
Learning concepts

We will consider the domain set X , attributes a ∈ A as arbitrary functions defined on
this domain a : X 7→ A, and a class of concepts C. The concepts c ∈ C are functions
c : X 7→ C where C is a set of concept categories of class C.

The single concept c has the set of categories C = {0, 1}. Each single concept
determines a subset of a domain including positive samples of this concept
Xc = {x ∈ X | c(x) = 1}.

A multiple concept has a set of categories of cardinality |C| > 2. In the sample set
P ⊆ X of this concept we may distinguish the set of samples with category d ∈ C
denoted by P cd or shorter P d. So P d = {x ∈ P | c(x) = d}, for some concept c.
Therefore, if c is a single concept, then the set of positive samples of the concept
Xc = X1, and the set X0 = X \ X1 is the set of all its negative samples.
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Example: axis-aligned rectangles1

A single concept c will be designated by a pair of points (lc, dc) and (pc, gc), while the
set of samples of concept c we have as:
Xc = {x ∈ R2 | lc 6 a1(x) 6 pc ∧ dc 6 a2(x) 6 gc}

✻

✲
a1(x)

a2(x)

gc

dc

lc pc

1 The axis-aligned rectangles example originally from [Kearns, Vazirani, 1994].
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Example: boolean functions

The domain will be a set of n-element binary chains, for some n > 1, so X = {0, 1}n.
The samples of some concept will be n-element strings of zeros and ones. They can be
described by n attribute functions a1, ..., an representing subsequent bits, where
ai : X 7→ {0, 1}.

The concepts can also be represented by logical formulas. For example, for n = 3
a concept c could be represented by the formula ¬a1(x) ∧ (a2(x) ∨ a3(x)), which
means that the positive samples of this concept will be all strings with a zero in the
first bit, and a one in either the second or the third bit.

The set of all possible different single concepts is equivalent to the set of all the
different boolean functions for n-element binary strings, and has the cardinality 22n

.

Computational learning theory — learning concepts 3



Computational learning theory — learning concepts 4



Hypotheses

Hypotheses will represent the results of learning. The set of all hypotheses will be
denoted by H. Each hypothesis h ∈ H is a function h : X 7→ C, just like the
concepts. Exact learning of a concept c is possible only if C ⊆ H, since only then we
can be sure that there is a hypothesis in the hypothesis set, that is identical to the
concept we are learning. And the other way around, exact learning of a concept may
not be possible if H ⊂ C, H 6= C.

Since the training samples are described by attributes, then the hypotheses must have
the form of functions h : A1 × A2... × An 7→ C where A1, A2, ..., An are codomains of
the attributes defined on X . If all the attributes were equal for two different samples
x1, x2, then for any hypothesis h we would have h(x1) = h(x2).
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Training information

For the set of samples P ⊆ X we denote:

P h set of samples from P covered by the hypothesis h, they are such samples for
which h(x) = 1 (for single concepts)

P hd set of samples from P , for which h(x) = d, d ∈ C (for any concepts)

A labeled sample of a concept c defined for the domain X we denote by 〈x, c(x)〉,
where x ∈ X

A training series is a series of labeled samples, where the object x is represented by
a vector of attribute values, and the label is its assigned category.

Practically, a training series is a series of attribute vectors with labels.
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Errors in learning concepts

Generally: an error in learning represents the measure of agreement in classifying
samples by the goal concept and hypothesis.

The sample error ec
P (h) for the sample set P

ec
P (h) =

|{x ∈ P |h(x) 6= c(x)}|

|P |

where
rc

P (h) = |{x ∈ P |h(x) 6= c(x)}|

is the number of incorrectly classified samples from set P .

The real error of a hypothesis is the expected value of the sample error for
a randomly chosen set of samples. If the samples are chosen from the domain
according to some probability distribution Ω then the real error shall be:

ec
Ω(h) = Prx∈Ω(h(x) 6= c(x))

where Prx∈Ω denotes the probability computed with the selection of x from X
according to the distribution Ω.
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Errors in learning concepts — example

a1(x)

a2(x)

Rc

Rh

For the concept, the hypothesis, and the 23 samples depicted in the above figure the
sample error ec

P (h) = 7
23, since 7 samples have been incorrectly classified by the

hypothesis (4 positive, and 3 negative).

