Umbrello UML Modeller
Handbook

K

Umbrello UML Modeller Handbook

Contents

1 Introduction 1
2 UML Basics 3
21 AboutUML 3
22 UMLElements., 4
221 UseCaseDiagram 4
2211 UseCase ene... 5

2212 Actor 6

2213 UseCase Description 6

222 ClassDiagram. 6
2221 Class. . . . o v v i it 7

22211 Attributes 8

22212 Operations 8

22213 Templates 8

2222 C(Class Associations 8

22221 Generalization 8

22222 Associations 9

22223 Aggregation 9

22224 Composition 10

2223 Other Class Diagram Items 10

22231 Interfaces 10

22232 Datatypes. 10

22233 Enums 10

22234 Packages 10

223 SequenceDiagrams. 11

224 Collaboration Diagrams 11

225 StateDiagram 12

Umbrello UML Modeller Handbook

2251 State o 14

226 ActivityDiagram 0 0 L 14
2261 Activity oo oo 15

227 HelperElements 15

228 Component Diagrams 15

229 Deployment Diagrams 16

3 Working with Umbrello UML Modeller 17
31 UserInterface 17
311 TreeView 18

3.1.2 Documentation Window 18

313 WorkArea 19

3.2 Creating, Loading and Saving Models 19
321 NewModel 19

322 SaveModel o 19

323 LoadModel 19

33 EditingModels o o oo 20
34 Adding and Removing Diagrams 20
341 Creating Diagrams 20

3.4.2 Removing Diagrams 21

3.43 Renaming Diagrams 21

3.5 Editing Diagrams 21
35.1 InsertElements 21

352 Deleting Elements 22

3.5.3 EditingElements 22

3.54 EditingClasses 23
3.5.4.1 Class General Settings 23

3.54.2 Class Attribute Settings 23

3.5.4.3 C(lass Operations Settings 23

3.5.44 C(lass Template Settings 24

3545 Class AssociationsPage 24

3.54.6 ClassDisplayPage 24

3547 ClassColorPage 24

355 Associations oo 24
3551 AnchorPoints 25

3.5.6 Notes, TextandBoxes 25
3561 Anchors....................... 25

Umbrello UML Modeller Handbook

4 Code Import and Code Generation

41 CodeGeneration e
411 GeneratingCode

4111 GenerationOptions
41111 Code Verbosity

41112 Folders
41113 OverwritePolicy

41114 Language.................

4.1.1.2 Generation Wizard Generation.
42 CodeImport

5 Other Features
5.1 Other Umbrello UML Modeller Features
511 Copying objects as PNGimages

512 ExportingtoanImage
513 Printing
514 LogicalFolders

6 Authors and History

7 Copyright

27

27
27

29
29

29
29

29

29
30

31
31
31

31
31
32

33

35

Abstract

Umbrello UML Modeller helps the software development process by using the
industry standard Unified Modelling Language (UML) to enable you to create
diagrams for designing and documenting your systems.

Umbrello UML Modeller Handbook

Chapter 1

Introduction

Umbrello UML Modeller is a UML diagram tool that can support you in the
software development process. Especially during the analysis and design phases
of this process, Umbrello UML Modeller will help you to get a high quality
product. UML can also be used to document your software designs to help
you and your fellow developers.

Having a good model of your software is the best way to communicate with
other developers working on the project and with your customers. A good
model is extremely important for medium and big-size projects, but it is also
very useful for small ones. Even if you are working on a small one man project
you will benefit from a good model because it will give you an overview that
will help you code things right the first time.

UML is the diagramming language used to describing such models. You can
represent your ideas in UML using different types of diagrams. Umbrello UML
Modeller 1.2 supports the following types:

o Class Diagram

e Sequence Diagram

e Collaboration Diagram

e Use Case Diagram

e State Diagram

e Activity Diagram

e Component Diagram

e Deployment Diagram

Umbrello UML Modeller Handbook

More information about UML can be found at the website of OMG, http:/ /www.omg.org
who create the UML standard.

We hope you enjoy Umbrello UML Modeller and that it helps you create high
quality software. Umbrello UML Modeller is Free Software and available at no
cost, the only thing we ask from you is to report any bugs, problems, or sugges-
tions to the Umbrello UML Modeller developers at uml-devel@lists.sourceforge.net
or http:/ /bugs.kde.org.

http://www.omg.org
mailto:uml-devel@lists.sourceforge.net
http://bugs.kde.org

Umbrello UML Modeller Handbook

Chapter 2

UML Basics

2.1 About UML

This chapter will give you a quick overview of the basics of UML. Keep in mind
that this is not a comprehensive tutorial on UML but rather a brief introduction
to UML which can be read as a UML tutorial. If you would like to learn more
about the Unified Modelling Language, or in general about software analysis
and design, refer to one of the many books available on the topic. There are
also a lot of tutorials on the Internet which you can take as a starting point.

The Unified Modelling Language (UML) is a diagramming language or nota-
tion to specify, visualize and document models of Object Orientated software
systems. UML is not a development method, that means it does not tell you
what to do first and what to do next or how to design your system, but it
helps you to visualize your design and communicate with others. UML is con-
trolled by the Object Management Group (OMG) and is the industry standard
for graphically describing software.

UML is designed for Object Orientated software design and has limited use for
other programming paradigms.

UML is composed of many model elements that represent the different parts
of a software system. The UML elements are used to create diagrams, which
represent a certain part, or a point of view of the system. The following types
of diagrams are supported by Umbrello UML Modeller:

o Use Case Diagrams show actors (people or other users of the system), use
cases (the scenarios when they use the system), and their relationships
o Class Dingrams show classes and the relationships between them

o Sequence Diagrams show objects and a sequence of method calls they make to
other objects.

Umbrello UML Modeller Handbook

o Collaboration Diagrams show objects and their relationship, putting emphasis
on the objects that participate in the message exchange

e State Diagrams show states, state changes and events in an object or a part of
the system

o Activity Diagrams show activities and the changes from one activity to an-
other with the events occurring in some part of the system

o Component Diagrams show the high level programming components (such as
KParts or Java Beans).

o Deployment Diagrams show the instances of the components and their rela-
tionships.

