
Agent’s actions planning

The term classical action planning is taken in artificial intelligence to mean
the task of determining the sequence of agent’s actions, given the information
about its initial and final states, and knowledge about actions available to the
agent (state transition operators).

In classical planning it is assumed that the agent has full knowledge about its
environment, which is deterministic, finite, and static, which means it does
not change except for the effects of the agent’s actions. Furthermore the
changes occurring in the environment are discrete both in the facts and time
domain.

Note this is a similar statement to the task of searching in the state space.

Action planning — introduction 1

Planning as searching

Planning task example: we need to make shopping — buy milk, bananas, etc.

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

Note:

• state descriptions in the real world are complex,
• the agent has many possible actions to choose from.

Action planning — introduction 2

Planning as searching — cntd.

Task planning is a perfectly regular case of searching in the state space. It is
therefore possible to use all algorithms applicable to such search.

But in the real world the state descriptions are typically complex, and an
intelligent agent has many possible actions in her repertoire. The agent trying
to build a plan by searching must deal with a combinatorial explosion. At the
same time it is difficult to formulate an efficient heuristic, which would allow it
to direct the search by choosing the proper actions.

Applying the general search methods does not consider — and cannot make
efficient use of — the specific aspect of task planning:

• the actions and their effects typically concern a small number of the world
properties,
• the planning goals are also expressed with a small number of features.

It could be advantageous to have a specialized representations and algorithms
for planning.

Action planning — introduction 3

Action planning — introduction 4

Planning using situation calculus

The monkey and bananas example illustrates a specific, but general, approach
to the action planning, according to the following scheme:

situations — are explicitly stated and introduced in formulas as values of the
situation variable (reification — treating as objects)

result functions
At(Monkey, P1, S0)∧At(Monkey, P2, S1)∧S1 = Result(Goto(P1, P2, S0))

effect axioms
∀p, s At(Monkey, p, Goto(p, s))

∀x, s Present(x, s) ∧ Portable(x) ⇒ Holding(x, Result(Grab, s))

frame axioms
∀a, x, s Holding(x, s) ∧ (a 6= Release) ⇒ Holding(x, Result(a, s))

∀p, p1, p2, s At(Bananas, p, s) ⇒ At(Bananas, p,Move(Box, p1, p2, s))

theorem — stated in the form:
∃s HaveBananas(s)

wynik — może być uzyskany w postaci:
Havebananas(Grab(Bananas, Climb(Box,Move(Box, P2, P3, Goto(P2, S0)))))

Action planning — introduction 5

Planning using situation calculus — cntd.

Action planning using situation calculus works. But just as is the case with
planning by searching it is inefficient — limited by the efficiency of the theorem
proving procedure in the first order predicate calculus. Also note, that the initial
state is typically not fully specific, with a complete description of the state of all
objects. Only some initial conditions are given — describing the agent and the
objects to operate on — in effect defining a large set of states.

What we are dealing with here is the application of a general solution to a
specific situation. It does not take advantage of the specific properties of the
planning domain. The theorem proving algorithm must compute the solution,
but its efficiency in the real world situations is usually inadequate.

Dealing with a specific problem, given its details, we can usually use these
details to focus on the appropriate actions. The theorem proving engine does
this, but in a way which is proper for theorem proving. The question is whether
there exists a representation specialized for action planning.

Action planning — introduction 6

Special representations for planning

It seems that efficient task planning requires specialized representations, which
allow the agent to focus on choosing the appropriate plan steps. So what are
the requirements of such a representation:

• the action descriptions should be connected with the elements of the state
descriptions,

• selecting the steps needed in the plan should proceed in an arbitrary order,
not necessarily in the order of their application, (think: trying to plan a
vacation trip, you do not need first to figure out which bus, or a taxi, to take
to go to the airport),

• if there are several independent planning subgoals, it should be possible to
make independent plans, and then merge them into one consistent plan,

• a specialized language for planning problems would be useful, significantly
restricting the statement of the states, goals, and actions.

Action planning — introduction 7

Action planning — introduction 8

The STRIPS representation scheme

STRIPS — STanford Research Institute Problem Solver (1970). It is the name
of an action planning system for a mobile robot operating in the world of boxes
moved around several rooms. The system ran on a minicomputer from its time
and was very minimalist. Its representation, however, outlived its time, and is
still the basis for the construction of knowledge reprezentation for task planning
systems.

