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Abstract— This paper presents an experimental evaluation
of different line extraction algorithms on 2D laser scans
for indoor environment. Six popular algorithms in mobile
robotics and computer vision are selected and tested. Exper-
iments are performed on 100 real data scans collected in an
office environment with a map size of 80m x 50m. Several
comparison criteria are proposed and discussed to highlight
the advantages and drawbacks of each algorithm, including
speed, complexity, correctness and precision. The results of
the algorithms are compared with the ground truth using
standard statistical methods.

Index Terms— Line Extraction, 2D Laser Rangefinder,
Vision, Mobile Robotics.

I. INTRODUCTION

It is usually important in mobile robotics that the robot
wants to know where it is in a known or unknown envi-
ronment. A precise position estimation always serves as
the heart in any navigation systems, such as localization,
dynamic map building, path planning. It is well known that
using solely the data from odometry is not sufficient since
the odometry provides unbounded position error [12]. The
problem gives rise to variety solutions of using different
exteroceptive sensors (sonar, infrared, laser, vision, etc.).
One of the possible choices is to use 2D laser rangefinder
as it becomes increasingly popular in mobile robotics. For
example, laser scanners have been used in localization [4],
[13], dynamic map building [14], [10], [3], [21], collision
avoidance [16]. There are many advantages of laser scanner
compared to other sensors: it provides dense and more
accurate range measurements, it has high sampling rate,
high angular resolution, good range distance and resolution.

The primary issue is how to accurately match sensed
data against information in a priori map or information that
has been collected so far. There are two common matching
techniques that have been used in mobile robotics: point-
based matching and feature-based matching. The early
work of Cox [4] uses range data in a small polygonal
environment to help the robot localizing. He proposes
a matching algorithm between point images and target
models in a priori map using an iterative least-squares
minimization method. Another work [14] addresses the
problem of self-localization in an unknown environment,
not necessarily polygonal. The proposed approach is to
approximate the alignment of two consecutive scans, and
then iteratively improve the alignment by defining and
minimizing some distance between the scans.

Instead of working directly with raw scan points, feature-
based matching first transforms the raw scans into geo-
metric features. These extracted features are used in the
matching in the next step. This approach has been studied
and employed intensively in recent research on robot lo-
calization, mapping, feature extraction, etc. [3], [11], [13].
Being more compact that they require much less storage
and still provide rich and accurate information, algorithms
based on parameterized geometric features are expected to
be more efficient compared to point-based algorithms.

Among many geometric primitives, line segment is the
simplest one. It is easy to describe most office environment
using line segments. Many algorithms have been proposed
using line features from 2D range data. Castellanos et
al. [3] propose a line segmentation method inspired from
an algorithm in computer vision, to use with a priori
map as an approach to robot localization. Vandorpe et al.
[22] introduce a dynamic map building algorithm based
on geometrical features (lines and circles) using a laser
scanner. Arras et al. [1] use a 2D scan segmentation method
based on line regression in map-based localization. Jensfelt
et al. [13] present a technique for acquisition and tracking
of the pose of a mobile robot with a laser scanner by
extracting orthogonal lines (walls) in an office environment.
Finally, Pfister et al. [17] suggest a line extraction algorithm
using weighted line fitting for line-based map building.

In the fact that many works have been done on line
extraction, there is a lack of a comprehensive comparison
of the so far proposed algorithms. Selecting a best method
to extract lines from scan data is the first task for anyone
who is going to build a line-based navigation system using
2D laser scanner. In term of speed, one would prefer the
fastest algorithm for his real time application. In term of
line extraction quality, it is primarily important for line-
based SLAM because bad feature extraction can lead the
system to divergence. Implementation complexity should
be also taken into consideration.

The work described in [11] gives a brief comparison
of 3 algorithms which are relatively out of date compared
to ones found in recent works. Moreover, the uncertainty
modeling of the parameters used is not mentioned. Borges
et al. [2] present an extended version of split-and-merge and
compare their method with a generic split-and-merge algo-
rithm and a line tracking (incremental) algorithm. However
the comparison on real data is indirectly interpreted from



the map built by the mapping process.

This paper presents a throughout evaluation of six line
extraction algorithms on range scans. The six selected algo-
rithms are the most commonly used in mobile robotics and
computer vision. Several comparison criteria are proposed
and discussed, including speed, complexity, correctness,
precision. Experiments are performed on 100 real data
scans collected in an office environment with a map size
of 80m x 50m. The results of the algorithms are compared
with the ground truth using standard statistical methods.