2.2 UML Elements

2.2.1 Use Case Diagram

Use Case Diagrams describe the relationships and dependencies between a
group of Use Cases and the Actors participating in the process.

It is important to notice that Use Case Diagrams are not suited to represent the
design, and cannot describe the internals of a system. Use Case Diagrams are
meant to facilitate the communication with the future users of the system, and
with the customer, and are specially helpful to determine the required features
the system is to have. Use Case Diagrams tell, what the system should do but
do not — and cannot — specify how this is to be achieved.

Umbrello UML Modeller Handbook

#5-4 Umbrello UML Modeller IT“EIX‘
File Edit Diagram Code Settings Help
%8 & 0
UML Diagrams =
l@v- 5 &
iews : L,
=-i5Logical View (AP, =
. ‘-[fclass diagram ook Tig =
B Use Case View = PEY
flight book:
- @ Book flight 'QA ‘Eer x
@@ Book flight ...
- @ Book flight .. ‘tl
.
Call ter ; ¥
% al center Book flight via phone Book flight at Travel Agency S
% Customer I_;

- & flight booker
- @fjuse case dia...

Call center agent
Customer

— Documentation

1€ :] 4 b

|Re|-ady. |

Umbrello UML Modeller showing a Use Case Diagram

2.2.1.1 Use Case
A Use Case describes — from the point of view of the actors — a group of
activities in a system that produces a concrete, tangible result.

Use Cases are descriptions of the typical interactions between the users of a sys-
tem and the system itself. They represent the external interface of the system
and specify a form of requirements of what the system has to do (remember,
only what, not how).

When working with Use Cases, it is important to remember some simple rules:

e Each Use Case is related to at least one actor

e Each Use Case has an initiator (i.e. an actor)

e Each Use Case leads to a relevant result (a result with ‘business value”’)

Use Cases can also have relationships with other Use Cases. The three most
typical types of relationships between Use Cases are:

o «include» which specifies that a Use Case takes place inside another Use Case

Umbrello UML Modeller Handbook

o «extends» which specifies that in certain situations, or at some point (called
an extension point) a Use Case will be extended by another.

o Generalization specifies that a Use Case inherits the characteristics of the ‘Super’-
Use Case, and can override some of them or add new ones in a similar way
as the inheritance between classes.

2.2.1.2 Actor

An actor is an external entity (outside of the system) that interacts with the
system by participating (and often initiating) a Use Case. Actors can be in
real life people (for example users of the system), other computer systems or
external events.

Actors do not represent the physical people or systems, but their role. This
means that when a person interacts with the system in different ways (assum-
ing different roles) he will be represented by several actors. For example a
person that gives customer support by the telephone and takes orders from
the customer into the system would be represented by an actor ‘Support Staff’
and an actor ‘Sales Representative’

2.2.1.3 Use Case Description

Use Case Descriptions are textual narratives of the Use Case. They usually take
the form of a note or a document that is somehow linked to the Use Case, and
explains the processes or activities that take place in the Use Case.

2.2.2 Class Diagram

Class Diagrams show the different classes that make up a system and how they
relate to each other. Class Diagrams are said to be ‘static’ diagrams because
they show the classes, along with their methods and attributes as well as the
static relationships between them: which classes ‘know” about which classes
or which classes ‘are part” of another class, but do not show the method calls
between them.

Umbrello UML Modeller Handbook

#5-4 Umbrello UML Modeller IBEE]
File Edit Diagram Code Settings Help
=488 3¢ 3
UML Diagrams =
S (b
‘&Wews |
&-&Logical View =
Header incomming requests =
-code @ int P — DEC
+ gelCode() - int = eaues o =
+ setCode(c : int) h I_‘
o
]
bkt
) A Body I_é
@ B§Use Case View %
s
— Documentation
-
-
1€ :] 4 b
[Ready. |
L L I
Umbrello UML Modeller showing a Class Diagram
2.2.2.1 Class

A Class defines the attributes and the methods of a set of objects. All objects of
this class (instances of this class) share the same behavior, and have the same
set of attributes (each object has its own set). The term ‘Type’ is sometimes
used instead of Class, but it is important to mention that these two are not the
same, and Type is a more general term.

In UML, Classes are represented by rectangles, with the name of the class, and
can also show the attributes and operations of the class in two other ‘compart-
ments’ inside the rectangle.

Class

+ attrl [int

+ attr2 : string

+ operation(p : bool) : double
operation2()

Visual representation of a Class in UML

7

Umbrello UML Modeller Handbook

2.2.2.1.1 Attributes In UML, Attributes are shown with at least their name,
and can also show their type, initial value and other properties. Attributes can
also be displayed with their visibility:

e + Stands for public attributes

e # Stands for protected attributes

e - Stands for private attributes

2.2.2.1.2 Operations Operations (methods) are also displayed with at least
their name, and can also show their parameters and return types. Operations
can, just as Attributes, display their visibility:

e + Stands for public operations
e # Stands for protected operations

e - Stands for private operations

2.2.21.3 Templates Classes can have templates, a value which is used for
an unspecified class or type. The template type is specified when a class is
initiated (i.e. an object is created). Templates exist in modern C++ and will be
introduced in Java 1.5 where they will be called Generics.

2.2.2.2 Class Associations

Classes can relate (be associated with) to each other in different ways:

2.2.2.2.1 Generalization Inheritance is one of the fundamental concepts of
Object Orientated programming, in which a class ‘gains’ all of the attributes
and operations of the class it inherits from, and can override/modify some of
them, as well as add more attributes and operations of its own.

In UML, a Generalization association between two classes puts them in a hierar-
chy representing the concept of inheritance of a derived class from a base class.
In UML, Generalizations are represented by a line connecting the two classes,
with an arrow on the side of the base class.

Umbrello UML Modeller Handbook

Derived

Visual representation of a generalization in UML

2.2.2.2.2 Associations An association represents a relationship between classes,
and gives the common semantics and structure for many types of ‘connections’
between objects.

Associations are the mechanism that allows objects to communicate to each
other. It describes the connection between different classes (the connection be-
tween the actual objects is called object connection, or link.

