
Motivation

Suppose you are an independent software developer, and your software package
Windows Defeater®, widely available on sourceforge under a GNU GPL license, is
getting an international attention and acclaim. One of your fan clubs, located in the
Polish city of Łódź (pron. woodge), calls you on a Sunday afternoon, urging you to pay
them a visit on Monday morning and give a talk on open source software initiative and
standards. The talk is scheduled for 10am Monday at the largest regional university,
and both the university President and the city Mayor have been invited to attend, and
both have confirmed their arrivals.

What should you do? Obviously, you want to go, but it is not so simple. You are
located in a Polish city of Wrocław (pron. vrotslaf), and while only 200 km away from
Łódź, there is no convenient morning train connection from Wrocław to Łódź. The
only direct train leaves Wrocław at 7:18 in the morning, but arrives 11:27 at Łódź
Kaliska, which is across town from the University’s Department of Mathematics and
Computer Science. An earlier regional train leaves Wrocław at 5am, but with two train
switches, you would arrive at Łódź Kaliska at 10:09, which is still not early enough.
There are no flights connecting the two cities, but there are numerous buses, which are
probably your best choice. And there is still the option of driving, as much as you love
it.

Search methods — motivation 1

What we are dealing with here is a planning problem, with a number of choices, which
need to be taken under consideration in turn, their outcomes analyzed and further
actions determined, which bring about still more choices. What we in fact do is
repeatedly search the space of possible actions and their outcomes.

Searching is a component of all methods of artificial intelligence, and the ability of
efficient searching seems to be an inherent attribute of the intelligence proper.

Search methods — motivation 2

State space representation

1. the state space

• often the state space has the form of a Cartesian product of the domains of the
problem description parameters

• the space can be finite or infinite, although this does not need to correspond to
the complexity of the problem (eg. consider that the state space for the game of
chess is finite)

• some states in the state space can be illegal (or unreachable) states

2. the initial state, always explicitly described

3. the goal state, explicit or implicit (goal condition)

4. available state transition operators, also referred to as the successor function

• eg. as applicability conditions and effect lists
• operators may be parametrized (eg. consider a maze — one move operator, four

operators, or the number of states times four)

⇒ The task is to determine the sequence of operators (and their arguments if
parametrized) which lead from the initial state to (one of) the goal state.

Search methods — state space representation 3

General scheme of searching the state space

PROCEDURE GT(St) ; St - initial state description

BEGIN

UNTIL Term(St) DO ; St satisfies the goal condition

BEGIN

Op := first(ApplOps(St)) ; select operator applicable in state St

St := Apply(Op, St) ; the result of applying Op to state St

END

END

Although the above statement of the GT (Generate-and-Test) algorithm suggests that
it always selects the first operator possible to apply in the St state, it is possible to
influence this choice by an appropriate ordering of the operator list. We will call the
method of choosing the operator a strategy.

To have a good strategy is the key problem in searching.

Search methods — state space representation 4

Blind and informed strategies

A strategy may be completely general, based only on the syntactic properties of the
space representation, and thus applicable to any state space search problem. Such
strategies are termed blind.

Example: a blind (literally), but perfectly useful search strategy for the maze problem
is the right hand strategy. If you move along the wall, keeping contact with it using
your right hand, then you will find the exit from the maze, if it only exists.

A strategy may also utilize some information about the current state, which is specific
to a problem domain, and requires an insight into the problem beyond its syntactic
analysis. Such strategies are termed informed.

Informed strategies take advantage of information which may not be available in
a general case, and may not be understandable to a completely general search
algorithm.

Example: suppose we search an exit from a maze, and we know there is noise outside,
but no sound sources inside the maze. Then, simply listening in all directions may be
a basis for an informed search strategy (although this strategy may be efficient only in
the states which are close to the exit).

Search methods — basic strategies 5

Short review

1. What are the elements of the state space representation of a problem?

2. What are blind and informed search strategies?
What is the difference between them?

Search methods — basic strategies 6

Backtracking search (BT)

FUNCTION BT(st)

BEGIN

IF Term(st) THEN RETURN(NIL) ; trivial solution

IF DeadEnd(st) THEN RETURN(FAIL) ; no solution

ops := ApplOps(st) ; applicable operators

L: IF null(ops) THEN RETURN(FAIL) ; no solution

o1 := first(ops)

ops := rest(ops)

st2 := Apply(o1,st)

path := BT(st2)

IF path == FAIL THEN GOTO L

RETURN(push(o1,path))

END

The BT algorithm efficiently searches the solution space without explicitly building the
search tree. The data structures it utilizes to hold the search process state are hidden
(on the execution stack). It is possible to convert this algorithm to an iterative version,
which builds these structures explicitly. The iterative version is more efficient
computationally, but lack the clarity of the above recursive statement of the algorithm.

Search methods — backtracking search 7

Backtracking search — properties

BT has minimal memory requirements. During the search it only keeps a single
solution path (along with some context for each element of the path). Its space
complexity of the average case is O(d), where d — the distance from the initial state
to the solution (measured in the number of the operator steps).

The time complexity is worse. In the worst case the BT algorithm may visit all the
states in the space before finding the solution. However, it permits one to apply
a strategy — informed or blind — by appropriately sorting the operator list during its
creation.

Another important problem with the BT algorithm is that it does not guarantee to find
a solution, even if it exists. If the state space is infinite, the algorithm may select an
operator at some point which leads to a subtree of the whole search tree which is
infinite but contains no solution states. In this case, the algorithm will never backtrack
from the wrong operator choice, and keep searching forever.

Search methods — backtracking search 8

Checking for repeating states

One of the problems with the BT algorithm — as well as with all search algorithms —
is the potential for looping. If the algorithm ever reaches a state, which it has already
visited on its path from the initial state, then it will repeatedly generate the same
sequence of states and may never break out of the loop.

It is easy to avoid this problem. The simplest way is to check, after reaching each new
state, whether that state is not present in the currently examined path from the initial
state.

It is also possible to check more carefully — whether the newly found state has not
previously been found, and explored. For this test a set of all visited stated must be
kept, a so-called Closed list. In the recursive implementation of the algorithm this list
needs to be global for all the invocations of the procedure, and all newly generated
states must be checked against it.

Both checks incur significant computational overhead. It can be skipped in order to
save time, but at the risk of looping.

Search methods — backtracking search 9

Search depth limiting with iterative deepening

A serious problem for the BT algorithm are infinite (or very large) spaces, which it
generally cannot handle. If the algorithm makes a wrong choice (of an operator), and
starts exploring an infinite, or a very large, subtree which contains no solution, it may
never backtrack and will not find the solution. Particularly fatal may be wrong choices
made at the very beginning of the search.

This is a problem not just with BT but with all “optimistic” algorithms, which prefer
to go ahead as long as it is possible, and do not worry about bad moves. For many
such algorithms simply limiting the search depth to some “reasonable” value is
a general and effective protection against the consequences of taking wrong turns. It
is, however, generally not easy to determine such “reasonable” value. Setting it too
high reduces the efficiency of this countermeasure, while setting it too low runs the
risk of not finding a solution when one exists.

