failure of
object-oriented development to support effective reuse. Single object
classes are too detailed and specific. Components are more abstract
than object classes and can be considered to be stand-alone service
providers.

1D. Brugali, A. Shakhimardanov, Component-Based Robotic Engineering
(Part II), in Robotics & Automation Magazine, IEEE, vol.17, no.1, pp.100-112,
March 2010



Chair of Cybernetics and Robotics

Component-Based Software Engineering

CBSE is said to be primarily concerned with three functions2

Developing software from pre-produced parts

The ability to reuse those parts in other applications

Easily maintaining and customizing those parts to produce new
functions and features

2G. T. Heineman, W. T. Councill, Component-based software engineering :
putting the pieces together. Addison-Wesley, Boston, 2001.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Application development becomes the selection, adaptation and
composition of components rather than implementing the
application from scratch.

3

3A. I. Khan, N. -ul-Qayyum, U. A. Khan, An Improved Model for Component
Based Software Development, in Software Engineering, Vol. 2 No. 4, 2012, pp.
138-146



Chair of Cybernetics and Robotics

Component-Based Software Engineering

CBSE essentials

Independent components specified by their interfaces

Component standards to facilitate component integration

Middleware that provides support for component
inter-operability

A development process that is geared to reuse



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Benefits of reuse

Increased Reliability – components already exercised in working
systems

Reduced Process Risk – less uncertainty in development costs

Effective Use of Specialists – reuse components instead of
people

Standards Compliance – embed standards in reusable
components

Accelerated Development – avoid custom development and
speed up delivery



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Apart from the benefits of reuse, CBSE is based on following
software engineering design principles

Components are independent so do not interfere with each other

Component implementation is hidden

Communication is through well-defined interfaces

Component platforms are shared and reduce development costs



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component-based software design of distributed systems

Requirements specification

Component analysis

System design with reuse (component selection/development,
routing connections, parametrization)

Deployment on application servers

Instantiation and monitoring at runtime



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component definitions

Councill and Heinmann – A software component is a software
element that conforms to a component model and can be
independently deployed and composed without modification
according to a composition standard.

Szyperski – A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third-parties.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component as a service provider

Components provide a service without regard to where the
component is executing or its programming language

The component is an independent, executable entity that can
be made up of one or more executable object classes

It does not have to be compiled before it is used with other
components

The services offered by a component are made available through
an interface

All component interactions take place through that interface



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component characteristics

Standardised – component standardization means that a
component that is used in a CBSE process has to conform to
some standardised component model. This model may define
component interfaces, component meta-data, documentation,
composition and deployment.

Independent – a component should be independent, it should be
possible to compose and deploy it without having to use other
specific components. In situations where the component needs
externally provided services, these should be explicitly set out in
a ‘requires’ interface specification.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component characteristics (cont.)

Composable – For a component to be composable, all external
interactions must take place through publicly defined interfaces.
In addition, it must provide external access to information about
itself such as its methods and attributes.

Deployable – To be deployable, a component has to be
self-contained and must be able to operate as a stand-alone
entity on some component platform that implements the
component model. This usually means that the component is a
binary component that does not have to be compiled before it is
deployed.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component characteristics (cont.)

Explicit context dependencies – specification of the deployment
and run-time environments. Which tools, platforms, resources,
other components are required?

Documented – components have to be fully documented so that
potential users of the component can decide whether or not
they meet their needs. The syntax and, ideally, the semantics of
all component interfaces have to be specified.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component interfaces
Provides interface – defines the services that are provided by the
component to other components
Requires interface – Defines the services that specifies what
services must be made available for the component to execute
as specified

4

4Wikipedia



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component interfaces (cont.)

5

5www.stackoverflow.com

www.stackoverflow.com


Chair of Cybernetics and Robotics

Component-Based Software Engineering

Contract (part of the interface specification)

A specification attached to an interface that mutually binds the
clients and providers of the components

Functional Aspects (API)
Pre- and post-conditions for the operations specified by API

Preconditions denoting the constraints which need to be met by
the client
Postconditions denoting the constraints which the component
promises to fulfil in return
A component may also additionally satisfy global constraints
called invariants

Non-functional aspects (different constrains, environment
requirements, etc.)



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Components and objects

Components are deployable entities

Components do not define types

Component implementations are opaque

Components are language-independent

Components are standardised



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Component models

A component model is a definition of standards for component
implementation, documentation and deployment

Examples of component models – EJB model (Enterprise Java
Beans), .NET model, Corba Component Model

The component model specifies how interfaces should be
defined and the elements that should be included in an interface
definition

Different application domains have different needs for
component-based systems (different non-functional properties:
performance, security, reliability, scalability, etc)



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Middleware support

Component models are the basis for middleware that provides
support for executing components
Component model implementations provide

Platform services that allow components written according to
the model to communicate
Horizontal services that are application-independent services
used by different components

To use services provided by a model, components are deployed
in a container. This is a set of interfaces used to access the
service implementations.