II. PROBLEM DEFINITION

A range scan describes a 2D slice of the environment.
Points of a range scan are specified in polar coordinate
system (p;, 6;) whose origin is the location of the sensor. It
is common to assume that the noise on range measurement
follows a gaussian distribution with zero mean, variance
U;Q)i and the angular uncertainty is negligible [1]. (Note:
In this work, we focus on the performance of algorithms’
schema, we do not consider systematic errors as they
mainly depend on a specific hardware and testing envi-
ronment [5]. Sensor calibration can be further investigated
by a separate work.)

We choose the polar form to represent a line model:
rcosa+ysina=r

where —m < o <= 7 is the angle between the x axis
and the normal of the line, r >= 0 is the perpendicular
distance of the line to the origin; (x,y) is the Cartesian
coordinates of a point on the line. The covariance matrix
of line parameters is:
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There are three main problems in line extraction in un-
known environment [9]. They are:

o How many lines are there ?

o Which points belong to which line ?

« Given the points that belong to a line, how to estimate
the line model parameters ?

In implementing the algorithms, we try to use as much
common routines as possible, so that the experimental
results reflect mainly the differences of the algorithms’
schema. Particularly for the third problem, we use a
common fitting method, called fotal-least-squares, for all
the algorithms since it has been used extensively in the
literature [1], [13], [7], [14], [18]. Hence, the algorithms
differ only in solving the first two problems.

III. SELECTED ALGORITHMS AND RELATED WORK

This section briefly presents the descriptions of the six
selected line extraction algorithms on 2D range scans. Our
selection is based on their performance and popularity in
both mobile robotics, especially feature extraction, and
computer vision. Only basic versions of the algorithms
are given, even though their details may vary in different
applications and implementations. Interested reader should

refer to the indicated references for more details. Our
implementation follows closely the pseudo-code described
below in most cases, otherwise it will be stated.

A. Split-and-Merge Algorithm

Split-and-Merge is probably the most popular line extrac-
tion algorithm which is originated from computer vision
[15]. It has been studied and used in many works [3], [7],
(18], 2], [23].

Algorithm 1: Split-and-Merge

1 Initial: set s; consists of N points. Put s; in a list £

2 Fit a line to the next set s; in £

3 Detect point P with maximum distance dp to the line

4 If dp is less than a threshold, continue (go to 2)

5 Otherwise, split s; at P into s;; and s;o, replace s; in
L by s;1 and s;2, continue (go to 2)

6 When all sets (segments) in £ have been checked,
merge collinear segments.

We make a slight modification to line 3 so that we scan
for a splitting position where 2 adjacent points P, and P,
are at the same side to the line and both have distances to
the line greater than the threshold (if only 1 such point is
found, it is ignored as a noisy point). Notice that in line 2,
we use a least-squares method for line fitting.

One can implement differently so that the line is con-
structed simply by connecting the first and the last points.
In this case, the algorithm is named [ferative-End-Point-Fit
(6], [18], [2], [23].

B. Line Regression Algorithm

This algorithm is proposed in [1] for map-based localiza-
tion. The key idea is inspired from the Hough Transform
algorithm so that the algorithm first transforms the line
extraction problem into a search problem in model space
(line parameter domain), then applies the Agglomerative
Hierarchical Clustering (AHC) algorithm to construct ad-
jacent line segments. One drawback of this algorithm is
that it is quite complex to implement.

Algorithm 2: Line-Regression

1 Initialize sliding window size Ny

2 Fit a line to every Ny consecutive points (a window)

3 Compute a line fidelity array, each is the sum of
Mahalanobis distances between every 3 adjacent
windows

4 Construct line segments by scanning the fidelity array
for consecutive elements having values less than a
threshold, using an AHC algorithm

5 Merge overlapped line segments and recompute line
parameters for each segment

The sliding window size Ny is very dependent on environ-
ment and has great influence on the algorithm performance.
For our benchmark, Ny = 7 is used. A fotal-least-squares
fitting method is used in line 2.



C. Incremental Algorithm

Simplicity is the main advantage of this algorithm. It has
been used in many applications [9], [22], [20] and has a
different name as Line-Tracking [18].

Algorithm 3: Incremental

Start by the first 2 points, construct a line

Add the next point to the current line model
Recompute the line parameters

If it satisfies line condition, continue (go to 2)
Otherwise, put back the last point, recompute the line
parameters, return the line

6 Continue with the next 2 points, go to 2
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In our implementation, we add 5 points each step (line 2)
to speed up the incremental process. When the line does
not satisfy a predefined line condition, the last 5 points are
put back and it is switched back to adding individual point
at a time. Again, we use a total-least-squares method for
line fitting (line 3, 5).