An approach used with BT, and in similar optimistic algorithms (preferring marching
forward), is a variant of the above, called depth limiting with iterative
deepening, or just iterative deepening. With this modification BT is complete — as
long as a solution for the problem (path to the goal state) exists, the algorithm will
find it. However, this modification may make BT very inefficient, for example, when
the depth limit is set too low.

Search methods — backtracking search 10

Heuristics and static evaluation functions

The algorithms presented so far are simple and do not generally require an informed
strategy to work. Having and using such strategy is however always desirable.

A heuristic we will call some body of knowledge about the problem domain which:

• cannot be obtained from a syntactic analysis of the problem description,
• may not be formally derived or justified, and which may even be false in some

cases, and may lead to wrong hints for searching,
• but which in general helps make good moves in exploring the search space.

Having a heuristic should permit one to build informed search strategies. A general and
often used scheme for constructing strategies using heuristic information is a static
evaluation function. For each state it estimates its “goodness”, or a chance that
a solution path exists through this state, and/or the proximity to the goal state on
such path.

Search methods — heuristic state evaluation functions 11

Hill climbing approaches

An evaluation function can be applied directly in searching. This leads to a class of
methods called hill climbing. Hill climbing methods generally belong to the class of
greedy algorithms.

Direct application of these methods is limited to domains with a very regular
evaluation function, eg. strictly monotonic one. Applying hill climbing in practical cases
typically leads to the following problems:

1. local maxima of the evaluation
function

2. “plateau” areas of the evaluation
function

3. oblique “ridges” of the evaluation
function current

state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Search methods — hill climbing approaches 12

Simulated annealing

An efficient and often used variant of hill climbing is a technique called simulated

annealing). The name refers to an industrial process of annealing, which means casting
a liquid metal with a slow and gradual decreasing of temperature, allowing the metal
to achieve the state of global minimum of energy, with a total particle ordering within
the whole volume.

The method generates random moves in
addition to the basic hill climbing moves,
and then decides randomly to execute
them, or not, according to the probability
distribution shown in the diagram.

As can be seen, if the generated move
improves the evaluation function value,
then it is always executed. On the other
hand, if it worsens the value of the
current state, then it is executed with
the probability of p < 1, which depends
on how much the evaluation worsens.

Search methods — hill climbing approaches 13

At the same time, during the operation of the algorithm, the “temperature” value is
gradually lowered, which decreases the probability of selecting “bad” moves.

The simulated annealing approach has been successfully applied to such problems as
designing VLSI circuits and various other networks, allocating resources or tasks in
some industrial processes, and other complex optimization processes. An important
issue in its application is the selection of its parameters, such as the temperature
lowering rate.

Search methods — hill climbing approaches 14

Short review

1. Which requirements of the BT algorithm are more critical (important, limiting):
computation time, or memory? Justify your answer.

2. Under what circumstances may the BT algorithm NOT find a solution, even though
one exists?
State your answer separately for the finite and infinite search spaces?

3. What is the phenomenon of repeating states in search algorithms?
What are its possible consequences?

4. What problem is solved by the iterative deepening technique?
In which cases it is necessary to use it?

5. What are main qualitative problems of gradient search algorithm (ie. excluding the
computational complexity)?

Search methods — hill climbing approaches 15

Search methods — hill climbing approaches 16

Graph searching

Recall the the iterative deepening version of the backtracking (BT) algorithm, and the
problem of repeated explorations of the initial part of the search space. In order to
avoid such repeated exploration one might introduce an explicit representation of the
search graph, and keep in memory the explored part of the search space. Algorithms
which do this are called graph searching algorithms.

General graph searching
strategies (blind):

• breadth-first search
strategy (BFS),

• depth-first search
strategy (DFS),

• other strategies.

Search methods — graph searching 17

An example: the 8-puzzle

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 The 15-puzzle is popular with school children.

8-puzzle — a reduced version, suitable for testing various artificial intelligence
algorithms and strategies, and presenting their operation.

7 3 2
6 1 8
5 4

7 6 5
8 4
1 2 3

Search methods — graph searching 18

Breadth-first search (BFS)

• Explore all the states within the distance of d from the initial state s0 before
exploring any states at the distance (d + 1) or more from s0.

• Always finds a solution if one only exists.

• What’s more, always finds the optimal solution (ie. finds the shortest path from the
initial state to any state).

• Is not inherently resistant to getting trapped in state loop sequences and may
require the use of the Closed list.

• The space and time complexity of the algorithm are terrible, both at O(bd), where:
b — average number of branches growing from a node (branching factor),
d — distance from the initial state to the solution (operator steps).

• Worst and average case complexity practically equal (best case likewise).

• Implementation note: append newly discovered states to the end of the Open list.
(Where we talk about lists of nodes, in practice often faster data structures, like
hash tables, are used.)

Search methods — graph searching 19

Breadth-first search — an example

The diagram presents a section of a breadth-first search graph. The numbers above
the state miniatures (1–26) show the node selection order for the graph expansion.

Search methods — graph searching 20

Depth-first search (DFS)

• Explore all the newly discovered descendant states of the current state n before
returning to exploring the neighbors of the state n.

• Offers none of the BFS’ guaranteed properties (finding the best, or any solution).

• Worst case complexity: exploring and storing the whole space.

• Average case complexity: O(bd) both in time and space.

• For infinite spaces the only practically useful variant of this algorithm is the depth
limitation with iterative deepening (but DFS graph searching is not so pathetically
wasteful as was the case with the BT algorithm).

• The efficiency of the algorithm may improve dramatically for the cases significantly
better than the average case (particularly lucky), so it makes sense to use it when
good heuristics are available.

• Implementation note: prepend all the newly discovered states to the front of the
Open list.

Search methods — graph searching 21

Depth-first search — an example

A section of an “average” depth-first search graph with the depth limit of 5.
The state numbers again show the order of node selection for graph expansion.

Search methods — graph searching 22

Uniform-cost search (UC)

In those cases, when the costs of all moves are not equal, the breadth-first search,
which is based on the number of moves, obviously no longer guarantees optimality.
A simple extension of the breadth-first algorithm finds the optimal path for any
(positive) cost of a single move. This algorithm is called the uniform-cost (UC)
search, and works by always selecting for expansion the graph node of the lowest path
cost.

S G

55

3 3 3 S G

55

3 3 3
S G

55

3 3 3
S G

55

3 3 3
S G

55

3 3 3

In the case of equal costs, this is identical to breadth-first search.

The optimality of the algorithm can be (trivially) proved as long as the cost of a single
move is some positive value (≥ ǫ). But since the algorithm is guided by the path cost,
its complexity cannot be characterized as a function of b and d. Instead, if C∗ denotes
the cost of the optimal solution, the worst case complexity of the algorithm — both
time and memory — is O(b1+⌊C∗/ǫ⌋).

In the case of equal costs, this is O(bd).

Search methods — graph searching 23

Search termination

The goal of searching might be just to find some path to the goal, or to find the
optimal path. In the former case, the algorithm may terminate when it discovers, that
the state it has just reached, ie. that has been placed on the Open list, is the goal
state. But can we do the same when searching for an optimal solution?