The real error ec
Ω(h) is the probability that a randomly selected sample according to

the distribution Ω will fall into the shaded area, or PrΩ(Rc ÷ Rh), where Rc and Rh

denote the rectangles representing the concept and the hypothesis, and Rc ÷ Rh is the
symmetric difference of sets.
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The task of inductive concept learning

Given a domain X , class of concepts C, and the space of hypotheses H, as well as
some fixed but unknown goal concept c ∈ C, and the training set T ⊆ X and
a training set of labeled samples from this set, one has to find a hypothesis h ∈ H
best approximating the concept c according to some criteria.

The criterion, in the simplest case, could be to minimize the sample error for the
training set ec

T (h).

In reality the goal of learning is to achieve the best approximation of the goal concept
in general. If the samples are selected from the domain with a distribution Ω, and the
training set was also constructed according to this distribution, then the criterion to
select the hypothesis could be to minimize the real error ec

Ω(h).
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Other types of inductive learning

When the categories of the goal concept samples are not known, it may be necessary
to create them. The task of learning the concept creation is two-staged: first stage
is to group the samples of a training series into subgroups corresponding to selected
categories, and only then it is possible to learn so defined concept.

In learning concepts the set of values is typically a small set of categories. Sometimes
it may also be something like the set of real numbers, and then the task of learning
a concept becomes learning the approximation of an unknown function from
a series of examples.
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Learning modes

Batch mode — the whole training series is applied at once, with no interactions
with the teacher or the environment. This is the simplest learning mode, all
algorithms can be used in this mode.

Incremental mode — training samples are supplied one by one and the learner
should each time adjust her current hypothesis. This mode is useful when there is
no definite training set and learning proceeds by making actual observations.

Epoch mode — this is similar to the incremental mode, but samples are supplied in
batches. The same algorithms are applicable.

Corrective mode — the training samples are supplied one by one, but with no
labels, and the learner must first calculate her hypothesis for a given sample, and
the receives a correction from the teacher.
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Estimating hypotheses errors

Interval estimation — estimating some unknown parameter of the population from
an estimator, which is a random variable with values determined from a random trial
of the elements of the population.

Interval estimation works by determining the confidence intervals for the estimated
parameter based on the estimator. This is done for a specific confidence level, which
is a probability of the real value of the parameter falling in that interval.

The confidence interval for a parameter p at the confidence level 1 − δ for 0 6 δ < 1
is each interval to which the value of p belongs with probability 1 − δ.

The confidence intervals for the real error of a hypothesis can be calculated using the
Bernoulli distribution (k successes in n trials). Assuming that a “success” will be an
error in classification for the next sample selected from the domain with the
distribution Ω, the probability of such success is the real error.
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The PAC model

The PAC (Probably Approximately Correct) model makes the same assumption as the
inductive learning task. Additionally, it is assumed the the subsequent samples of the
training set T are generated by an oracle, which is defined as a random variable
EX(c, Ω) returning labeled samples 〈x, c(x)〉 where x ∈ X is a sample drawn
according to the distribution Ω.

The task of a learner is to generate a hypothesis h ∈ H minimizing the real error
ec

Ω(h).

The PAC model aims to determine the conditions under which it is possible to
determine a hypothesis h with a bounded real error and with a definite probability.
These conditions are called the conditions of PAC-learnability.
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PAC-learnability

A class of concepts C is PAC-learnable with H, if there exists an algorithm, which
for any 0 < ǫ < 1 and 0 < δ < 1 as a result of working with an oracle EX producing
training information, with probability (1 − δ) will find a hypothesis h, for which
ec

Ω(h) 6 ǫ.

Note, that the hypothesis must be found for any given parameters ǫ and δ, and for any
concept c and distribution Ω.