The STRIPS representation uses simple logical formulas consisting of ground
literals (atomic formulas with no variables, and negations thereof), with no
function terms. The only logical connective permitted in the formulas is the
conjunction. (Since the conjunction is implied, the formulas can be written as
lists of literals.) This makes it possible to process state descriptions by algebraic
manipulations, without theorem proving.

• The description of the initial state: a conjunction of positive ground literals.
• The planning goal is also written as a conjunction of literals.
• The representation of actions is more elaborate.

Action planning — the STRIPS representation 9

STRIPS — reprezentacja akcji

The representation of actions in STRIPS is an operator schema, which is a
parametrized operator description, with variables, which in each application are
substituted with specific values.

The operator schema consists of:

preconditions — conditions to the applicability as a conjunction of positive
literals,

effects of the application of an operator, as a conjunction of literals, both
positive and negative, with the positive literals added to, and the negative
literals deleted from, the state description.
(The original STRIPS in place of the conjunctions of positive and negative
literals had two lists of literals: the Add list and the Delete list.)

Example operator schema:

Have(x), Have($$$)

Buy(x,p)

L

At(p), Sells(p,x), Have($$$)
Action: Buy(x, p)
Preconditions: At(p), Sells(p, x), Have($$$)
Effects: Have(x),¬Have($$$)

Action planning — the STRIPS representation 10

The STRIPS representation scheme — an example

Let’s consider a task of planning some shopping. Two operator schemas are
available: Go(p) (go to place p), and Buy(x, p) (buy article x at place p). In
the initial state the agent is at home, but also knows some other facts necessary
when shopping, ie. that the desired articles (milk and bananas) can be bought
at a supermarket. The objective is to purchase them.

S0 = {At(Home), Sells(SM,Milk), Sells(SM,Bananas)}

G = {Have(Milk), Have(Bananas)}

Action: Go(p1, p2) Action: Buy(x, p)
Precond.: At(p1) Precond.: At(p), Sells(p, x), Have($$$)
Effects: ¬At(p1), At(p2) Effects: Have(x),¬Have($$$)

We should not miss the fact, that such representation would only allow the
agent to buy one item, provided that she had $$$ at all, which the initial state
specification does not mention.

Action planning — the STRIPS representation 11

The STRIPS representation scheme — limitations

Having to express all facts only with ground positive literals restricts the
STRIPS language significantly. For example, to properly write the Go operator,
it arguments must state where from and where to the agent is going. Only the
first representation below is permitted, while the second single-argument Go

operator is impossible to write in STRIPS.

Action: Go(p1, p2) Action: Go(p)
Precond.: At(p1) Precond.: {} //none
Effects: ¬At(p1), At(p2) Effects: ¬At(∗), At(p)

The constructs like in the single-argument Go are often useful and would not be
hard to implement. That they have not been included in STRIPS is a matter of
its general simplicity rather than a conscious design decision.

Action planning — the STRIPS representation 12

More planning domain representations

The original STRIPS was created with early computing technology. Nevertheless
it was used in a real mobile robot, moving around a laboratory, analyzing
environment images from its camera, and planning and executing actions in real
time. Out of necessity its representation was very restricted. Perhaps it should
now be extended?

Even though contemporary mobile processing hardware is way more powerful,
the logic and theorem proving algorithms bring in a level of complexity which we
still would rather avoid. However, some extensions to the original STRIPS are
possible, permitting more flexible descriptions, but without full logic apparatus.

For example, the logic of STRIPS assumes the CWA (closed world assumption),
where any condition not explicitly mentioned in the state description is taken to
be false. Consequently, the initial world description consists only of positive
literals, as there is no need to state the negative ones.

STRIPS has been extended to the Action Description Language (ADL).
ADL permits negative literals in the state descriptions, formulas with
conjunctions and alternatives in the goal statement, and drops the CWA.

Action planning — the STRIPS representation 13

The PDDL language

The Planning Domain Definition Language (PDDL) is a notation
language introduced as a standard for writing planning task specifications. This
way, different planning programs can read and work on uniformly specified
problems. PDDL is more general than either STRIPS and ADL, but contains
sublanguages for both of them.

The PDDL syntax is based on Common Lisp.

The problem description in PDDL consists of two parts, typically stored in two
separate files:

• a domain description, which is a dictionary of predicates and action
representations,
• a problem instance description, which is: the objects, the initial state
description, and the goal specification.