S G

55

3 3 3
S G

55

3 3 3
S G

55

3 3 3
S G

55

3 3 3
S G

55

3 3 3

The optimal search should be terminated when the algorithm has just chosen a goal
node (possibly one of a few already reached goal nodes) for expansion. The expansion
can then be abandoned, and the algorithm terminated, but the best known path to the
goal node is the optimal solution. Since the algorithm systematically finds all cheapest
paths, a decision to expand a node means, that there may not exist any cheaper paths
to it.

Before that happens, however, the algorithm explores cheaper paths, and there is no
guarantee that it would not find a new, better path to the goal node.

Search methods — graph searching 24

Adding heuristics: the best-first search

The most straightforward application of a heuristic state evaluation function to graph
searching leads to the best-first search. At any point, it chooses to expand states
with the best heuristic value. With a good evaluation function, such which correctly
evaluates states, and decreases in value along the path to the solution, the best-first
search algorithm proceeds directly toward the goal state, wasting no time exploring any
unnecessary states (graph nodes).

Also with slight defects in the evaluation function, with a few values a little off, but no
systematic errors, this scheme works very well in guiding the search space exploration
process.

The problems start when the evaluation function is wrong in a larger (perhaps infinite)
part of the search space, and consequently indicates as good some states which do not
lead to a solution. In such cases the best-first strategy exhibits the same problems as
the depth-first search, even if the evaluation function may correctly evaluate many, or
most, states.

Search methods — graph searching 25

Implementing graph searching

The graph searching algorithms described here work according to the scheme:

PROCEDURE GS(s0) ; s0 - start state description

BEGIN

n := s0

G := {s0} ; search graph: nodes and edges

Open := [s0]; Closed := [] ; lists of new and explored nodes

UNTIL Term(n) DO ; does n satisfy the goal condition?

BEGIN

Open := Remove(n,Open)

new := Successors(n) ; generate all n’s successors

G := AddSuccessors(G,New) ; add new structure elements to G

Open += (new-Closed) ; add newly discovered nodes to Open

Closed += {n}

n := SelectNext(Open) ; select next node for expansion

END

solution := BuildPath(s0,n,G) ; reconstruct the path from s0 to n

END

The above algorithm for simplicity reasons the operations of computing and revising
costs to all nodes have been omitted.

Search methods — graph searching 26

The uninformed BFS and DFS ignore all costs, and may be implemented by simply
appending (BFS) or prepending (DFS) new nodes to the Open list.

The node selection in the UC and best-first algorithms is based on cost functions
(although computed differently). The next node selection is based on the min cost,
and a good data structure for the Open list is a priority queue, which permits a trivial
best node selection, and inexpensive O(log(N)) additions and deletions.

Often useful in an implementation of the UC search is a construction from the
Dijkstra’s algorithm (1959) finding the single-source shortest paths (all) in a graph.
The Dijkstra’s algorithm however assumed a finite, completely known graph loaded
into the memory.

Search methods — graph searching 27

Short review

1. What is the difference between the uniform-cost and breadth-first search?

2. What is the difference between the depth-first and best-first search?

3. Describe the basic work cycle of the graph searching algorithms.

4. Describe the usage of the Open and Closed lists in graph search algorithms.

Search methods — graph searching 28

A modified node selection — the already incurred cost

Consider the following deterministic state (node) evaluation functions:

h*(n) – the cost of the cost-optimal path from n to the goal
g*(n) – the cost of the cost-optimal path from s0 to n

Therefore:

f*(n) := g*(n) + h*(n)
f*(n) – the cost of the cost-optimal path from s0 to the goal, going through n

Having access to the f*(n) function would allow one to always select the nodes on the
optimal path from start to the goal. In fact, it would suffice to use the h*(n) function.
In both cases, the agent would go directly to the goal.

Unfortunately, these functions are normally not available. We are forced to use their
approximations to select nodes in the graph. However, when using the approximations,
then the search based on the f*(n) function does not necessarily proceed exactly like
that based on the h*(n) function.

Search methods — graph searching — the A* algorithm 29

A modified node selection — the A* algorithm

Consider the following heuristic (approximate) state evaluation functions:

h(n) – a heuristic approximation of h*(n)
g(n) – the cost of the best known path from s0 to n; note g(n) ≥ g*(n)
f(n) := g(n) + h(n)

How does the strategy using the f(n) approximation work? If h(n) estimates the
h*(n) value very well, then the algorithm works perfectly, going directly to the goal. If,
however, the h(n) function is inaccurate, and eg. reports some states to be better then
they really are, then the algorithm will first head in their direction, lured by the low
values of h(n), while g(n) was negligible.

After some time, however, such erroneously estimated paths will stop being attractive,
due to the increasing g(n) component, and the algorithm will switch its attention to
more attractive nodes. The attraction of a node here is not affected by how far it is
from start or from the goal. Instead it is determined only by the combined estimate of
the total cost of a complete start-to-goal path running through that node.

An algorithm using a strategy with the above f(n) function is called the A*
algorithm.

Search methods — graph searching — the A* algorithm 30

The evaluation function in the A* algorithm

The h(n) and g(n) components of the f(n) function represent the two opposite
trends: the optimism (h(n)) and the conservatism (g(n)). We can freely adjust the
strategy one way or the other by using the formula:

f(n) := (1 − k) ∗ g(n) + k ∗ h(n)

By increasing the weight coefficient k we can bias the search toward more aggressive
(and risky) when, eg. we trust the h(n) function and want to proceed rapidly. On the
other hand, by decreasing this coefficient, we enforce a more careful exploration of the
search space, moving ahead slower, but possibly compensating for some of the h(n)
function’s errors.

Note that in the extreme cases, k = 1 yields the best-first search, while k = 0 yields
the uniform-cost search.

But it is the quality of the h(n) function that has the biggest influence on the search
process.

Search methods — graph searching — the A* algorithm 31

The h(n) function properties in A*

The heuristic evaluation function h(n) in the A* algorithm is called admissible if it
bounds from below the real cost function h*(n), ie. ∀n h(n) ≤ h*(n). Admissibility
means chronic underestimating of future costs, so it is also referred to as optimism. It
can be proved, that whenever there exists a path from the start node to the goal, the
A* with an admissible heuristic will always find the best such path.

This sound nice, so is it hard to find such an admissible heuristic? Not necessarily. For
example, h(n) ≡ 0 indeed bounds h*(n) from below for any problem. And can such
a trivial heuristic be useful? The answer is: not really. Such algorithm always selects
the nodes with the shortest path from s0, so it is equivalent to the breadth-first (more
generally: uniform-cost) search which indeed always guarantees to find the optimal
solution, but, as we already know, it is not such a great algorithm.

Naturally, the better h(n) approximates h*(n) the more efficient the search is. In fact,
it can be proved that for any two evaluation functions h1(n) and h2(n), such that for
all states h1(n) < h2(n) ≤ h*(n) using h1 in search leads to the exploration at least
the same number of states as it does using h2.

Search methods — graph searching — the A* algorithm 32

The h(n) function properties in A* (cntd.)

Admissibility of the heuristic function h(n) is an interesting property, which can
frequently be proved for functions coarsely approximating h*(n), but not always can
be proved for painstakingly elaborated function, such as using numerical learning from
a series of examples (which is one method of constructing heuristic functions, which
we will look at later).