One might think that these conditions are hard to meet and that PAC-learnability will
be rare. But we may view this from a different perspective. If we consider a hypothesis
h which often gives significant error (> ǫ), then after testing it on a sufficient number
of samples, its fault will be discovered and it could be rejected. On the contrary, if we
can come up with a hypothesis consistent with arbitrarily large number of training
examples (ie. with the hypothesis error 6 ǫ), then probably such hypothesis is correct,
and this probability will be larger with a larger number of samples.

So PAC-learnability could be achieved with a competent hypothesis-generation
algorithm with a large number of training examples.
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Effective PAC-learnability

A class of concepts C is effectively PAC-learnable if it is PAC-learnable, and there
exists an algorithm of PAC-learning, which works in polynomial time with respect to
1/δ, 1/ǫ, size of sample from X and size of concept from C.

The sizes of samples and concepts are included here as a measure of their complexity
which should be related to the computation necessary to process them. The size of the
samples could be the number of their attributes. Determining the size of a concept
might be more tricky. For example, for the rectangle domain the size could be fixed at
4, since each concept could be represented with four numbers. For the boolean
functions example, the concept size could be the number of literals necessary to to
write the concept function. Here we will have concepts of larger and smaller sizes.
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PAC-learnability for rectangles

We will now apply the concept of PAC-learnability to the example domain of
rectangles. The real error of any given hypothesis h with respect to a given concept c
and the probability distribution Ω is: ec

Ω(h) = PrΩ(Rc ÷ Rh), where Rc and Rh denote
the rectangles corresponding to the concept and the hypothesis, respectively, and
Rc ÷ Rh = (Rc \ Rh) ∪ (Rh \ Rc) denotes the set symmetric difference.

a1(x)

a2(x)

Rc

Rh
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Let us consider the closest fit algorithm, which generates for a given training set T the
smallest rectangle enclosing all the positive samples. Then we have Rh ⊆ Rc, and so
Rc ÷ Rh = Rc \ Rh.

✻

✲
a1(x)

a2(x)

Rc

Rh

We’d like to relate the value of the real error of the hypothesis with the probability of
obtaining this error. What is the probability that a newly generated point within Rc

will not be in Rh?
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First, we can safely assume:

PrΩ(Rc) > ǫ

(If, on the contrary, PrΩ(Rc) < ǫ then it would also be true that
ec

Ω(h) = PrΩ(Rc \ Rh) < ǫ so the error would always be below the permitted bound.)

Consider sweeping the left side of the concept rectangle Rc inside so long, until the
probability of drawing a point within the rectangle decreases by ǫ

4. It certainly is
possible (see the left figure).

ǫ

4

✲

✻

a1(x)

Rc

a2(x)

ǫ

4

ǫ

4

ǫ

4

ǫ

4

✲

✻

Rc

a2(x)

a1(x) a1(x)

Rc

a2(x)

Rh

Now let us repeat the operation for the remaining three sides of the rectangle Rc

(middle figure). For the hypothesis error of h not to exceed ǫ it is sufficient to ensure,
that in all the side bands of the rectangle Rc there will be at least one positive training
sample (right figure). Then, with the closest fit algorithm we will have:

PrΩ(Rc \ Rh) 6 ǫ
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How can we ensure, that there will be at least one positive example in each side band
of the concept rectangle?

This would not happen, if at least one of the side bands was missed by all of the
samples of the training set. The probability of missing one specific side band by the
whole training series T is at most: (1 − ǫ

4)|T |, and the probability of missing any of

them is four times higher: 4(1 − ǫ
4)|T |.

We want this probability not to exceed δ:

4(1 −
ǫ

4
)|T |

6 δ

which by using the inequality 1 + α 6 eα with α = − ǫ
4 can be converted to:

|T | >
4

ǫ
(ln 4 + ln

1

δ
)

The reasoning presented here proves PAC-learnability of the rectangles domain (using
the above tightest fit algorithm), and also provides the minimal number of samples
guaranteeing PAC-learnability.
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A general condition for PAC-learnability

It can be proved, that in a general case, if there exists an algorithm generating
hypotheses consistent with a sufficiently long training series, then the class of concepts
is PAC-learnable.