Action planning — the PDDL language 14

PDDL — an example

The robot Robby can move between two rooms and has two grippers which it
can use to pick up or drop balls. Initially, all balls and the robot are in the first
room. The goal is to have the balls in the second room.

(define (domain gripper-strips)

(:predicates (room ?r)

(ball ?b)

(gripper ?g)

(at-robby ?r)

(at ?b ?r)

(free ?g)

(carry ?o ?g))

(:action move

:parameters (?from ?to)

:precondition (and (room ?from) (room ?to)

(at-robby ?from))

:effect (and (at-robby ?to)

(not (at-robby ?from))))

Action planning — the PDDL language 15

(:action pick

:parameters (?obj ?room ?gripper)

:precondition (and (ball ?obj) (room ?room)

(gripper ?gripper)

(at ?obj ?room) (at-robby ?room)

(free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room))

(not (free ?gripper))))

(:action drop

:parameters (?obj ?room ?gripper)

:precondition (and (ball ?obj) (room ?room)

(gripper ?gripper)

(carry ?obj ?gripper)

(at-robby ?room))

:effect (and (at ?obj ?room) (free ?gripper)

(not (carry ?obj ?gripper)))))

Action planning — the PDDL language 16

(define (problem strips-gripper2)

(:domain gripper-strips)

(:objects rooma roomb ball1 ball2 left right)

(:init (room rooma)

(room roomb)

(ball ball1)

(ball ball2)

(gripper left)

(gripper right)

(at-robby rooma)

(free left)

(free right)

(at ball1 rooma)

(at ball2 rooma))

(:goal (at ball1 roomb)))

Action planning — the PDDL language 17

Action planning — the PDDL language 18

Planning strategies

In the simplest case a planning system proceeds directly from the initial state,
and generates subsequent, fully instantiated plan steps in order. Such system is
termed a total order progression planner.

Due to the lack of appropriate heuristics for directing the search, a more
common approach has traditionally been to search backward from the goal
formula, selecting the agent’s actions according the goal statement. This is
called regression planning.

After selecting a terminal action (or one of them, since there may be several
literals in the goal formula), one verifies that its preconditions are satisfied, and,
if not, then achieving them is added (or replaced) as the new planning goal.
Then the next (from the end) operator is selected, and so on, until arriving at
a set of requirements which is satisfied by the initial state description.

Action planning — planning strategies 19

Using heuristics

However, in practice both forward and backward planning turn out to be
inefficient. These approaches can be used only in connection with general
(problem domain independent) heuristics. For example, the approach presented
earlier, of generating a simplified problem, solving it, and using the found
solution cost as an estimate of the cost of the original problem solution, is one
example of such heuristic.

Action planning — planning strategies 20

Hard cases — interactions between subgoals

The planning algorithm should take advantage of the divide and conquer
strategy, and build plans separately for independent subgoals, whenever
possible. There are cases, however, when planning subgoals are not
independent, and solving them separately leads to problems, as in the following
Sussman anomaly:

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Action planning — planning strategies 21

Short review

1. Why is it desirable to use specialized representations for agent’s action
planning, instead of using standard state space, or logical representations?

2. Construct a STRIPS representation to describe the problem of a student,
who must pass examinations in two courses, and in order to pass each one
she must first study the course material, but while studying one course she
loses all knowledge gained previously.

Use your representation to describe the problem of this student.

3. Try to solve the above student’s problem, first using the forward and then
the backward strategy.

If, while working on this, you finally understood the student’s basic dilemma
(somewhat alike to the Sussman anomaly), then try to think what kind of
mechanism(s) would be necessary to solve it.

Action planning — basic representation and strategies 22

Planning in the plan space

An alternative representation for the above approach to planning is using the
plan space. The idea is to construct and subsequently modify a partial order
plan, which is a triple:

A set of plan steps (fully instantiated operator schemas)
The initial set of plan steps contains two technical operators: the Start
operator, whose effects give the full description of the initial state, and the
Finish operator, whose precondition state the planning goals. Some plan
steps may not have their preconditions satisfied, such conditions are called
open.

A set of causal links
The causal links connect the plan steps with specific precondition literals of
other plan steps. They indicate that a plan step requires executing another
plan step to have its precondition satisfied.

A set of chronological orderings
Additional necessary chronological ordering determined by the planner.

A plan is complete if all the preconditions of all the plan steps are satisfied by
earlier plan steps, and not affected by intermediate steps.