D. RANSAC Algorithm

RANSAC - Random Sample Consensus [8] is an algorithm
for robust fitting of models in the presence of data outliers.
The main advantage of RANSAC is that it is a generic
segmentation method and can be used with many types
of features once we have the feature model. It is also
simple to implement. This algorithm is very popular in
computer vision to extract features [9]. Again, the same
fitting method is used in line 4, 7.

Algorithm 4: RANSAC
1 Initial: A set of N points

2 repeat

3 Choose a sample of 2 points uniformly at random
4 Fit a line through the 2 points

5 Compute the distances of other points to the line
6 Construct the inlier set

7 If there are enough inliers, recompute the line

parameters, store the line, remove the inliers from

the set
8 until Max.N.Iterations reached or too few points left

E. Hough Transform Algorithm

Hough Transform (HT) tends to be most successfully
applied to line finding on intensity images [9]. It has been
brought in to robotics for extracting line from scan images
[13], [17]. There are some drawbacks with HT:

o It is usually difficult to choose an appropriate grid
size.

o Basic HT does not take noise and uncertainty into
account when estimating the line parameters.

To overcome the second problem, we use a fotal-least-
squares method for line fitting (line 7).

Algorithm 5: Hough-Transform

Initial: A set of N points

Initialize the accumulator array (model space)
Construct values for the array

Choose the element with max. votes Vs

If Va2 is less than a threshold, terminate
Otherwise, determine the inliers

Fit a line through the inliers and store the line
Remove the inliers from the set, goto 2
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F. EM Algorithm

This algorithm, Expectation-Maximization (EM), is a
probabilistic method and commonly used in missing vari-
able problems. EM has been used as a line extraction tool
in computer vision [9] and robotics [17]. There are some
drawbacks of EM algorithm:

¢ It can be trapped in local minima
« It is difficult to choose a good initial values

Algorithm 6: EM
1 Initial: A set of N points

2 repeat

3 Randomly generate parameters for a line

4 Initialize weights for remaining points

5 repeat

6 E-Step: Compute the weights of the points
from the line model

7 M-Step: Recompute the line model parameters

8 until Max.N.Steps reached or convergence

9 until Max.N.Trials reached or found a line
10 If found, store the line, remove the inliers, go to 2
11 Otherwise, terminate

G. Some extra

As already mentioned, we use the same total-least-
squares method to compute the line parameters of a line
and their covariance matrix once we have a set of inliers
extracted by the algorithms. This technique overcomes the
well known bias problem of least-squares method where it
tends to put more weight on noisy, outlying points [9]. For
the equation details, please refer to [1].

We make use of a simple clustering algorithm for filter-
ing largely noisy points and coarsely dividing a raw scan
into contiguous groups (clusters). The algorithm works
similarly to the Successive Edge Following - SEF algorithm
[18]. Briefly, it scans the raw scan points that are returned
in sequence from the hardware interface module, for big
jumps in radial differences of consecutive points and puts
break-points to those positions. As a result, the scan is seg-
mented into contiguous clusters of points. Clusters having
too few number of points are removed. To be conservative
and not to falsely break any true line segments, we use
very large values for the thresholds.



Fig. 1. (a) The mobile base of the RoboX; (b) A laser rangefinder SICK
LMS291-S05

Due to occlusions, a line may be observed and extracted
as several segments. Localization algorithms usually use
line parameters (7, «) in position estimation [22], [1]. Thus,
it is usually a good idea to merge collinear line segments
into one line segment. It results in a longer, hence more
reliable, segment, reducing number of lines to process
and still containing the same information. Therefore, we
implement a merging routine that is applied at the output
end of each algorithm, after segments have been extracted.
The routine uses a standard statistical method, called Chi2-
test, to compute a Mahalanobis distance between each pair
of line segments based on already computed covariance
matrices of line parameters. If 2 line segments have statis-
tical distance less than a threshold, they are merged. The
new line parameters are recomputed from the raw scan
points that constitute the 2 segments.

IV. EXPERIMENTAL COMPARISON

A. The Experiment Setup

For the experiment, we use the mobile base of the
robot RoboX [19] which is equipped with 2 CPUs, 2 laser
sensors. The robot is running a real-time operating system
(RTAI Linux) with an embedded obstacle avoidance system
and a remote control module via wireless network (see
Fig.1).