An even stronger property of a heuristic evaluation function h(n) is its consistency,
also called the monotone restriction, or simply the triangle property:

∀
ni→nj

h(ni) − h(nj) ≤ c(ni, nj)

It can be proved that for a function h satisfying the monotone restriction the A*
algorithm always already knows the best path to any state (graph node) that is
chooses for expansion. In practice this makes it possible to simplify the search
algorithm implementation, if we know that the evaluation function is consistent.

Search methods — graph searching — the A* algorithm 33

A* algorithm complexity

For most practical problems the number of nodes of the state space grows
exponentially with the length of the solution path. Certainly, an efficient heuristic could
decrease the computational complexity of the algorithm.
A good question is: when could we count on such a reduction?

It can be proved, that for this to happen, ie. for the A* algorithm to run in polynomial
time, the estimate error of the heuristic evaluation function should not exceed the
logarithm of the actual solution length:

|h(n) − h∗(n)| ≤ O(log h∗(n))

In most practical cases one cannot count on finding such good heuristics, so the A*
algorithm should be considered to be exponential. However, most often this bad time
performance is not even the biggest problem with A*. Just as with most other graph
searching algorithms, it stores all the discovered states in memory, and usually fills up
the available computer memory a long time before running out of its time limit.

Search methods — graph searching — the A* algorithm 34

Memory-considerate variants of A*

There are variants of the A* algorithm which cope with the memory problem.

The IDA* (Iterative-Deepening A*) algorithm sets a limit on the f value to which the
algorithm is allowed to proceed. After that the limit is extended, but the explored
nodes are deleted from memory.

The RBFS (Recursive Best-First Search) algorithm is more like the recursive version of
the BT algorithm. It explores the search graph recursively, always keeping in mind the
estimated cost of the second-best option (at all levels of recursion). When the
currently explored path estimate exceeds the memorized alternative, the algorithm
backtracks. And when it does backtrack, it loses all memory of all the explored part of
the space (but keeps the estimate of that path in case it is later necessary to also
backtrack from the original alternative).

The SMA* (Simplified Memory-Bounded A*) proceeds just like A*, but only up to the
limit of the currently available memory. After that, the algorithm continues, but
deleting the least-promising node to make space for each newly encountered state.
However, it stores in the parent of each deleted node its heuristic estimate, so in case
all preserved nodes get their estimates higher, the algorithm may come back, and
re-generate the deleted node.

Search methods — graph searching — the A* algorithm 35

Algorithm A* in practice

A good question is whether the heuristic search algorithms, such as A*, have
important practical applications.

The answer is: yes, in some constrained domains, such as planning the optimal travel
path of autonomous vehicles, or finding the shortest paths in computer games.

The A* algorithm is the heuristic version of Dijkstra’s algorithm (1959) finding the
shortest paths from a selected node to all the other graph nodes.

The Dijkstra’s algorithm is also used in many technical applications, such as network
routing protocols like OSPF, or finding the routes in the GPS navigation systems. In
the latter domain, due to the graph size the Dijkstra’s algorithm must be augmented
by additional techniques. These can be heuristics, or introducing abstraction and path
hierarchy. However, due to the commercial nature of this still developing application,
the detailed solutions are rarely published.

Search methods — graph searching — the A* algorithm 36

Searching backward

Searching the state space can be conducted equally well in the forward or reverse
direction. The backward search starts with the goal node (or the whole set of them)
and in the first step finds all the states from which a goal node can be reached in one
step by one of the available operators. The search continues until the starting state is
encountered.

Backward search can be equally easy to implement as the forward search, or it can be
impeded by the specific representation. In the latter case a change of the problem
representation may be needed to efficiently implement backward search.

However, a more important issue is the availability of heuristics. For the forward
search, the heuristic should hint which steps to select to move closer to the goal. In
some domains appropriate intuitions may be missing. For the backward search the
heuristic should give hints which states are closer to the well known starting state. It
may be easier to acquire such intuitions guiding our decisions.

Search methods — graph searching — the A* algorithm 37

Bidirectional search

The idea of backward searching can be extended to bidirectional search. If the
representation allows that, we may make steps in the search space both in the and
direction. As can be seen in the figure below, this may give significant savings:

GoalStart

However, as illustrated by the figure on the right, instead of saving we may expend
more work. The bi-directional search easily saves work in the cases of the Dijkstra’s
algorithm (uniform cost), but in the case of highly refined, directional heuristics it may
be better to trust and follow it in one direction.

Search methods — graph searching — the A* algorithm 38

Short review

1. What is the difference between A* and best-first search algorithms?
How does this difference affect the search process?

2. What are admissible heuristics for the A* algorithm?
What is their practical significance?

3. The heuristic search algorithm A* with an admissible evaluation function h
guarantees finding an optimal solution, whenever one exists. Consider the following
modifications of the f function, and answer whether they preserve the this
optimality property of the A* algorithm. Justify your answer.

(a) introduction of an upper bound on the value of the h(n) function
(b) introduction of a lower bound on the value of the g(n) function

Search methods — graph searching — the A* algorithm 39

Search methods — graph searching — the A* algorithm 40

Constructing useful heuristics

How in general can one go about constructing a useful heuristic function, without
a sufficient knowledge of the problem domain to design it from first principles?

Experiment, experiment, experiment!

Search methods — constructing heuristic functions 41

Example: heuristics for the 8-puzzle

Heuristic 1: count elements in wrong places, the function h1(n) = W (n)

Heuristic 2: for all the elements in a wrong place, compute and add up their distances
from their proper place. The number thus derived will certainly be less than the
number of moves of any complete solution (so is a lower bound of the solution). Call it
the function h2(n) = P (n)

Heuristic 3: h3(n) = P (n) + 3 ∗ S(n)
where the function S(n) is computed for the elements on the perimeter of the puzzle
taking 0 for those elements which have their correct right neighbor (clockwise), and
taking 2 for each element which have some other element as their right neighbor. The
element in the middle scores 1, if it is present.

In general, neither S(n) nor h3(n) are lower bounds of the solution length. However,
the h3(n) function is one of the best well-known evaluation functions for the 8-puzzle,
resulting in a very focused and efficient search strategy.

On the other hand, the h(n) ≡ 0 function is a perfect lower bound solution estimation,
satisfying the requirements of the A* algorithm, and always finding the optimal
solution. This illustrates the fact, that technically correct is not necessarily heuristically

efficient.

Search methods — constructing heuristic functions 42

The heuristic function quality vs. the cost of A* search

The table shows a comparison of the search costs and effective branching factors for
the Iterative-Deepening-Search and A* algorithms with h1, h2. Data are
averaged over 100 instances of the 8-puzzle for each of various solution lengths d.

Search Cost (nodes generated) Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 3644035 227 73 2.78 1.42 1.24

14 – 539 113 – 1.44 1.23

16 – 1301 211 – 1.45 1.25

18 – 3056 363 – 1.46 1.26

20 – 7276 676 – 1.47 1.27

22 – 18094 1219 – 1.48 1.28

24 – 39135 1641 – 1.48 1.26

(Table copied from the Russell&Norvig textbook.)