Action planning — partial order planning 23

Example: putting on shoes

Let us consider an example: we need to construct a plan for putting on shoes,
where the action of putting on a shoe has a precondition of having a sock on
first. We could construct a number of alternative total order plans for this task,
or the following partial order plan:

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Finish

Start

LeftShoeOn, RightShoeOn

The plan on the left is the initial skeletal plan, while the plan on the right is
a final complete solution.

Action planning — partial order planning 24

Converting partial plans

The operations of converting partial plans:

• adding a link (causal) from an existing plan step to an open condition of
another step,

• adding a plan step to satisfy an open condition of another plan step (with a
causal link),

• adding a chronological ordering of two steps of the plan.

Action planning — partial order planning 25

Action planning — partial order planning 26

Example: shopping (1)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Action planning — partial order planning 27

Example: shopping (2)

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Action planning — partial order planning 28

Threats

It is not sufficient to ensure that all the
plan steps have their preconditions satisfied
by earlier plan steps. This is because a
condition satisfied by one plan step
(Go(Supermarket)) — and needed by
another plan step (Buy(Milk)), which is
indicated by a causal link — could be
affected by executing a yet another plan
step (Go(Home)), if such step was executed
between the causally linked plan steps.

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Such other step is called a threat for the causal link. Threats can be eliminated
by introducing additional chronological orderings. The threat step may precede
the earlier step of the causal link (called a demotion), or come after the latter
step of the causal link (a promotion).

Action planning — partial order planning 29

Example: shopping (3)

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Action planning — partial order planning 30

The POP planning algorithm

Using the partial plan representation we now introduce the POP (Partial Order
Planner) algorithm which constructs complete partial order plans.

function POP(Initial, Goal, Operators) returns Plan
Plan ← Make-Minimal-Plan(Initial, Goal)
loop do

if Solution?(Plan) then return Plan
Sneed, c← Select-Subgoal(Plan)
Choose-Operator(Plan, Operators, Sneed, c)
Resolve-Threats(Plan)

end

function Select-Subgoal(Plan) returns Sneed, c

pick a plan step Sneed from Steps(Plan)
with a precondition c that has not been achieved

return Sneed, c

Action planning — partial order planning 31

procedure Choose-Operator(Plan, Operators, Sneed, c)
choose a step Sadd from Operators or Steps(Plan) that has c as an effect
if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to Links(Plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(Plan)
if Sadd is a newly added step from Operators then

add Sadd to Steps(Plan)
add Start ≺ Sadd ≺ Finish to Orderings(Plan)

procedure Resolve-Threats(Plan)

for each Sthreat ∈ Steps(Plan) that threatens a Si
c
−→ Sj ∈ Links(Plan) do

choose either
Demotion: Add Sthreat ≺ Si to Orderings(Plan)
Promotion: Add Sj ≺ Sthreat to Orderings(Plan)

if not Consistent(Plan) then fail
end

Action planning — partial order planning 32

POP algorithm properties

The POP algorithm is correct and complete, which means that it returns
only correct plans, and does produce one if it only exists (provided its search is
implemented using a breadth-first or iterative deepening strategy).

The algorithm has a number of selection points, which can be executed
nondeterministically:

• selection of a step Sneed, c and an open (unsatisfied) condition
• selection of a step Sadd to satisfy Sneed, c

• selection of promotion or demotion when resolving a threat

These elements can be backtracking points, if the algorithm encountered one of
the following planning failures:

• inability to satisfy an open condition
• unresolvable conflict (plan steps threatening themselves mutually)

There exist a number of extensions of the above basic version of the algorithm,
some of which discussed below.

Action planning — partial order planning 33

Example: the blocks world (1)

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Action planning — partial order planning 34

Example: the blocks world (2)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Action planning — partial order planning 35

Example: the blocks world (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

Action planning — partial order planning 36

Example: the blocks world (4)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

Action planning — partial order planning 37

Example: the blocks world (5)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Action planning — partial order planning 38

Planning with partially instantiated operators

In case any of a plan’s operators did not have some of its parameters assigned,
possible threats may appear, dependent on specific value assignments. The
POP algorithm can be extended to accommodate such cases.