Associations can have a role that specifies the purpose of the association and
can be uni- or bidirectional (indicates if the two objects participating in the
relationship can send messages to the other, of if only one of them knows about
the other). Each end of the association also has a multiplicity value, which
dictates how many objects on this side of the association can relate to one object
on the other side.

In UML, associations are represented as lines connecting the classes partici-
pating in the relationship, and can also show the role and the multiplicity of
each of the participants. Multiplicity is displayed as a range [min..max] of non-
negative values, with a star (*) on the maximum side representing infinite.

Company Employee

Visual representation of an Association in UML

2.2.2.2.3 Aggregation Aggregations are a special type of associations in which
the two participating classes don’t have an equal status, but make a ‘whole-
part’ relationship. An Aggregation describes how the class that takes the role
of the whole, is composed (has) of other classes, which take the role of the
parts. For Aggregations, the class acting as the whole always has a multiplicity
of one.

In UML, Aggregations are represented by an association that shows a rhomb
on the side of the whole.

Umbrello UML Modeller Handbook

Car Wheel

Visual representation of an Aggregation relationship in UML

2.2.224 Composition Compositions are associations that represent very strong
aggregations. This means, Compositions form whole-part relationships as well,
but the relationship is so strong that the parts cannot exist on its own. They ex-
ist only inside the whole, and if the whole is destroyed the parts die too.

In UML, Compositions are represented by a solid rhomb on the side of the
whole.

Book Chapter

2.2.2.3 Other Class Diagram Items

Class diagrams can contain several other items besides classes.

2.2.2.3.1 Interfaces Interfaces are abstract classes which means instances can
not be directly created of them. They can contain operations but no attributes.

Classes can inherit from interfaces (through a realisation association) and in-
stances can then be made of these diagrams.

2.2.2.3.2 Datatypes Datatypes are primitives which are typically built into
a programming language. Common examples include integers and booleans.
They can not have relationships to classes but classes can have relationships to
them.

2.2.2.3.3 Enums Enums are a simple list of values. A typical example is an
enum for days of the week. The options of an enum are called Enum Literals.
Like datatypes they can not have relationships to classes but classes can have
relationships to them.

2.2.2.3.4 Packages Packages represent a namespace in a programming lan-
guage. In a diagram they are used to represent parts of a system which contain
more than one class, maybe hundereds of classes.

10

Umbrello UML Modeller Handbook

2.2.3 Sequence Diagrams

Sequence Diagrams show the message exchange (i.e. method call) between
several Objects in a specific time-delimited situation. Objects are instances of
classes. Sequence Diagrams put special emphasis in the order and the times in
which the messages to the objects are sent.

In Sequence Diagrams objects are represented through vertical dashed lines,
with the name of the Object on the top. The time axis is also vertical, increasing
downwards, so that messages are sent from one Object to another in the form
of arrows with the operation and parameters name.

%4 asf.xmi - Umbrello UML Modeller <2 | [][] [x¢]
Eile Edit Diagram Code Settings Help
£1% 8 & 3¢y
UML Diagrams - =
i Efjconnection-cl...
=- i =
7 @executlon | . Disgatcher‘ |Rﬂuests . Oueue| | :WorkerMangger| :Worker| [
~ EZ] Dispatcher o | | i v
EE] worker :receive() : Type —
& B worker. . F7| =N
----%icﬂ:

Efjjexecutioncla...
g overview-olla.
- Efjreceive data - ..
. sequence dia...
=-Ejtools

1 : loadWorker(job : Tra%saction] - Waorker
f
\
\
B | st ‘
\
\
I
I
\
\

= Map
- E queus =

- #gUse Case View |w

— Documentation

4 F ¥ 4 b

. Rﬁ-ady. \

Umbrello UML Modeller showing a Sequence Diagram

Messages can be either synchronous, the normal type of message call where
control is passed to the called object until that method has finished running,
or asynchronous where control is passed back directly to the calling object.
Synchronous messages have a vertical box on the side of the called object to
show the flow of program control.

2.24 Collaboration Diagrams

Collaboration Diagrams show the interactions occurring between the objects
participating in a specific situation. This is more or less the same information

11

Umbrello UML Modeller Handbook

shown by Sequence Diagrams but there the emphasis is put on how the inter-
actions occur in time while the Collaboration Diagrams put the relationships
between the objects and their topology in the foreground.

In Collaboration Diagrams messages sent from one object to another are repre-
sented by arrows, showing the message name, parameters, and the sequence
of the message. Collaboration Diagrams are specially well suited to showing
a specific program flow or situation and are one of the best diagram types to
quickly demonstrate or explain one process in the program logic.

#:,44 asf.xmi - Umbrello UML Modeller <2> I=1ES)
File Edit Diagram Code Settings Help

BCIEENEE

UML Diagrams & = ®

= IQJlCHEHI cormrmu.
E§common
@cunneclmn
@cunneclmncl

= @executiun

Dispatcher
Wurker
WorkerM receive() - Type

. Ejioc : RecelverThread |'|
— |

- Efjexecution<cla..
¥ send(Type m) : void

session_map . Map SecurityServer

¥ =]
canExEcute(S,asﬁunContext sessiorn =3
et DEC:
-

Dispatcher I

TCPServer

s send(Type m) @ void

connections data in : Queue

receiye() - Type

Mrkt) void

requests : Queue

!

-l - : send(Type [#y : void
- B sequence dia..
E-Ejtools receive() - Type

- [List I responses - Queue

Map
Queue
-&GUse Case View |

[X:

loadWorker(Transaction job) : Worker

— Documentation - WorkerManager

4 € ¥ 4 b

| |Re‘.-aay. I

Umbrello UML Modeller showing a Collaboration Diagram

2.2.,5 State Diagram

State Diagrams show the different states of an Object during its life and the
stimuli that cause the Object to change its state.