An approximate number of IDS nodes for d=24 is 54,000,000,000.

Search methods — constructing heuristic functions 43

Heuristic search of the 8-puzzle search tree

The presented comparison of the heuristic functions for 8-puzzle does not contain the
best h3 function. Some illustration for its performance is the following example search
tree, where the solution is at level 18, and the total number of nodes is 44. Its effective
branching factor is 1.09

Search methods — constructing heuristic functions 44

Constructing heuristic functions (cntd.)

One of the general approaches to constructing heuristic functions is the following.
Consider a simplified problem, by giving up on some requirement(s), to make finding
a solution easy. For each state generated during the search for the original problem,
a simplified problem is solved (eg. using a breadth-first search). The cost of the
optimal solution for the simplified problem can be taken as an estimation (lower
bound) of the solution cost for the original problem.

For example, if the state space is defined with n parameters, so the states are
the elements of the n-dimensional space, then one of the parameters can be
eliminated, effectively mapping the states to (n − 1) dimensions.

If there are a few different ways, that this simplification can be achieved, and we
cannot choose between them (eg. which state variable to drop), then we can use their
combination for the evaluation function: h(n) = maxk(h1(n), ..., hk(n))

Let us note, that in the case of the 8-puzzle heuristics, if one allowed a teleportation of
the elements to their proper place in one move, it would be an example of such
approach, and give the evaluation function h1(n). Further, the agreement to move
elements by single field, but regardless of other elements possibly in the way, would
give the function h2(n).

Search methods — constructing heuristic functions 45

Constructing heuristic functions (cntd.)

Another approach to developing a heuristic function is to work it out statistically.

We need first to define some state attributes, which might be related to the distance
to the solution. Having these, we take a heuristic function to be a linear combination
of such attributes, with some unknown coefficients, which can be learned. This is done
by running some experiments to determine some solution distances, using a full search,
or another heuristic function.

The derived optimal solution distances can be used to construct a set of linear
equations, which can be solved for the unknown coefficients.

Note that this is the way the h3(n) function for the 8-puzzle could possibly be found.
The W (n) and P (n) functions could be assumed useful for constructing a good
heuristic. The S(n) function also estimates the difficulty of reaching the goal state.
Using the function h(n) = a ∗ W (n) + b ∗ P (n) + c ∗ S(n) and running many
experiments to compute h(n), possibly we could have determined the approximate
optimal values as: a ≈ 0, b ≈ 1 and c ≈ 3, in effect obtaining the function h3(n).

Search methods — constructing heuristic functions 46

Short review

1. Name and briefly describe the methods you know for creating heuristic evaluation
functions.

Search methods — constructing heuristic functions 47

Search methods — constructing heuristic functions 48

Searching in two-person games

Games are fascinating and often intellectually challenging entertainment. No wonder
they have been the object of interest of artificial intelligence.

State space search methods cannot be directly applied to games because the
opponent’s moves, which are not known, must be considered. The “solution” must be
a scheme considering all possible reactions of the opponent.

Additionally, in some games the full state information is not available to either player.

Types of games:

deterministic chance
perfect chess, checkers, backgammon,
information go, othello monopoly
imperfect battleships, bridge, poker,
information blind tictactoe scrabble

Search methods — search algorithms for games 49

Two-person game tree

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

Search methods — search algorithms for games 50

The minimax procedure

A complete strategy for a deterministic perfect information game can be computed
using the following minimax procedure. It computes the value of the starting node by
propagating the final utility values up the game tree:

1. the levels of the tree correspond to the players’ moves: MAX’s and MIN’s; assume
the first move is MAX’s,

2. assign the MAX’s win value to the terminal states in the leaves (negative, if they
actually represent a loss to MAX)

3. tree nodes are successfully assigned the values: the maximum of the branches below
if the current node corresponds to MAX, and the minimum of the branches below if
the node corresponds to MIN,

4. the top tree branch with the highest value indicates the best move for MAX.

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13

A
12

A
11

A
21

A
23

A
22

A
33

A
32

A
31

3 2 2

Search methods — search algorithms for games 51

Resource limiting — using heuristics

The minimax procedure defines an optimal strategy for the player, assuming the
opponent plays optimally. But only, if it can be fully computed.

For a real game tree this might be a problem. Eg., for chess b ≈ 35, m ≈ 100 for
a reasonable game, and a complete game tree might have about 35100 ≈ 10155

nodes. (The number of atoms in the known part of the Universe is estimated at
1080.)

To solve this problem, a heuristic function estimating a position value can be used, like
in standard state space search, to determine the next move without having an explicit
representation of the full search space. In the case of a two-person game this facilitates
applying the minimax procedure to a partial game tree, limited to a few moves.

For chess, such heuristic function can compute the material value of the
figures on the board, eg. 1 for a pawn, 3 for a rook or a bishop, 5 for a knight,
and 9 for the queen. Additionally, position value can be considered, such as
„favorable pawn arrangement”, or a higher value of the rook in the end-game
(higher yet for two rooks).

Search methods — search algorithms for games 52

Special situations in heuristic-based search

Limiting the depth search sometimes leads to specific issues, which require special
treatment.

One of them is the concept of quiescence search. In some cases the heuristic
evaluation function of some states may be favorable for one of the players, but the
next few moves — which extend beyond the minimax search limit — inevitably lead to
serious shifts, like exchanging some pieces in chess. It would be useful to detect such
situations, and extend the search in the corresponding part of the game tree to reach
a more stable configuration, or so-called quiescent states.

Another issue is the horizon effect. It occurs when an inevitable loss for one of the
players approaches, but she can postpone its onset by making insignificant moves.

Search methods — search algorithms for games 53

Minimax search — cutting off the search

What practical effects can be obtained with the heuristic search limited to a few steps?

Eg., for chess, assuming 104 nodes per second and 100 seconds for a move, 106 ≈ 354

positions can be explored, which amounts to 4 moves. Unfortunately, for chess this
corresponds to only the most elementary play. Additional techniques for increasing the
search efficiency are needed.

It turns out it is easy to make additional savings in the minimax. The most common
approach is called the alpha-beta pruning.

Search methods — search algorithms for games 54

α–β pruning — an example

Exercise: find an error in the above tree (source: Patrick Henry Winston, Artificial

Intelligence, 3rd ed.).

Answer:step10

Search methods — search algorithms for games 55

α–β pruning — the algorithm

PROCEDURE MINIMAX-ALPHA-BETA(n,alpha,beta,depth)

BEGIN

IF depth==MAXDEPTH THEN RETURN(h(n))

choices := Descendant_list(n)

WHILE (NOT Empty(choices)) AND (alpha < beta) DO

;; abandon exploring subsequent descendant of node n - means a cut

BEGIN

n1 := First(choices)

choices := Rest(choices)

w1 := MINIMAX-ALPHA-BETA(n1,alpha,beta,depth+1)

IF EVEN(depth) THEN ; for MAX’s nodes

IF w1 > alpha THEN alpha := w1

IF ODD(depth) THEN ; for MIN’s nodes

IF w1 < beta THEN beta := w1

END

IF EVEN(depth) THEN RETURN(alpha) ; MAX’s node

ELSE RETURN(beta) ; MIN’s node

END

⇒ in the first call we use α = −∞, β = +∞

Search methods — search algorithms for games 56

α–β pruning — the optimal case

The optimal case of the minimax search with the alpha-beta cuts is when at each tree
level the nodes are examined starting from the most favorite, for the given player. In
such case only one “series” of nodes are evaluated in each subtree, and a cut occurs on
each return up the tree.

