
Introduction to robotic
programming environments

Mariusz Janiak
p. 331 C-3, 71 320 26 44

c© 2015 Mariusz Janiak
All Rights Reserved

Chair of Cybernetics and Robotics



Chair of Cybernetics and Robotics

Programme content

Introduction to robotic programming environments

Component/agent based approach for distributed control system

Communication protocols

OROCOS framework

ROS framework

Mathematical libraries



Chair of Cybernetics and Robotics

Course credit terms

To pass a course student has to obtain a lecture (F1) and a lab (F2)
credits
To obtain lecture credits stundent has to pass one of the following

end-term test – pass mark 51%
“Grandson” tests – short 3-minute, 1-2 questions, 3-5 minutes long,
scored 0-3 points (0 – absent, 1 – blank page, 2-3 – answer to the
questions), the grade

below 60% has to pass end-term test,
4.0 from 60%,
4.5 from 73, 33%,
5.0 from 86, 66%.

To obtain lab credits stundent has to actively participate in lab
classes (obligatory presence, pass all laboratory exercises, preparation
for the laboratory classes, self study) – pass mark 51%,
Final grade

P = 0.4 ∗ F 1 + 0.6 ∗ F 2



Chair of Cybernetics and Robotics

Literature

R. Simmons, D. Kortencamp, D. Brugali, Robotics Systems
Architectures and Programming, Handbook of Robotics II-ed.,
Springer 2013
A. J. A. Wang, K. Qian, Component-Oriented Programming,
John Wiley & Sons, Inc., 2005
D. Brugali, P. Scandurra, Component-based robotic engineering
(Part I), in Robotics & Automation Magazine, IEEE , vol.16,
no.4, pp.84–96, December 2009
D. Brugali, A. Shakhimardanov, Component-Based Robotic
Engineering (Part II), in Robotics & Automation Magazine,
IEEE , vol.17, no.1, pp.100-112, March 2010
R. Patrick Goebel, ROS By Example HYDRO - Volume 1, 2014
Jason M. O’Kane, A Gentle Introduction to ROS, CreateSpace
Independent Publishing Platform, 2013



Chair of Cybernetics and Robotics

Resources

BRICS (http://www.best-of-robotics.org)

OROCOS (www.orocos.org)

ROS (www.ros.org)

GAZEBO (http://gazebosim.org)

VREP (http://www.coppeliarobotics.com)

ACADO Toolkit (www.acadotoolkit.org)

CasADi (https://github.com/casadi/casadi/wiki)

Sundials (https://computation.llnl.gov/casc/sundials)

Eigen (http://eigen.tuxfamily.org)

ZeroMQ (http://zeromq.org)

Protocol Buffers
(https://developers.google.com/protocol-buffers)

http://www.best-of-robotics.org
www.orocos.org
www.ros.org
http://gazebosim.org
http://www.coppeliarobotics.com
www.acadotoolkit.org
https://github.com/casadi/casadi/wiki
https://computation.llnl.gov/casc/sundials
http://eigen.tuxfamily.org
http://zeromq.org
https://developers.google.com/protocol-buffers


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Fundamental questions

How difficult is developing a complex robotic system?

How to avoid re-inventing the wheel?

Is there any methodology that support that process?

What kind of tools should I use?



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Software for complex robotics systems usually is

embedded,

concurrent,

real-time,

distributed,

data intensive,

and must guarantee properties such as

safety,

reliability,

fault tolerance.1

1D. Brugali, P. Scandurra, Component-based robotic engineering (Part I), in
Robotics & Automation Magazine, IEEE , vol.16, no.4, pp.84–96, December 2009



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Centralized vs Distributed



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Centralized vs Distributed



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Distributed System

Multiple independent computers that appear as one

Lamport’s Definition
“You know you have one when the crash of a computer you
have never heard of stops you from getting any work done.”

A number of interconnected autonomous computers that
provide services to meet the information processing needs of
modern enterprises.