State Diagrams view Objects as state machines or finite automates that can be in
one of a set of finite states and that can change its state via one of a finite set
of stimuli. For example an Object of type NetServer can be in one of following
states during its life:

e Ready

e Listening

12

Umbrello UML Modeller Handbook

e Working
e Stopped

and the events that can cause the Object to change states are

e Object is created

e Object receives message listen

o A Client requests a connection over the network
o A Client terminates a request

e The request is executed and terminated

e Object receives message stop

e etc

%4 screen-shots.xmi - Umbrello UML Modeller :

[=]]
o]
[x]

Eile Edit Diagram GCode Settings Help

P IR R
UML Diagrams | A
Views Server States
E-tsLogical View
& % Base

listen

Listening

Request arrived Processing done

— Documentation

Stopped

destray

End

J® o e s glElx

|R£Itady. |

Umbrello UML Modeller showing a State Diagram

13

Umbrello UML Modeller Handbook

2.2.5.1 State

States are the building block of State Diagrams. A State belongs to exactly one
class and represents a summary of the values the attributes of a class can take.
A UML State describes the internal state of an object of one particular class

Note that not every change in one of the attributes of an object should be repre-
sented by a State but only those changes that can significantly affect the work-
ings of the object

There are two special types of States: Start and End. They are special in that
there is no event that can cause an Object to return to its Start state, in the same
way as there is no event that can possible take an Object out of its End state
once it has reached it.

2.2.6 Activity Diagram

Activity Diagrams describe the sequence of activities in a system with the help
of Activities. Activity Diagrams are a special form of State Diagrams, that only
(or mostly) contains Activities.

#15-H screen-shots.xmi - Umbrello UML Modell =|[o][x]
Eile Edit Diagram Code Settings Help
148 [5¢|n/
UML Diagrams _ -
Business Process: Make Reservation 1f not extin A
fb\hews g .
Customer,
B-¥)Logical View firstgoto =
@]aﬂlivily diagram J "Register =)
i Customer® DBGH
Eelass diagram Identify customer | —
--Ejclass diagram_1 Y
authentification failed g
- [state diagram _—
customer identified
- EUse Case View <
Take reservation wish —

Check available space

cancel

no space available
ok
Reserve
book reservation
Reservation canceled

[COT’IW’I’T\ reservation to custcmer}

|

Process sucessfully finished

— Documentation

[[Rezdy l

Umbrello UML Modeller showing an Activity Diagram

14

Umbrello UML Modeller Handbook

Activity Diagrams are similar to procedural Flux Diagrams, with the difference
that all Activities are clearly attached to Objects.

Activity Diagrams are always associated to a Class, an Operation or a Use Case.

Activity Diagrams support sequential as well as parallel Activities. Parallel
execution is represented via Fork/Wait icons, and for the Activities running in
parallel, it is not important the order in which they are carried out (they can be
executed at the same time or one after the other)

2.2.6.1 Activity

An Activity is a single step in a process. One Activity is one state in the system
with internal activity and, at least, one outgoing transition. Activities can also
have more than one outgoing transition if they have different conditions.

Activities can form hierarchies, this means that an Activity can be composed of
several ‘detail” Activities, in which case the incoming and outgoing transitions
should match the incoming and outgoing transitions of the detail diagram.

2.2.7 Helper Elements

There are a few elements in UML that have no real semantic value for the
model, but help to clarify parts of the diagram. These elements are

o Text lines

e Text Notes and anchors

e Boxes

Text lines are useful to add short text information to a diagram. It is free-
standing text and has no meaning to the Model itself.

Notes are useful to add more detailed information about an object or a specific
situation. They have the great advantage that notes can be anchored to UML
Elements to show that the note ‘belongs’ to a specific object or situation.

Boxes are free-standing rectangles which can be used to group items together
to make diagrams more readable. They have no logical meaning in the model.

2.2.8 Component Diagrams

Component Diagrams show the software components (either component tech-
nologies such as KParts, CORBA components or Java Beans or just sections of
the system which are clearly distinguishable) and the artifacts they are made
out of such as source code files, programming libraries or relational database
tables.

Components can have interfaces (i.e. abstract classes with operations) that al-
low associations between components.

15

Umbrello UML Modeller Handbook

2.2.9 Deployment Diagrams

Deployment diagrams show the runtime component instances and their asso-
ciations. They include Nodes which are physical resources, typically a single
computer. They also show interfaces and objects (class instances).

16

Umbrello UML Modeller Handbook

Chapter 3

Working with Umbrello UML
Modeller

This chapter will introduce you to Umbrello UML Modeller’s user interface
and will tell you all you need to know to start modelling. All actions in Um-
brello UML Modeller are accessible via the menu and the toolbars, but Um-
brello UML Modeller also makes extensive use of right mouse button context
menus. You can right mouse button click on almost any element in Umbrello
UML Modeller’s work area or tree view to get a menu with the most useful
functions that can be applied to the particular element you are working on.
Some users find this a little confusing at the beginning because they are more
used to working with the menu or tool bars, but once you get used to right
clicking it will greatly speed up your work.

3.1 User Interface

Umbrello UML Modeller’s main window is divided in three areas that will
help you keep an overview of your entire system and access the different dia-

grams quickly while working on your model.

These areas are called:

e Tree View
e Work Area

e Documentation Window

17

Umbrello UML Modeller Handbook

o]
=]

#_ -4 Untitled - Umbrello UML Modeller
File Edit Diagram Code Settings Help

&) 4 @ & Application toolbar

UML Diagrams - *®
Views Work Area
-t ogical View 5
i *-[fclass diagram E=
‘g Use Case View DEG
'
. = |5
Tree View 2 |
s =
g |4
= (=
— Documentation :"-‘i-
. 7
Documentation o

Window

4 f) 4 » v
[Ready.

Umbrello UML Modeller’s User Interface

3.1.1 Tree View

The Tree View is usually located on the top left hand side of the window and
shows the all the diagrams, classes, actors and use cases that build up your
model. The Tree View allows you to have a quick overview of the elements
composing your model. The Tree View also gives you a quick way to switch
between the different diagrams in your model and inserting elements from
your model into the current diagram.

If you are working on a model with more than just a few classes and diagrams,
the Tree View may help you stay on top of things by organizing your model
elements in folders. You can create folders by selecting the appropriate option
from the context menu (right mouse button click on one of the folders in the
tree view) and you can organize your elements by moving them to the appro-
priate folder (drag and drop)

3.1.2 Documentation Window

The Documentation Window is the small window located on the left bottom
of Umbrello UML Modeller, and it gives you a quick preview of the documen-

tation for the currently selected item. The Documentation Window is rather

18

Umbrello UML Modeller Handbook

small because it is intended to allow you just a quick pick into the element’s
documentation while taking as little screen space as possible. If you need to
view the documentation in more detail you can always open the item’s prop-
erties.