In the above diagram the savings is 16 nodes. Out of 27 nodes at the lowest level of
the tree only 11 must be evaluated.
Source: Patrick Henry Winston, Artificial Intelligence, 3rd ed. (note an error: the nodes
18, 19, 21, and 22 could also be cut off).

Search methods — search algorithms for games 57

The properties of the α–β algorithm

The basic idea of the α–β algorithm is that the cuts it makes do not affect the optimal
move of the player.

Introducing a favorable ordering allows better cut-off efficiency. In the limit, the
optimal cuts achieve O(bm/2) algorithm complexity. In practice this doubles the
effective search depth.

The results of the min-max/α–β analysis does not depend on the specific values of the
evaluation function, only on their ordering. This means that an arbitrary monotonic
transformation of the evaluation function works as well and gives the exact same
results.

MIN

MAX

21

1

42

2

20

1

1 40020

20

Search methods — search algorithms for games 58

Minimax — a multi-player generalization

The minimax algorithm can be generalized to a multiplayer case. In this case, a vector
evaluation function must be employed, which evaluates the position from the point of
view of each player. Each player maximizes her element of the vector, and the value
propagation proceeds like in two-player case.

to move

A

B

C

A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,−1) (5,−1,−1) (−1, 5, 2) (7, 7,−1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (−1, 5, 2) (5, 4, 5)

(1, 2, 6) (−1, 5, 2)

(1, 2, 6)

There are other factors that have to be considered in multi-player games, such as
alliances. Sometimes it is advantageous for players to make alliances against other
players, or even change these alliances dynamically during the game.

Search methods — search algorithms for games 59

The practice of two-person computer games

Checkers: the Chinook program terminated in 1994 the 40-year long domination of the
world champion Marion Tinsley1 A year later the program defeated the subsequent
champion Don Lafferty.

Chess: during the decade of 1990-2000 the chess programs rose to the level of the best
human players. In 1997 Deep Blue first defeated the world master Garri Kasparov in an
open tournament. Subsequently, chess programs running on normal computers entered.
In 2006 Deep Fritz defeated the world master Vladimir Kramnik. After this, the
excitement of the man-machine chess competition started to drop.

Othello: the human masters refuse to play the computers, which are superior.

Go: the human masters refuse to play the computers, which are too weak. Typical
games include a handicap made by humans to the computers. The branching factor in
go b > 300 so instead of a systematic search of the game tree most programs use
a rule knowledge base to generate moves.

Lastest news: in March 2016 AlphaGo defeated a 9-dan master in an even game on a
full-size board.

1Although the champion withdrew from the competition for health reasons and died shortly thereafter.

Search methods — search algorithms for games 60

Games with chance elements — expectimax

With chance elements, the set of available actions at each step is dependent on some
random variable, such as throwing the dice. The analysis is more complicated and
requires considering all the options, and computing the expected values of the
distributions of the random variables.

For example: one-person games with chance elements. Every other move is the player’s
choice, who maximizes her position evaluation, and the other moves are chance (or
treated as chance), with a known probability distribution of the results. The algorithm
modified to analyze such games is called expectimax.

Search methods — expectimax 61

A further generalization — expectiminimax

A complete probabilistic generalization of the minimax algorithm considers alternating
moves of the players and random draws. The algorithm for the analysis of such game
search tree is called the expectiminimax.

Search methods — expectimax 62

The heuristic evaluation in expectiminimax

Let us note a different property of an evaluation function. For minimax, the move
choice is the same for all functions with the same order of the graph nodes. This
property does not hold for expectiminimax, as seen in the figure below. The moves
designated in the presented trees are different, while it would be identical if not for the
chance moves.

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

In the case of expectiminimax the evaluation function may not be an arbitrary function
correctly sorting the positions. In fact, it should reflect the expected win (or its linear
transformation).

Search methods — expectimax 63

Search methods — expectimax 64

Games with incomplete information

Example: various card games.

One can compute the probability distribution of all combinations of the deal.

The idea: compute the minimax value of each possible action for each possible deal,
and then select the action maximizing the expected value computed over all
possible deals.

Best bridge programs implement this by generating many deals consistent with the
knowledge gained from the bidding and play so far, and select the action which
maximize the number of those won.

Search methods — games with incomplete information 65

Short review

1. For the following two-person game search tree, write a precise sequence of the
evaluation function values computed by the minimax algorithm with alpha/beta
cuts (order left to right).

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13

A
12

A
11

A
21

A
23

A
22

A
33

A
32

A
31

3 2 2

Search methods — games with incomplete information 66

Constraint satisfaction problems

The Constrained Satisfaction Problems (CSP) are a special group of state space
search problems defined as follows:

• a finite set of variables X = {x1, x2, ..., xn}

• for each variable xi, a finite set of its possible values, called its domain

• a finite set of constraints for the combination of values of the variables, eg. if
x1 = 5, then x2 must be even, and the combination (x1 = 5, x2 = 8, x3 = 11) is
disallowed

A solution of a CSP problem is any combination of variable values satisfying all the
constraints.

Let us note, that the CSP problems are really a special case of a general state space
search problems if we treat the set of constraints as a goal specification, and assigning
values to variables as state transition operators. Therefore, all algorithms introduced
earlier can be applied to these problems.

Search methods — constraint satisfaction search 67

Constraint satisfaction problems (cntd.)

Examples of CSP problems are: graph or map coloring, the 8-queen problem, the SAT
problem (assigning 0 or 1 values to variables in a logical formula to satisfy the
formula), cryptoarithmetic, VLSI design, the node labeling problem (for object
recognition in images after edge detection), task queueing, planning, and many others.

Many of them are NP-hard problems.

A CSP problem may have a solution or not, or there may exist many solutions. The
goal may be to find one solution, all of the solutions, or the best solution according to
some cost function.

The constraints in a CSP problem may be assumed to be binary, ie. constraining pairs
of variables. If there are other constraints in a CSP problem, then n-ary constraints
(for n > 2) can be converted to equivalent binary constraints, and unary constraints
can be built into their respective variables’ domains and dropped.

Search methods — constraint satisfaction search 68

Local constraint satisfaction

Let’s consider the map coloring problem. We
have to assign colors to areas in a given map
from the sets of allowed colors, possibly
different for different areas, so that adjacent
areas have different colors.

D1={R,G,B}

D2={R,G}

D3={R}

Before we start searching the space of possible value assignments to variables, we can
conduct some local constraint satisfaction analyzes.

Let’s consider the constraint graph of a CSP problem, whose nodes correspond to
the variables, and edges to the (binary) constraints of the original problem. We
consider an edge in this graph as a pair of complementary directed edges, and define
a directed edge xi −→ xj of the graph to be arc consistent iff ∀x ∈ Di ∃y ∈ Dj

such that the pair (x, y) satisfies all the constraints existing for the edge.