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Distributed System (cont.)
Multiple Autonomous Computers

each consisting of CPU’s, local memory, stable storage, I/O
paths connecting to the environment
geographically distributed

Interconnections
some I/O paths interconnect computers that talk to each other

Shared State
shared memory is not required
systems cooperate to maintain shared state
maintaining global invariants requires correct and coordinated
operation of multiple computers



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Communication issues

Fast, reliable physical communication interface

Real-time constraints (RTOS required) – software vs hardware

Communication protocol many-to-many – typically message
oriented publish/subscribe pattern.

Quality of Service (QoS)

Data representation – serialization

Portability and availability (different architectures, general
computing vs embedded, OS vs bare-metal)



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Standard IEC 61499 – origin

2

2www.isa.org

www.isa.org


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Standard IEC 61499 – architecture

3

3wikipedia.org

wikipedia.org


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Standard IEC 61499 – component

4

4www.software-kompetenz.de

www.software-kompetenz.de


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

BRICS: Best Practices in Robotics. The prime objective of BRICS is
to structure and formalize the robot development process itself and
to provide tools, models, and functional libraries, which help
accelerating this process significantly.5

European project aimed at find out the ”best practices” in the
developing of the robotic systems

Investigate the weakness of robotic projects

Investigates the integration between hardware and software

Design an IDE for robotic projects – BRIDE

Define showcases for the evaluation of project robustness with
respect to BRICS principles

5http://www.best-of-robotics.org/

http://www.best-of-robotics.org/


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

A component

is a binary unit of deployment,

implements well defined interfaces,

provides access to predefined set of functionality,

may be customized by set of parameters without access to
source code.

Component-Based Development

Software development from pre-produced parts

Modularity

Re-usability

Easly maintaining and customizing to produce new functions
and features



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Robotics middleware6

Simplifying the development process

Support communications and interoperability

Providing efficient utilization of available resources

Providing heterogeneity abstractions

Supporting integration with other systems

Offering often-needed robot services

Providing automatic recourse discovery and configuration

Supporting embedded components and low-resource-devices

6N. Mohamed, J. Al-Jaroodi, I. Jawhar, ”Middleware for Robotics: A Survey,”
in Robotics, Automation and Mechatronics, 2008 IEEE Conference on , vol., no.,
pp.736-742, 21-24 Sept. 2008



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Robotics middleware

OROCOS

ROCK

ORCA

YARP

OpenRTM

OpenRave

ROS

Player

. . .



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Open Robot Control Software

Open source license

Supported languages: C++, LUA and native scripting

Component Oriented Programming model
Framework components

Orocos Toolchain
Kinematics & Dynamics Library
Bayesian Filtering Library

Real-time control and communication

Integrated with Xenomai and ROS

www.orocos.org

www.orocos.org


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Robot Operating System

Open source license

Supported languages: C++, Python

Agent based programming model
Message passing

Topics – publish/subscribe model
Service – remote operation

Name and Parameter Services

Application building blocks: coordinate system transform
services, visualization tools, debugging tools, robust navigation
stack, arm path planning, object recognition, ...

www.ros.org

www.ros.org


Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Mathematical libraries

Algebra – LAPACK, Eigen, uBlas, GSL, MPL, MKL, ACML, . . .

ODE – Sundials, Odeint, GSL, Acado Toolkit, . . .

Optimization – IPOPT, Acado Toolkit, CasADi, . . .

Automatic differentiation – ADOL-C, CasADi, Acado Toolkit,
ad, . . .



Chair of Cybernetics and Robotics

Introduction to robotic programming environments

Robotics libraries (a brief overview)

motion planning – MoveIt, MPK, OMPL, OOPSMP, MSL, . . .

vision – OpenCV, PCL, LIBELAS, LIBVISO, VTK, . . .

navigation – ROS Navigation Stack, MRPT, . . .

SLAM – MRPT, RobotVision, gmapping, . . .

simulation – Bullet Physics, ODE, AMD Havok, NVIDIA
Phisics, . . .

control – ros control, OpenRTDynamics, Robotics Toolbox,
ROCK . . .

. . .



Chair of Cybernetics and Robotics

The End

Thank you for your kind attention.


	Programme content
	Course credit terms
	Literature
	Resources
	Introduction to robotic programming environments