The laser sensors are 2 laser rangefinders SICK-LMS
291-S05. Each sensor has a maximum measurement range
of 80m, a range resolution of 10mm and a statistical
error standard deviation of 10mm at normal reflectivity
condition. A sensor is able to scan an angle of 0° — 180°
with selectable angular resolutions 0.25°,0.50°,1.00°. The
maximum sampling frequency is 37Hz. Combination of 2
SICK laser scanners enables the robot to scan a full 360°.
In our experiment, we use a maximum scan range of 7.0m,
an angular resolution of 0.5° and a sampling rate of 3Hz.

To collect the benchmarking dataset, we choose our lab-
oratory hallway which is a polygonal environment with a
map size of 80m x 50m. The hallway contains many walls,
doors, cupboards that are good targets for line extraction.
There are also table legs, chair legs, glass windows. We let
the RoboX navigating the environment while the direction
and speed are being remotely controlled. The experiment
is carried out during the working hours so that the robot
observes people moving around regularly. During the whole
experiment, the robot makes 5122 observation steps. The
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Fig. 2. The ASL hallway map by accumulating 100 raw scans. The red
triangles represent the robot positions at which the scans are taken.

benchmarking dataset consists of 100 scans selected every
50 observation steps. The hallway map accumulated by
those 100 scans are shown in Fig.2.

The algorithms are programmed in C. The benchmarks
are performed on a laptop with PentiumM-1.7GHz and
1GB of memory.

Choosing parameter values is an important task since al-
gorithm performances are very sensitive to the values used.
We divide the parameters of each algorithm into 2 types:
common parameters and algorithm specific parameters.
Common parameters are those shared by all the algorithms.
Certainly to have a fair comparison, we want to use as many
common parameters as possible. The following values are
chosen according to the sensor hardware and the hallway
environment:

e MinNumPoints = 9: Minimum number of points
per line segment.

o MinLength = 40cm: Minimum physical length of a
line segment.

e Osensor = lcm: Standard deviation of range measure-
ment uncertainty of laser rays.

e InlierThreshold = 2.0cm: Maximum distance from
a point to a line that the point is considered inlier to
the line.

o ValidGate = 2.77: The threshold used in the merging
routine (which corresponds to the 75% confidence
interval).

The value MinNumPoints = 9 is used for the reason
that the hallway is quite narrow, extracted line segments
tend to have highly concentrated points. We choose a quite
big value for MinLength (40cm) to get rid of spurious
scan points observed on moving people. The parameter
InlierThreshold is used in all the algorithms that only
inliers to the line will constitute the line model calculation.
It is assumed that there is no noise error on angular
measurements.

Algorithm specific parameters are chosen based on ex-



TABLE I
EXPERIMENTAL RESULTS OF THE ALGORITHMS

Speed Correctness Precision
Algorithm Complexity N.Lines TruePos | FalsePos OAr OAa
[H=z] [%] [%] [em] [deg]
Split-Merge + Clus. N x logN 1470 641 86.0 8.9 1.95 0.74
Incremental 9 % N2 344 561 77.8 59 2.04 0.72
Incremental + Clus. 617 567 79.2 5.1 2.04 0.76
Line Regression N x N; 364 577 76.4 10.1 1.99 0.80
LR + Clus. 384 562 75.8 8.4 1.97 0.79
RANSAC S % N x N.Trials 29 749 75.6 315 1.68 0.77
RANSAC + Clus. 93 547 70.7 12.2 1.37 0.70
Hough Transform SxNXNC+Sx NRxNC 8 825 82.0 325 1.63 0.76
HT + Clus. 9 600 79.5 10.0 1.51 0.67
EM S x N1x N2 x N 0.6 1153 78.6 53.7 2.09 0.97
EM + Clus. 0.7 709 80.3 23.1 1.58 0.73

perimental tuning so that a best performance is obtained
among several runs with different settings.

To determine the correctness of the lines extracted by
each algorithm, we define a set of “truth lines” that contains
manually extracted lines of the selected scans. The values
MinNumPoints =9 and MinLength = 40cm are taken
into account during the manual extraction. The standard
deviations of line parameters are ol = 0.03m,0l =
0.03rad for all the true lines. In total of 100 selected scans,
there are 679 true lines (= 7 lines/scan in average). The
extracted lines by the algorithms are then compared with
the true lines to find the matched pairs using the Chi2-test
with a matching valid gate value M atchV alidGate = 2.77
(75% confidence interval).