3.1.3 Work Area

The Work Area is the rnam window in Umbrello UML Modeller and is where
the real action takes place. You use the Work Area to edit and view the di-

agrams in your model. The Work Area shows the currently active diagram.
Currently only one diagram can be shown on the Work Area at any time.

3.2 Creating, Loading and Saving Models

The first thing you need to start doing something useful with Umbrello UML
Modeller is to create a model to work on. When you start Umbrello UML
Modeller it always loads the last used model or creates a new, empty model
(depending on your preferences set in the configuration dialog). This will al-
low you to start working right away.

3.2.1 New Model

If at any time you need to create a new model you can do this by selecting
the New entry from the File menu, or by clicking on the New icon from the
application toolbar. If you are currently working on a model which has been
modified Umbrello UML Modeller will ask you if it should save your changes
before loading the new model.

3.2.2 Save Model

You can save your model at any time by selecting the option Save from the File
Menu or by clicking on the Save button from the application toolbar. If you
need to save your model under a different name you can use the option Save
As from the File Menu.

For your convenience Umbrello UML Modeller also offers you the option to
automatically save your work each certain time period. You can configure if
you want this option as well as the time intervals in the Settings from Umbrello
UML Modeller

3.2.3 Load Model

For loading an already existing model you may select the option Open from
the File Menu or click on the Open icon from the application toolbar. The most

19

Umbrello UML Modeller Handbook

recently used models are also available under the submenu Open Recent in the
File Menu to speed up access to your most frequently used models.

Umbrello UML Modeller can only work on one model at a time, so if you ask
the program to load a model for you and your current model has been modified
since the last time you save it, Umbrello UML Modeller will ask you whether
your changes should be saved to prevent any loss of work. You can start two
or more instances of Umbrello UML Modeller at any one time, you can also
copy and paste between instances.

3.3 Editing Models

In Umbrello UML Modeller, there are basically two ways for editing the ele-
ments in your model.

¢ Edit model elements directly through the Tree View

e Edit model elements through a Diagram

Using the context menu of the different items in the Tree View you are able to
add, remove, and modify almost all the elements in your model. Right clicking
on the folders in the Tree View will give you options for creating the different
types of diagrams as well as, depending on whether the folder is a Use Case
View or a Logical View, Actors, Use Cases, Classes, etc.

Once you have added elements to your model you can also edit an element by
accessing its properties dialog, which you find by selecting the option Properties
from the context menu shown when right clicking on the items in the Tree View.

You can also edit your model by creating or modifying elements through dia-
grams. More details on how to do this are given in the following sections.

3.4 Adding and Removing Diagrams

Your UML model consists of a set of UML elements and associations between
them. However you cannot see the model directly, you use Diagrams to look at

it.

3.4.1 Creating Diagrams

To create a new diagram in your model simply select the diagram type you
need from the New submenu in the Diagram menu and give a name to it. The
diagram will be created and made active, and you will immediately see it in
the tree view.

Remember that Umbrello UML Modeller makes extensive use of context menus:
you can also right mouse button click on a folder in the Tree View and select the

20

Umbrello UML Modeller Handbook

appropriate diagram type from the New submenu in the context menu. Note
that you can create Use Case Diagrams only in Use Case View folders, and the
other types of diagram can only be created in the Logical View folders.

3.4.2 Removing Diagrams

Should you need to remove a diagram from your model, you can do this by
making it active and selecting Delete from the Diagram Menu. You can also
achieve this by selecting Delete from the diagrams context menu in the Tree
View

Since deleting a diagram is something serious that could cause loss of work if
done by accident, Umbrello UML Modeller will ask you to confirm the delete
operation before actually removing the Diagram. Once a diagram has been
deleted and the file has been saved there is no way to undo this action.

3.4.3 Renaming Diagrams

If you want to change the name of an existing diagram you can easily do this
by selecting the Rename option from its right mouse button menu in the Tree
View.

Another way to rename a diagram is to do this via its properties dialog, which
you obtain by selecting Properties from its Context Menu or by double clicking
on it in the Tree View.

3.5 Editing Diagrams

When working on a diagram, Umbrello UML Modeller will try to guide you
by applying some simple rules as to which elements are valid in the different
types of diagrams, as well as the relationships that can exist between them. If
you are an UML expert you will probably not even notice it, but this will help
UML novices create standard-conformant diagrams.

Once you have created your diagrams it is time to start editing them. Here
you should notice the (for beginners subtle) difference between editing your
diagram, and editing the model. As you already know, Diagrams are views of
your model. For example, if you create a class by editing a Class Diagram, you
are really editing both, your Diagram and your model. If you change the color
or other display options of a Class in your Class Diagram, you are only editing
the Diagram, but nothing is changed in your model.

3.5.1 Insert Elements
One of the first things you will do when editing a new diagram is to insert

elements into them (Classes, Actors, Use Cases, etc.) There is basically two
ways of doing this:

21

Umbrello UML Modeller Handbook

e Dragging existing elements in your model from the Tree View

¢ Creating new elements in your model and adding them to your diagram at
the same time, by using one of the edit Tools in the Work Toolbar

To insert elements that already exist in your model, just drag them from the
Tree View and drop them where you want them to be in your diagram. You
can always move elements around in your Diagram using the Select Tool

The second way of adding elements to your diagram is by using the Work
Toolbar’s edit tools (note that this will also add the elements to your model).

The Work Toolbar was by default located on the far right of the application
window, Umbrello UML Modeller 1.2 has moved this to the top of the window.
You can dock it into other edge or have it floating around if you prefer. The
tools available on this toolbar (the buttons you see on it) change depending on
the type of diagram you are currently working on. The button for the currently
selected tool is activated in the toolbar. You can switch to the select tool by
pressing the Esc key.