An inconsistent arc can be brought into consistency by removing specific values from
the domains of some variables (specifically, those x ∈ Di values for which there does
not exist a y ∈ Dj value satisfying some specific constraint).
This works to reduce and simplify the original problem.

Search methods — constraint satisfaction search 69

Arc consistency

Let’s consider the following example map
coloring problem:
D1 = {R, G, B},
D2 = {R, G},
D3 = {R},
C = {x1 6= x2, x2 6= x3, x1 6= x3}.

D2={R,G}

D1={R,G,B}

D3={R}

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
x1 ∈{R,G,B}

x2 ∈{R,G}
x3 ∈{R}

6=

6=

6=

The arc (x1—x2) is arc consistent,
since both ∀x ∈ D1 ∃y ∈ D2 x 6= y
and ∀y ∈ D2 ∃x ∈ D1 x 6= y hold.

The fact that arc consistency holds is a mixed blessing. It means that the constraint
satisfaction checking of a specific arc in the graph does not contribute to solving the
problem. However, a full analysis of the whole CSP constraint graph can sometimes
give quite useful results.

Search methods — constraint satisfaction search 70

An example: map coloring

We again consider the map coloring problem: D1 = {R, G, B}, D2 = {R, G},
D3 = {R}, C = {x1 6= x2, x2 6= x3, x1 6= x3}.

Analyzing the first constraint (x1 6= x2) gives
nothing because, as previously noted, this edge
is arc consistent. (For each value from D1

there is a value in D2 which satisfies the
constraint, and the other way around.)

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
x1 ∈{R,G,B}

x2 ∈{R,G}
x3 ∈{R}

6=

6=

6=

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
x1 ∈{R,G,B}

x2 ∈{ 6 R,G}={G}
x3 ∈{R}

6=

6=

6=

However, analyzing the second constraint
(x2 6= x3) gives some useful results. Even
though for x3 = R there exists corresponding
values for x2, for x2 = R there is not a value
for x3 satisfying that constraint. So the value
R can be removed from the domain of x2.

Search methods — constraint satisfaction search 71

An example: map coloring (cntd.)

A similar analysis for the constraint (x1 6= x3) permits to strike from the domain of x1

the value R:

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
x1 ∈{ 6 R,G,B}={G,B}

x2 ∈{ 6 R,G}={G}
x3 ∈{R}

6=

6=

6=

Analyzing all the constraints ended with a partial reduction of the variables’ domain.
The problem has been simplified (there are fewer possible value assignments to
variables), but there still exists more than one potential solution.

But it is easy to observe that the arc consistency checking could, and should, be
continued.

Search methods — constraint satisfaction search 72

Constraint propagation

Since the arc consistency checking results in the reduction of the domains of some
variables, it makes sense to repeat the process for the constraint graph edges which
were originally consistent, or which have been made consistent. This leads to the
constraint propagation, which means repeating consistency checking as long as
values continue to be removed from variables’ domains.

The constraint propagation in the map coloring example causes the edge (x1, x2) —
originally consistent — to remove the value G from the domain D1:

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
x1 ∈{ 6 R,6 G,B}={B}

x2 ∈{ 6 R,G}={G}
x3 ∈{R}

6=

6=

6=

Finally, all the variables have singleton domains, and, furthermore, all the values satisfy
all the constraints. Thus the constraint propagation in this case helped solve the
problem and determine the unique solution.

In general, consistency checking and constraint propagation lead merely to
a simplification, and not necessarily to a complete solution, of a problem.

Search methods — constraint satisfaction search 73

Constraint propagations — the unsolved cases

It is easy to notice, that in another instance of
the map coloring problem presented here, all
arcs are consistent. Nevertheless, the problem
has no solution.

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
D1={R,G}

D2={R,G}
D3={R,G}

6=

6=

6=

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
D1={B,G}

D2={R,G}
D3={R,G}

6=

6=

6=

In still another instance all arcs are again
consistent. The problem has two solutions,
and the constraint propagation does not help
in determining them explicitly, not does it
result in any reductions.

By adding to the previous problem the
constraint: (x1 6= B) ∨ (x2 6= R), we obtain
yet another instance, in which only one
solution is valid, but it still cannot be
determined by constraint propagation.

✉✟✟✟✟✟✟✟✟✟✟✟✟✉PPPPPPPPP✉✂
✂
✂
✂
✂
✂
✂
✂
✂
D1={B,G}

D2={R,G}
D3={R,G}

6=
(x1 6= B)

∨(x2 6= R)

6=

6=

So computing arc consistency and constraint propagation do not by themselves
guarantee determining a solution of a CSP problem. It is necessary to search.

Search methods — constraint satisfaction search 74

Algorithms for computing arc consistency

The easiest approach to compute the arc consistency is to take each constraint, in
turn, and testing the logical conditions of the constraints. But since this may have to
be repeated due to propagation, even for a single edge, there are a lot of
computations. Some savings are possible.

It can be observed, that after a reduction of some domain Di the propagation can give
new results only by checking the edges of the form (Dk, Di), so just these needs to be
checked. What’s more, with any reduction in Dk there is no need to check the edge
(Di, Dk), since the elements removed during this reduction from Dk were not
necessary for any constraint satisfaction for any of the elements of Di. The algorithm
computing the constraint propagation this way is called AC-3 (1977).

When an arc’s consistency is checked again, the same conditions are evaluated for the
same pairs of values. Memorizing these verified value pairs (in an proper data
structure) could help refrain from recomputing them during subsequent propagations.
This is accomplished by yet another algorithm called AC-4 (1986).

Search methods — constraint satisfaction search 75

Non-binary constraints

We initially assumed to restrict the analysis to binary constraints, ie. such binding
exactly two variables. The non-binary constraints can be converted to binary ones.

One of the simplest conversion schemes is the dual encoding. It works by introducing
a new variable for each constraint of the original problem. The domain of a new
variable is the set of n-tuples of values of the original variables satisfying the original
constraint.

This way the values contained in the new variables by definition satisfy each constraint
(original) in separation. We just need to make sure the values satisfy all the
constraints. For this, the dual encoding introduced new constraints, which occur
between each pair of new variables, containing the same variables (original). The
constraints state, that the same variables (original) must have the same values.

Search methods — constraint satisfaction search 76

Non-binary constraints — example

Consider a CSP example with three variables: X = {x, y, z}, their domains
Dx,y,z = {1, 2, 3}, and two constraints: C = {x + y = z, x < y}. The dual encoding of
this problem contains two variables and two constraints:

U1 : 〈oc1, [x, y, z]〉, DU1
= {(1, 2, 3), (2, 1, 3), (1, 1, 2)}

U2 : 〈oc2, [x, y]〉, DU2
= {(1, 2), (1, 3), (2, 3)}

C1 : arg(1, U1) = arg(1, U2)

C2 : arg(2, U1) = arg(2, U2)

Unfortunately, the consistency analysis of this problem does not yield anything,
because for each value of one variable there exist values of the other with satifying
subsequent arguments. However most values othe dual variables are n-tuples failing the
original constraints.