B. The Results

In order to illustrate the experimental results, four quality
measures are evaluated: complexity, speed, correctness and
precision. The benchmark results are shown in Tab.I. There
are 11 candidates, in which 6 of them are the selected
algorithms combined with our simple clustering algorithm
(shown as “Clus.”). The other 5 candidates are the basic
versions of the corresponding algorithms. The terminology
used is explained as follows (the values used are in paren-
theses):

e N: Number of points in an input scans (722)

e S: Number of line segments extracted (7 in average,
depending on algorithm)

e Ny: Sliding window size for Line-Regression (9)

o N.Trials: Number of trials for RANSAC (1000)

e NC, NR: Number of columns, rows respectively for
the HT accumulator array (NC' = 401, NR = 671 for
resolution 7.5 = lem, qes = 0.9°)

e N1, N2: Number of trials and convergence iterations,
respectively, for EM (N1 = 50, N2 = 200).

The common routines clustering, total-least-squares fitting
and merging all have a complexity of V.

The correctness measures are defined as follows:

_  _N.Matches_
TruePos " N.TrueLines
FalsePos = N.LineExByAlgo— N.Matches

N.LineExByAlgo

where N.LineExByAgo is the number of lines extracted
by an algorithm, N.Matches is the number of matches to
true lines and N.TrueLines is the number of true lines.

To determine the precision, we define the following two
sets of errors on line parameters:

{Ar: Ar;=r; —rF

7 7

) _ T
{Aa: Aoy = — o,

i=1.n}
i=1.n}

T oT are line

where n is the number of matched pairs, r; , o]

parameters of a true line, 7;, o; are line parameters of the
corresponding matched line (extracted by an algorithm).
Here we make an assumption that the error distributions
are gaussian. The variances of the two distributions are

computed as follows:
Ar=1%Ar, ;5 o0k, =53 (Ar — Ar)?
Aa=1YAa; ; 0%, = (Aa; — Aa)?

n—1

where n is approximately 400 — 600. (Notice that we use
nil instead of % for unbiased variances.)

For nondeterministic RANSAC-based and EM-based al-
gorithm, the values shown are the average after 10 runs.

As shown in the column 3, the first 5 algorithms,
which are based on Split-and-Merge, Incremental and Line-
Regression, perform much faster than the others. This
is mainly because these 5 algorithms are not based on
nondeterministic methods and especially, they make use
of the sequencing characteristic of the raw scan points.
Split-and-Merge algorithm, being in the class of divide-
and-conquer algorithms, takes the lead. The performance
1470H z also agrees with the algorithm complexity as
being the fastest. Notice that with the clustering algorithm,
Incremental performs almost double the speed.

In term of correctness, the Incremental-based algorithms
seem to perform best, since they have very low number of




false positives, which is very important for SLAM. Being
better in TruePos, Split-and-Merge+Clus could be the
best choice for localization with a priori map. Again, the
algorithms based on RANSAC and EM perform poorly as
they make very high FalsePos. This can be explained by
the fact that, since they do not use the sequencing property
of the scan points, they often try to fit lines falsely across
the scan map. This could be reduced by increasing the
minimum number of points per line segment. However,
short segments maybe left out.

In spite of bad speed and correctness, algorithms based
on RANSAC, HT and EM+Clus. produce relatively more
precise lines. One of the reasons is that these algorithms
tend to include good inliers only, rather than to maximize
number of points following the scan sequence as in other
algorithms. For instance, with RANSAC, if more iterations
are performed, the fitted line is getting closer to the stable
position (local minimum), or in H7, a ’bad’ (largely noisy)
inlier of a line may put its vote into an adjacent grid cell
(of the cell representing the line) and does not get included.
Hence, the extracted line model parameters are not affected
by the noise error of ’bad’ inliers.

Overall, Split-and-Merge and Incremental are the pre-
ferred candidates for SLAM, because of their speed and
good correctness. For real-time applications, Split-and-
Merge is clearly the best choice by its superior speed. It is
also the first choice for localization problems with a priori
map, where FalsePos is not very important. However,
a right choice highly depends on the applications and
implementation details.

V. CONCLUSION AND FUTURE WORK

This paper has presented an experimental evaluation of
the six line extraction algorithms using 2D laser scanner
which are commonly used in feature extraction in mobile
robotics and computer vision. The basic versions of the
algorithms are implemented and tested on a benchmarking
dataset consisting of 100 real data scans which is collected
from an office environment with a map size of 80m x 50m.
Line segments extracted by the algorithms are compared
with the manually extracted lines using standard statis-
tical methods. Several comparison criteria are proposed
and discussed in details to highlight their advantages and
drawbacks. The experimental results show that the two
algorithms Split-and-Merge and Incremental are preferred
by their superior speed and correctness.

For future work, we plan to investigate and validate
the results with different testing conditions, e.g. other
environments, different robot speeds, etc.
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