When you have selected an edit tool from the Work Toolbar (for example, the
tool to insert classes) the mouse pointer changes to a cross, and you can insert
the elements in your model by single clicking in your diagram. Note that el-
ements in UML must have a Unique Name. So that if you have a class in one
diagram whose name is ‘ClassA’ and then you use the insert Class tool to insert
a class into another diagram you cannot name this new class ‘ClassA’ as well.
If these two are supposed to be two different elements, you have to give them a
unique name. If you are trying to add the same element to your diagram, then
the Insert Class is not the right tool for that. You should drag and drop the
class from the Tree View instead.

3.5.2 Deleting Elements

You can delete any element by selecting the option Delete from its context
menu.

Again, there is a big difference between removing an object from a diagram,
and deleting an object from your model: If you delete an object from within a
diagram, you are only removing the object from that particular diagram: the
element will still be part of your model and if there are other diagrams using
the same element they will not suffer any change. If, on the other hand, you
delete the element from the Tree View, you are actually deleting the element
from your model. Since the element no longer exist in your model, it will be
automatically removed from all the diagrams it appears in.

3.5.3 Editing Elements

You can edit most of the UML elements in your model and diagrams by open-
ing its Properties dialog and selecting the appropriate options. To edit the

22

Umbrello UML Modeller Handbook

properties of an object, select Properties from its context menu (right mouse
button click). Each element has a dialog consisting of several pages where you
can configure the options corresponding to that element. For some elements,
like actors you can only set a couple of options, like the object name and docu-
mentation, while for other elements, like classes, you can edit its attributes and
operations, select what you want to be shown in the diagram (whole operation
signature or just operation names, etc) and even the colors you want to use for
the line and fill of the class’ representation on the diagram.

For most UML elements you can also open the properties dialog by double
clicking on it if you are using the selection tool (arrow). The exception to this is
Associations, in which case a double click creates an anchor point. For associa-
tions you need to use the right mouse button context menu to get the properties
dialog.

Note that you can also select the properties option from the context menu of
the elements in the Tree View. This allows you to also edit the properties for
the diagrams, like setting whether the grid should be shown or not.

3.5.4 Editing Classes

Even though editing the properties of all objects was already covered in the
previous section, classes deserve a special section because they are a bit more
complicated and have more options than most of the other UML elements.

In the properties dialog for a class you can set everything, from the color it uses
to the operations and attributes it has.

3.5.4.1 Class General Settings

The General Settings page of the properties dialog is self-explanatory. Here
you can change the class’ name, visibility, documentation, etc. This page is
always available.

3.5.4.2 Class Attribute Settings

In the Attributes Settings page you can add, edit, or delete attributes (variables)
of the class. You can move attributes up and down the list by pressing the
arrow button on the side. This page is always available.

3.5.4.3 Class Operations Settings

Similar to the Attribute Settings Page, in the Operation Settings Page you can
add, edit, or remove operations for your class. When adding or editing an
operation, you enter the basic data in the Operation Properties dialog. If you
want to add parameters to your operation you need to click the New Parameter
button, which will show the Parameter Properties dialog. This page is always
available

23

Umbrello UML Modeller Handbook

3.5.4.4 Class Template Settings

This page allows you to add class templates which are unspecified classes or
datatypes. In Java 1.5 these will be called Generics.

3.5.4.5 Class Associations Page

The Class Associations page shows all the associations of this class in the cur-
rent diagram. Double clicking on an association shows its properties, and de-
pending on the type of association you may modify some parameters here such
as setting multiplicity and Role name. If the association does not allow such
options be be modified, the Association Properties dialog is read-only and you
can only modify the documentation associated with this association.

This page is only available if you open the Class Properties from within a dia-
gram. If you select the class properties from the context menu in the Tree View
this page is not available.

3.5.4.6 Class Display Page

In the Display Options page, you can set what is to be shown in the diagram.
A class can be shown as only one rectangle with the class name in it (useful if
you have many classes in your diagram, or are for the moment not interested
in the details of each class) or as complete as showing packages, stereotypes,
and attributes and operations with full signature and visibility

Depending on the amount of information you want to see you can select the
corresponding options in this page. The changes you make here are only dis-
play options for the diagram. This means that "hiding’ a class’ operations only
makes them not to be shown in the diagram, but the operation are still there as
part of your model. This option is only available if you select the class proper-
ties from within a Diagram. If you open the class properties from the Tree View
this page is missing since such Display Options do not make sense in that case

3.5.4.7 Class Color Page

In the Widget Color page you can configure the colors you want for the line
and the fill of the widget. This option obviously makes sense only for classes
displayed in diagrams, and is missing if you open the class’ properties dialog
from the Tree View.

3.5.5 Associations
Associations relate two UML objects to each other. Normally associations are

defined between two classes, but some types of associations can also exists
between use cases and actors.

24

Umbrello UML Modeller Handbook

To create an association select the appropriate tool from the Work Toolbar (generic
Association, Generalization, Aggregation, etc.) and single click on the first el-
ement participating in the association and then single click on the second item
participating. Note that those are two clicks, one on each on the objects partic-
ipating in the association, it is not a drag from one object to the other.

If you try to use an association in a way against the UML specification Um-
brello UML Modeller will refuse to create the association and you will get an
error message. This would be the case if, for example, a Generalization exists
from class A to class B and then you try to create another Generalization from
Class B to class A

Right clicking on an association will show a context menu with the actions you
can apply on it. If you need to delete an association simply select the Delete
option from this context menu. You can also select the Properties option and,
depending on the association type edit attributes such as roles and multiplicity.

3.5.5.1 Anchor Points

Associations are drawn, by default, as a straight line connecting the two objects
in the diagram.

You can add anchor points to bend an association by double clicking some
where along the association line. This will insert an anchor point (displayed as
a blue point when the association line is selected) which you can move around
to give shape to the association

If you need to remove an anchor point, double click on it again to remove it

Note that the only way to edit the properties of an association is through the
context menu. If you try to double click on it as with other UML objects, this
will only insert an anchor point.

3.5.6 Notes, Text and Boxes

Notes, Lines Of Text and Boxes are elements that can be present in any type
of diagram and have no real semantic value, but are very helpful to add extra
comments or explanations that can make your diagram easier to understand.

To add a Note or a Line Of Text, select the corresponding tool from the Work
Toolbar and single click on the diagram where you want to put your comment.
You can edit the text by opening the element through its context menu or in the
case of notes by double clicking on them as well.