procedure Choose-Operator(Plan, Operators, Sneed, c)
Sadd← from Operators or Steps(Plan) choose a step with an effect

cadd such, that u =Unify(c, cadd,Bindings(Plan))
if no such step exists then fail
to Bindings(Plan) add the substitution u

to Links(Plan) add the causal link Sadd
c
−→ Sneed

to Orderings(Plan) add the ordering Sadd ≺ Sneed

if Sadd is a newly added step from Operators then
add Sadd to Steps(Plan)
add Start ≺ Sadd ≺ Finish to Orderings(Plan)

Action planning — partial order planning 39

procedure Resolve-Threats(Plan)

for each Si
c
−→ Sj ∈ Links(Plan) do

for each Sthreat ∈ Steps(Plan) do
for each c′ ∈ Effects(Sthreat) do

if Subst(Bindings(Plan),c) = Subst(Bindings(Plan),¬c′)
then

choose one of
Demotion: add Sthreat ≺ Si to Orderings(Plan)
Promotion: add Sj ≺ Sthreat to Orderings(Plan)

if not Consistent(Plan) then fail
end

end
end

The POP algorithm extended this way is still correct and complete.

Action planning — partial order planning 40

Further extensions of POP

The POP algorithm can deal efficiently with some planning tasks, but this is due
in part to the limitations of it applicability, including the restricted description
language where, for example, the operators specify only deterministic,
independent effects, etc. This language can be extended in several ways:

• operators with conditional effects — these require additional conditions in
Resolve-Threats
• achieving negated goals (necessary for the conditional effects), which
requires using negation, as well as introducing the closed world assumption
for the initial state description (to avoid enlisting facts which do not hold)
• operator applicability conditions with alternatives
• universally quantified applicability conditions and effects of the operators

It should be noted that this extended description language, although it now
contains more elements of the first-order predicate calculus, is not equivalent to
FOPC. It still is a simple language allowing certain types of clauses in certain
roles, and nothing more. For example, we still do not allow alternative effects of
the operators. The necessary algorithms include formula unification, but not the
full theorem proving.

Action planning — partial order planning 41

Conditional planning

The conditional planning takes into account both the variable effects of the
agent’s actions, and the facts unknown at the time of planning.

The CPOP algorithm for creating conditional plans is an extension of POP
taking into account: the context (conditions that must be met) for the plan
steps, conditional steps (which do not cause any specific effects, but acquire
knowledge about facts becoming true), duplicate Finish states (to take account
of contexts, which are not taken into account by the constructed plan), and
conditionally solving threats.

The conditional planning algorithm can be further extended to multivalued
conditional steps (instead of simply checking a logical condition), and the
repetitive loops which are similar to the conditional steps, but instead of
conditionally executing a plan step (or a branch), they cause its conditional
repetition, and re-testing the condition.

Such plans have a strong character of programs, their implementation resembles
program interpretation, and the plan construction is similar to automatic writing
programs from specifications.

Action planning — partial order planning 42

Short review

1. What are the components of a problem representation for planning in the
plan space? Does it have any elements in common (or similar) with the
STRIPS representation?

2. What is a partially ordered plan? Give an example of such a plan for the
previously considered problem of a student having to pass two exams.

3. Name the operations performed on the partially ordered plans by a system
planning in the plan space.

4. What are threats in partially ordered plans?
What threat could arise (will rather surely rise) while solving the previous
student’s problem?

5. What are the non-deterministic elements of the POP algorithm, and what
role do they play in it?

Action planning — planning in the space of plans, POP algorithm 43

Action planning — planning in the space of plans, POP algorithm 44

Planning graphs

Planning graphs are a different approach to action planning, which can
contribute more useful search heuristics. This permits an application of
a broader range of searching algorithms. It is also possible to directly derive
a complete plan from the planning graph.

A planning graph consists of levels corresponding to steps in time, where the
first level describes the start state S0. The levels are composed alternately of
state descriptions and actions. State descriptions are not complete descriptions
of some real state, but rather are sets of logical literals, which can be elements
of some state description, resulting from some action. The actions are operators
linked on one side with literals assuring the satisfaction of their preconditions,
and on the other side with the literals describing the effects of the action. In
addition to real actions there are empty actions, which correspond to
non-change axioms from the situation calculus.

An important constraint of the planning graphs is the lack of variables. When
a specific planning domain contains operators with arguments, then they must
be rewritten into many fully instantiated cases.

Action planning — planning graphs 45

Planning graphs — an example

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)
PRECOND: Have(Cake)
EFFECT: ¬ Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake))

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

¬

¬¬ ¬

¬

The grey arcs between actions and literals denote mutual exclusion (mutex).