Specifically, for the number of samples, called the sample complexity, given by:

N >
1

ǫ
(ln

1

δ
+ ln |H|)

if there exists and algorithm generating hypotheses consistent with this number of
samples, for any ǫ and δ, then with probability at least 1 − δ these hypotheses give
error not exceeding ǫ.

Note the above statement says that any hypothesis consistent with a given count of
samples satisfies the PAC-learnability condition. Note also, that being consistent with
the specified number of samples is a sufficient condition for PAC-learnability.
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The hypothesis space size

The value |H| in the formula for sample complexity is the size of the hypothesis space,
which eg. for the set of boolean function is 22n

. So the sample complexity of this space
grows as 2n. Since the number of the positive samples in this domain is also 2n, so
achieving PAC-learnability for the class of boolean functions may require examining all,
or almost all, examples.

The reason for this is obvious — the hypothesis space contains the hypotheses
(boolean functions) which classify arbitrary samples in an arbitrary way. For any
number N of samples, the set of hypotheses consistent with them contains equal
numbers of such that classify sample xn+1 as positive and negative. If we indeed allow
any arbitrary boolean functions, then without examining all, or almost all, samples,
learning such a function might not be possible.

Efficient learning, which amounts to generalization, will only be possible when the class
of boolean functions considered (the hypotheses set H) is significantly restricted.
However, restricting this class, with simultaneously satisfying the general condition
C ⊆ H, is only possible using some additional information about the class C.
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We could outline several general schemes of using additional information about the
class C to facilitate efficient learning.

One such scheme is the condition for using only simple hypotheses. For example, in
decision trees learning, the algorithm generates the hypothesis which minimizes the
entropy.

Another method is to use a restricted hypothesis space which is more tractable,
assuming that a hypothesis found this way will be close enough to the true class
function.

Still another approach is to use prior knowledge about the problem.
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Shattering the set of samples

If the functions from the hypothesis set H can divide the set P containing m samples
into all 2m ways, independently of the labeling of the samples, then we say that H
shatters the set P .

As we can see in the above pictures, each set of three points in a plane can be
shattered by a straight line, but not for any four points treated as labeled samples
there exists a straight line which properly separates them. We can say that the
hypotheses set H consisting of the straight lines in a plane shatters any set of three
(non-colinear) points, but does not shatter each set of four points (because there exist
such labelings, which cannot be separated).

Computational learning theory — Vapnik-Chervonenkis dimension 23



The Vapnik-Chervonenkis dimension

We want to estimate the ability of some classifier to learn the classification of various
concepts. Some machine learning algorithms are capable of better learning some
concepts but unable to learn others.

A class of classifiers f shatters the set of points (x1, x2, ..., xn) if for any labeling of
these points there exists a classifier from f which properly classifies the points.

The Vapnik-Chervonenkis dimension (VCdim) of a class f is the maximum
number of points that f shatters.

For example, the class of classifiers implemented by straight lines in R2 has the VC
dimension equal to 3.

The Vapnik-Chervonenkis dimension is a useful measure of the expressiveness of a set
of hypotheses. In order for a hypothesis consistent with the training set to have
a chance for a good generalization, the cardinality of the training set must significantly
exceed the VCdim for a given hypothesis space and a specific problem.

Computational learning theory — Vapnik-Chervonenkis dimension 24



The relationship of the Vapnik-Chervonenkis dimension to

PAC-learnability

Theorem: The hypothesis space H is PAC-learnable iff it has a finite VCdim dimension.

Theorem: The set of hypotheses H is properly PAC-learnable if:

1. m ≥ (1
ǫ) max[4 lg(2

δ), 8 VCdim lg(13
ǫ )],

2. there exists an algorithm that generates a hypothesis h ∈ H consistent with the
training set in polynomial time (relative to m and n).
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