3.5.6.1 Anchors
Anchors are used to link a text note and another UML Element together. For
example, you normally use a text note to explain or make some comment about

a class or a particular association, in which case you can use the anchor to make
it clear that the note ‘belongs’ to that particular element.

25

Umbrello UML Modeller Handbook

To add an anchor between a note and another UML element, use the anchor
tool from the work toolbar. You first need to click on the note and then click on
the UML element you want the note to be linked to.

26

Umbrello UML Modeller Handbook

Chapter 4

Code Import and Code
Generation

Umbrello UML Modeller is a UML modelling tool, and as such its main pur-
pose is to help you in the analysis and design of your systems. However, to
make the transition between your design and your implementation, Umbrello
UML Modeller allows you to generate source code in different programming
languages to get you started. Also, if you want to start using UML in an already
started C++ project, Umbrello UML Modeller can help you create a model of
your system from the source code by analysing your source code and import-
ing the classes found in it.

4.1 Code Generation

Umbrello UML Modeller can generate source code for various programming
languages based on your UML Model to help you get started with the im-
plementation of your project. The code generated consists of the class dec-
larations, with their methods and attributes so you can ‘fill in the blanks’ by
providing the functionality of your classes’ operations.

Umbrello UML Modeller 1.2 comes with code generation support for Action-
Script, Ada, C++, CORBA IDL, Java™, JavaScript, PHP, Perl, Python, SQL and
XMLSchema.

4.1.1 Generating Code

In order to generate code with Umbrello UML Modeller, you first need to create
or load a Model containing at least one class. When you are ready to start writ-
ing some code, select the Code Generation Wizard entry from the Code menu
to start a wizard which will guide you trough the code generation process.

27

Umbrello UML Modeller Handbook

The first step is to select the classes for which you want to generate source
code. By default all the classes of your model are selected, and you can remove
the ones for which you do not want to generate code by moving them to the
left-hand side list.

The next step of the wizard allows you to modify the parameters the Code
Generator uses while writing your code. The following options are available:

IREE

#+,-14 Code Generation Wizard

| Code Generation Options

— Code Verbosity

E Write documentation comments even if empty

E Write comments for sections even if section is empty

— Directories
Write all generated files to directory

homelluis/prjf umbrelln-‘generatedf] "r Browse \

@ Include heading files from directory:

fopt/kded/share/apps/umbrello’headings/ {Brnwse?

— Owenwrite Policy
If a file with the same name as the name Code Generator
wants to use as output file already exists:

) Overwrite

@® Ask

) Use adifferent name

— Language
(cpp -
"h Cancel "r < Back \ "r Mext :--:"~ "'r Hﬂ-lp?'

Options for the Code Generation in Umbrello UML Modeller

28

Umbrello UML Modeller Handbook

4.1.1.1 Generation Options

41.1.1.1 Code Verbosity The option Write documentation comments even
if empty instructs the Code Generator to write comments of the /** blah */
style even if the comment blocks are empty. If you added documentation to
your classes, methods or attributes in your Model, the Code Generator will
write these comments as Doxygen documentation regardless of what you set
here, but if you select this option Umbrello UML Modeller will write comment
blocks for all classes, methods and attributes even if there is no documentation
in the Model, in which case you should document your classes later directly in

the source code.

Write comments for sections even if section is empty causes Umbrello UML

Modeller to write comments in the source code to delimit the different sections
of a class. For example “public methods’ or ‘Attributes’ before the correspond-

ing sections. If you select this option Umbrello UML Modeller will write com-
ments for all sections of the class even if the section is empty. For example, it
would write a comment saying ‘protected methods’ even if there are no pro-
tected methods in your class.

4.1.1.1.2 Folders Write all generated files to folder. Here you should se-
lect the folder where you want Umbrello UML Modeller to put the generated
sources.

The Include heading files from folder option allows you to insert a heading
at the beginning of each generated file. Heading files can contain copyright
or licensing information and contain variables that are evaluated at generation
time. You can take a look at the template heading files shipped with Umbrello
UML Modeller to see how to use this variables for replacing your name or the
current date at generation time.

4.1.1.1.3 Overwrite Policy This option tells Umbrello UML Modeller what
to do if the file it wants to create already exists in the destination folder. Um-
brello UML Modeller cannot modify existing source files, so you have to choose
between overwriting the existing file, skipping the generation of that particu-
lar file or letting Umbrello UML Modeller choose a different file name. If you
choose the option to use a different name, Umbrello UML Modeller will add a
suffix to the file name.

41.1.14 Language Umbrello UML Modeller will by default generate code
in the language you have selected as Active Language, but with the Code Gen-
eration Wizard you have the option to change this to another language.

4.1.1.2 Generation Wizard Generation
The third and last step of the wizard shows the status of the Code Generation

process. You need only to click on the Generate button to get your classes
written for you.

29

Umbrello UML Modeller Handbook

Note that the Options you select during the Code Generation Wizard are only
valid for the current generation. The next time you run the wizard you will
need to re-select all the options (your headings folder, overwrite policy, and
so on). You can set the defaults used by Umbrello UML Modeller in the Code
Generation section of the Umbrello UML Modeller settings, available at Set-
tings — Configure Umbrello UML Modeller...

If you have set your Code Generation options to the right settings and want
to generate some code right away without going through the wizard, you can
select the entire Generate All Code from the Code menu. This will generate
code for all the classes in your Model using the current settings (including
Output Folder and Overwrite Policy, so use with care).

4.2 Code Import

Umbrello UML Modeller can import source code from your existing projects
to help you build Model of your systems. Umbrello UML Modeller 1.2 sup-
ports only C++ source code, but other languages should be available in future
versions.

To import classes into your Model, select the entry Import Classes... from the
Code menu. In the file dialog select the files containing the C++ class decla-
rations and press OK. The classes will be imported and you will find them as
part of your Model in the Tree View. Note that Umbrello UML Modeller will
not create any kind of Diagram for showing your classes, they will only be

imported into your Model so that you can use them later in any diagram you
want.

%t,—[‘—‘-l Untitled - Umbrello UML Modeller <2>
Eile Edit Diagram Code Settings Help

@ Qﬂ = @ 3 Import Classes. ..