Chair of Cybernetics and Robotics

Component-Based Software Engineering

Robotics Component Oriented middlewares

OROCOS

ORCA

OpenRTM

Player

ROS (not strict follow CBSE principles)



Chair of Cybernetics and Robotics

SysML

What is SysML

A graphical modelling language developed in response to the
UML for Systems Engineering RFP developed by the OMG,
INCOSE, and AP233a

Supports the specification, analysis, design, verification, and
validation of systems that include hardware, software, data,
personnel, procedures, and facilities
Is a visual modeling language that provide

Semantics = meaning, connected to a metamodel (rules
governing the creation and the structure of models)
Notation = representation of meaning, graphical or textual

Is not a methodology or a tool (SysML is methodology and
tool independent)



Chair of Cybernetics and Robotics

SysML

SysML vs UML

UML is a general-purpose graphical modeling language aimed at
Software Engineers

Diagrams not used – Object diagram, Deployment diagram,
Component diagram, Communication diagram, Timing diagram
and Interaction overview diagram

Diagrams from UML – Class diagram (Block Definition
Diagram, Class → Block), Package diagram, Composite
Structure diagram (Internal Block Diagram), State Machine
Diagram, Activity Diagram, Use Case Diagram, Sequence
Diagram



Chair of Cybernetics and Robotics

SysML

SysML vs UML (cont.)

In addition, SysML adds some new diagrams and constructs –
Parametric diagram, Requirement diagram, Flow ports, Flow
specifications, Item flows, Allocation

6

6http://www.omgsysml.org

http://www.omgsysml.org


Chair of Cybernetics and Robotics

SysML

SysML Diagram Types

7

7http://www.omgsysml.org

http://www.omgsysml.org


Chair of Cybernetics and Robotics

SysML

8

8http://www.omgsysml.org

http://www.omgsysml.org


Chair of Cybernetics and Robotics

SysML

Blocks – basic structural elements

Based on UML Class from UML Composite Structure (supports
unique features e.g. flow ports, value properties)

Provides a unifying concept to describe the structure of an
element or system

Any type of system/element – hardware, software, data,
procedure, facility, person, signal, physical quantity

Compartments are used to describe the block characteristics –
Properties (parts, references, values, ports), operations,
constraints allocations from/to other model elements (e.g.
activities), requirements the block satisfies, user defined
compartments



Chair of Cybernetics and Robotics

SysML

Blocks and Compartments

9

9http://www.omgsysml.org

http://www.omgsysml.org


Chair of Cybernetics and Robotics

SysML

Block Diagrams

Blocks Used to Specify Hierarchies and Interconnection

Block definition diagrams describe the relationship among
blocks (e.g., composition, association, specialization)

Internal block diagrams describe the internal structure of
blocks in terms of properties and connectors



Chair of Cybernetics and Robotics

SysML

Block Definition Diagram (BDD)

The (Block) BDD is the same as a type definition

Captures properties, relations, dependencies . . .

Reused in multiple contexts

The BDD cannot define completely the communication
dependencies and the composition structure (no topology)



Chair of Cybernetics and Robotics

SysML

Block Definition Diagram (BDD)

10

10http://www.sparxsystems.com

http://www.sparxsystems.com


Chair of Cybernetics and Robotics

SysML

Internal Block Diagram (IBD)

Defines the use of Blocks in a composition

Part is the usage of a block in the context of a composing block
(also known as a role)

The internal structure becomes explicit

The communication and signalling topology becomes explicit



Chair of Cybernetics and Robotics

SysML

Internal Block Diagram (IBD)

11

11http://www.sparxsystems.com

http://www.sparxsystems.com


Chair of Cybernetics and Robotics

SysML

SysML Ports

Specify interaction points on blocks and parts

Integrate behavior with structure

Syntax: portName:TypeName
Kinds of ports

Standard (UML) Port – operation oriented for SW components;
specifies a set of required or provided operations and/or signals;
typed by a UML interface
Flow Port – used for signals and physical flows; specifies what
can flow in or out of block/part; typed by: a block, value type, or
flow specification

Standard Port and Flow Port support different interface
concepts

Flow Port deprecated since SysML v1.3 (proxy and full port)



Chair of Cybernetics and Robotics

SysML

Port notation

12

12http://www.omgsysml.org

http://www.omgsysml.org


Chair of Cybernetics and Robotics

The End

Thank you for your kind attention.


	Component-Based Software Engineering
	SysML