Action planning — planning graphs 46

Mutexes in a planning graph

The constructed planning graph does not determine the selection or ordering of
actions, but only the potential possibility of taking actions and achieving goals.
This way the algorithm is simple and efficient (polynomial in the number of
actions and literals), while the planning search space is exponential in the
number of literals.

The mutex computing algorithm is given by the following rules:

A mutex exists between two actions at each graph level if any of the following
holds:

• one action negates the effects of the other,
• one of the effects of one action negates a precondition of the other,
• one of the preconditions of one action is mutex with one of the preconditions
of the other.

Mutex exists between two literals at each level of the planning graph if: (i) one
is a negation of the other, or (ii) there is a mutex between each pair of actions
achieving both literals.

Action planning — planning graphs 47

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

¬

¬¬ ¬

¬

Note that the literals Have(Cake) i Eaten(Cake) are mutex at level S1,
since the only way to achieve Have(Cake), which is the no-op action, is
mutex with the only action achieving Eaten(Cake), which is Eat(Cake).

These two literals are not mutex at level S2, since new actions to achieve these
literals have appeared, and they are not all mutex: Bake(Cake) and
preservation of Eaten(Cake).

Action planning — planning graphs 48

What are the planning graphs

A planning graph is a structure in which each level Ai contains all actions that
are possible in Si, indicating which actions are not simultaneously possible.

The fact that an action appeared in the planning graph at Ai does not mean
that it will be possible to perform this action after i steps. However, the earliest
level An, in which an action appeared indicates that the execution of this action
will not be possible before n steps.

Each level Si contains all literals that can be due to select the actions from the
Ai−1, indicating which pairs of literals are not simultaneously possible.

Note that the construction of a planning graph does not require the selection of
actions, which would require a combinatorial search. Here we only find the
possible actions, and mark some impossible choices by mutexes. A graph with n

levels, a actions, and l literals, has size O(n(a+ l)2), and the time required to
build it has the same complexity.

Action planning — planning graphs 49

Planning graph as a source of search heuristics

It is possible to obtain useful information from the planning graph. For example,
a literal absent from the final graph level is impossible to achieve by any plan.
In searching the state space, this state could be assigned the heuristic value
h(n) =∞. Likewise, in the space of partial plans, we could exclude any partial
plan, which contains an unreachable open condition.

This observation could be generalized by defining the cost of achieving the goal
literal in the planning graph to be the level number in the planning graph at
which this literal first appeared. This number is an approximation of the real
cost of reaching each goal, and often this approximation is optimistic. It can be
proved that such heuristic is admissible in the sense of the A* algorithm.

An even better approximation is obtained by defining a serial planning graph
containing the mutexes between all the pairs of nonempty actions, which
reflects the necessity of executing actions step by step, and generates the
appropriately longer graph.

To approximate the cost of achieving a conjunction of goals one can compute:
(i) the maximum of the costs, (ii) the sum, or (iii) the number of steps to the
state in which all goals are present, and are not mutex. This last heuristic works
quite well for many problems with significant interactions between goals.

Action planning — planning graphs 50

Direct plan generation — the GRAPHPLAN algorithm

function Graphplan(problem) returns solution or failure
graph ← Initial-Planning-Graph(problem)
goals ← Goals[problem]
loop do

if goals all non-mutex in last level of graph then do
solution ← Extract-Solution(graph, goals, Length(graph))
if solution 6= failure then return solution
else if No-Solution-Possible(graph) then return failure

graph ← Expand-Graph(graph, problem)

Initial-Planning-Graph — creates a graph with the S0 state.
Expand-Graph — adds one step to the plan: all possible actions (including

empty), their results, and computes mutexes.
Extract-Solution — computes a binary CSP problem, whose variables are

actions at each level, their values are: in and out, and the constraints are to
satisfy the preconditions, and to have all the goals among the action effects
in the last level. The sequence of in operators makes up a complete partial
order plan.

Action planning — GRAPHPLAN algorithm 51

S0 A1 S2
At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1

Action planning — GRAPHPLAN algorithm 52

Short review

1. What is a planning graph, what is its structure?

2. What is the purpose of mutexes in the planning graphs?

3. Build the planning graph for the previously considered problem of a student
having to pass exams for two courses.

Action planning — planning graphs, GRAPHPLAN algorithm 53