Generally, converting multi-variable to binary constraints sometimes leads to problems
that do not lend themselves to consistency analysis. For this reason, several algorithms
have been developed for arc consistency with multi-variable constraints. These
algorithms will not be discussed here.

Search methods — constraint satisfaction search 77

Path consistency

We define for a CSP constraint graph the notion of K-consistency. A graph is
K-consistent (for some K), if for any (K-1) variables, which among themselves have all
the constraints satisfied, for any (K-1)-tuple of values of these (K-1) variables
satisfying all the constraints for the (K-1) variables, in the domain of any selected K-th
variable a value such, that the so-obtained K-tuple of values satisfies all the constraints
for the K variables.
A constraint graph is strongly K-consistent if it is K-consistent for any J, J<K.

Note that the previously defined arc consistency is equivalent to the strong
2-consistency of a constraint graph.

The strong 3-consistency of a graph is also called a path consistency.

The significance of K-consistency is such, that if a CSP problem constraint graph with
n nodes is strongly n-consistent, then the problem can be solved without searching.
However, the algorithms for enforcing K-consistency are exponential, so it is seldom
worthwhile to do that. An exception is a weaker version of path consistency — the
restricted path consistency, for which there is an algorithm which is sometimes
computed.

Search methods — constraint satisfaction search 78

Searching in the CSP problems

Any of the previously discussed searching algorithms may be used for the CSP
problems. However, in most really hard CSP problems, where the constraints have the
nature of hard to meet, tight compromises, the most important is just the analysis of
these constraints, both syntactic and semantic.

On the other hand it is typically hard to come up with a useful heuristic, capable of
guiding the process of searching the space of value assignments to the variables.

Therefore often used is the simplest of the searching algorithms, the backtracking
search (BT). In place of a good heuristic prioritizing the best choices to be at the front
of the list, this algorithm may be augmented by a local constraint satisfaction
checking. This reduces the number of choices for the subsequent steps. In the extreme
case, when the domain of some variable got reduced to an empty set, the algorithm
would immediately backtrack to the alternative values in earlier assignments.

Search methods — constraint satisfaction search 79

Example: the 4 queen problem

Let’s now consider the application of the BT (backtracking) algorithm to the 4 queen
problem. We formulate the problem to assign the row positions to the 4 queens
belonging to the different columns of the 4 × 4 chessboard. Note the BT algorithm
explores the search tree but does not store it in memory, just the current path.

The algorithm checks the constraints after placing all the queens on the board. It will
surely solve the problem, but makes many unnecessary steps, which could be
eliminated. For example, all the terminal configurations are invalid due to the
placement of the second queen. This can be seen at depth level 2 already.

Search methods — constraint satisfaction search 80

Example: the 4 queen problem (cntd.)

An obvious improvement to the algorithm is then to test the constraints on all
variables as soon as they have been assigned values. Should any constraint be found to
be violated, the value assignment most recently made would immediately be dropped,
and the algorithm would backtrack. This algorithm will be called early checking
(BT-EC). It is obviously advantageous to the BT algorithm, since the tested
constraints would have to be later checked anyway.

Search methods — constraint satisfaction search 81

Example: the 4 queen problem (cntd.)

Combining the backtracking search with just the minimal form of the local constraint
satisfaction checking is called the forward checking (BT-FC) algorithm. All the
constraints for any variable assigned a value are checked, and only those. In most cases
this algorithm is advantageous to BT-EC, and certainly to BT.

Search methods — constraint satisfaction search 82

Example: the 4 queen problem (cntd.)

It is possible to apply the full arc consistency checking, with propagation. The
algorithm doing that is sometimes called the look-ahead (BT-LA) algorithm. It may
significantly reduce the size of the explored search space, as it does in the 4-queens
example here. However, the cost performing those checks is significant, and the BT-LA
may not always be advantageous to the BT-FC algorithm.

Search methods — constraint satisfaction search 83

Dependency-directed backtracking

In searching the CSP tree we may encounter a failure, causing the BT algorithm to
backtrack, whose cause was not the most recently selected assignment, but one of the
earlier steps. In such case the algorithm will continue trying various possibilities,
generating only failures, until it backtracks sufficiently, and changes the assignment of
the offending variable.

It is possible to detect such cases, when the set of variables involved in constraints
with the current variable — the conflict set — does not include the most recently
assigned variable. In these cases, the algorithm could backtrack, not just a single step,
but all the way to the most recently assigned variable from the conflict set. Such
algorithm is called backjumping (BJ).

Simple backjumping currently has only historical value, since it solves the problem,
which does not arise in practice, since the arc consistency checking starting from
BT-FC eliminate those cases completely. However, backjumping is still useful with
a slightly extended concept of the conflict set, defined as a set of those variables,
whose assigned values caused a constraint failure of the current variable, along with
the subsequently assigned variables. A version of BJ based on such definition is called
conflict-directed backjumping, and it is capable of determining the backjumping
steps where consistency checking does not help.

Search methods — constraint satisfaction search 84

Dynamic ordering

We have noted earlier, that is is difficult to obtain good heuristics indicating good
moves in searching the space of most CSP problems. There do exist, however, other
techniques augmenting this search, based on dynamic ordering, both of variables to
select those which should first receive assignments, and of values, which should be
tried first.

The most constrained variable heuristic (or MRV, for Minimum Remaining
Values), suggests to first select those variables with the smallest domains. Such choice
gives the best chance of encountering inconsistencies, and taking advantage of the
resulting reductions. This heuristic also works well within the BT-FC algorithm.

Another heuristic which may be useful in selecting a variable is the degree heuristic,
suggesting the variable occurring in the highest number of constraints with unassigned
variables.

Once a variable to assign is chosen, the least constraining value heuristic may be
used which prefers to choose those values, which exclude the least values of other
variables.

Search methods — constraint satisfaction search 85

Local search for CSP

Another approach which works well with some CSP problems is based on local search.
After more or less random choice of an initial value assignment for all variables, an
incremental repair is attempted. Greedy hill-climbing search may be used, which does
not explore the search space systematically, unlike the BT family of algorithms.

Often successful in such search for CSP problems is the min-conflict heuristic which
works by randomly selecting a variable violating some constraint, and selecting another
value for it, so that it would minimize conflicts (number of failed constraints) with
other variables.

Some CSP problems can be solved with surprising efficiency using this approach. The
key element to success is the randomness, which helps to escape the local maxima,
and other traps, and to select the right variable to repair, or to skip an unfortunate
variable choice, for which the right value would better be assigned later.

Search methods — constraint satisfaction search 86

Short review

1. Consider the CSP problem with four variables: A, B, C, D, with domains: {1, 2, 3}
for each, and the set of constraints given below. Draw the constraint graph for the
problem, and then try to solve it using constraint propagation (arc consistency).
Show each step of the solution (no picture). Show the graph after the termination
of constraint propagation. How many possible CSP problem solutions does it
represent? Write down one of them.

The constraint set:
C = {C 6= D, B > D, B > C}

Search methods — constraint satisfaction search 87

Useful resources

A good elementary introduction to CSP problems by Roman Barták
http://ktiml.mff.cuni.cz/~bartak/constraints/constrsat.html

Search methods — constraint satisfaction search 88