LML Diagrams Code Generation Wizard. ..

ﬁ Views Generate All Code

@--'@chic al View Active Language »
. [Fclass diag..

5----@Use Case View Add / Remove Languages

Menu for importing source code in Umbrello UML Modeller

30

Umbrello UML Modeller Handbook

Chapter 5

Other Features

5.1 Other Umbrello UML Modeller Features

This chapter will briefly explain some other features Umbrello UML Modeller
offers you.

5.1.1 Copying objects as PNG images

Apart from offering you the normal copy, cut and paste functionality that you
would expect to copy objects between different diagrams, Umbrello UML Mod-
eller can copy the objects as PNG pictures so that you can insert them into any
other type of document. You do not need to do anything special to use this fea-
ture, just select an object from a diagram (Class, Actor, etc.) and copy it (Ctrl-C,
or using the menu), then open a KWord document (or any program into which
you can paste images) and select Paste. This is a great feature to export parts
of your diagram as simple pictures.

5.1.2 Exporting to an Image

You can also export a complete diagram as an image. The only thing you need
to do is select the diagram you want to export, and then the option Export as
Picture... from the Diagram menu.

5.1.3 Printing

Umbrello UML Modeller allows you to print individual diagrams. Press the
Print button on the application toolbar or selecting the Print option from the
File menu will give you a standard KDE Print dialog from where you can print
your diagrams.

31

Umbrello UML Modeller Handbook

5.1.4 Logical Folders

To better organize your model, especially for larger projects, you can create
logical folders in the Tree View. Just select the option New — Folder from the

context menu of the default folders in the Tree View to create them. Folders
can be nested, and you can move objects around by dragging them from one

folder and dropping them into another.

UML Diagrams

ﬁ\u"iews
- Logical View
e |- DisDatcher| | Requests . Cu

E'@C onnection @ MNew Folder
" Receiv 3¢ Cut Class
" sende(Ly Copy Class Diagram

a-Eropsel Paste

- Efjconnection| 4t Rename

- E§execution
- E§j execution-c Dalata

Ea--@mrenriew Import Classes...

E-Egtools Expand Al
- | st

e] Map
= queue
-5 Use Case View

State Diagram
Activity Diagram
Sequence Diagram

COCCOCOEHE

Collaboration Diagram

Collapse All

Organizing a Model with Logical Folders in Umbrello UML Modeller

32

Umbrello UML Modeller Handbook

Chapter 6

Authors and History

This project was started by Paul Hensgen as one of his University projects. The
original name of the application was UML Modeller. Paul did all the develop-
ment until the end of 2001 when the program reached version 1.0.

Version 1.0 already offered a lot of functionality, but after the project had been
reviewed at Paul’s University, other developers could join and they started
making valuable contributions to UML Modeller, like switching from a binary
file format to an XML™ file, support for more types of UML Diagrams, Code
Generation and Code Import just to name a few.

Paul had to retire from the development team in Summer 2002 but, as Free and
Open Source Software, the program continues to improve and evolve and is
being maintained by a group of developers from different parts of the world. In
September 2002 the project changed its name from UML Modeller, to Umbrello
UML Modeller. There are several reasons for the change of names, the most
important ones being that just ‘uml’ — as it was commonly known — was a
much too generic name and caused problems with some distributions. The
other important reason is that the developers think Umbrello is a much cooler
name.

The development of Umbrello UML Modeller as well as discussions as to where
the program should head for future versions is open and takes place over the
Internet. If you would like to contribute to the project, please do not hesitate to
contact the developers. There are many ways in which you can help Umbrello
UML Modeller:

e Reporting bugs or improvements suggestions
o Fixing bugs or adding features
e Writing good documentation or translating it to other languages

e And of course...coding with us!

33

Umbrello UML Modeller Handbook

As you see, there are many ways in which you can contribute. All of them are
very important and everyone is welcome to participate.

The Umbrello UML Modeller developers can be reached at uml-devel@lists.sourceforge.net.

34

mailto:uml-devel@lists.sourceforge.net

Umbrello UML Modeller Handbook

Chapter 7
Copyright

Copyright 2001, Paul Hensgen

Copyright 2002, 2003 The Umbrello UML Modeller Authors. See http:/ /uml.sf.net/-
developers.php for more information

This documentation is licensed under the terms of the GNU Free Documenta-
tion License.

This program is licensed under the terms of the GNU General Public License.

35

http://uml.sf.net/developers.php
http://uml.sf.net/developers.php
file:common/fdl-license.html
file:common/fdl-license.html
file:common/gpl-license.html

	Introduction
	UML Basics
	About UML
	UML Elements
	Use Case Diagram
	Use Case
	Actor
	Use Case Description

	Class Diagram
	Class
	Attributes
	Operations
	Templates

	Class Associations
	Generalization
	Associations
	Aggregation
	Composition

	Other Class Diagram Items
	Interfaces
	Datatypes
	Enums
	Packages

	Sequence Diagrams
	Collaboration Diagrams
	State Diagram
	State

	Activity Diagram
	Activity

	Helper Elements
	Component Diagrams
	Deployment Diagrams

	Working with Umbrello UML Modeller
	User Interface
	Tree View
	Documentation Window
	Work Area

	Creating, Loading and Saving Models
	New Model
	Save Model
	Load Model

	Editing Models
	Adding and Removing Diagrams
	Creating Diagrams
	Removing Diagrams
	Renaming Diagrams

	Editing Diagrams
	Insert Elements
	Deleting Elements
	Editing Elements
	Editing Classes
	Class General Settings
	Class Attribute Settings
	Class Operations Settings
	Class Template Settings
	Class Associations Page
	Class Display Page
	Class Color Page

	Associations
	Anchor Points

	Notes, Text and Boxes
	Anchors

	Code Import and Code Generation
	Code Generation
	Generating Code
	Generation Options
	Code Verbosity
	Folders
	Overwrite Policy
	Language

	Generation Wizard Generation

	Code Import

	Other Features
	Other Umbrello UML Modeller Features
	Copying objects as PNG images
	Exporting to an Image
	Printing
	Logical Folders

	Authors and History
	Copyright

