
Sequential decision problems

In sequential decision problems the utility of agent’s actions do not depend on
single decisions, expressed with the state, which the agent would have gotten into, as
the result of this decision, but rather on the whole sequence of agent’s action.

EXAMPLE: an agent is in the field
start, and can move in any direction
between the field. Its actions ends when
it reaches one of the fields (4,2) or (4,3),
with the result marked in those fields.

1 2 3 4

+ 1

− 12

1

3

START

If the problem was fully deterministic — and the agent’s knowledge of its position was
complete — then the problem would be reduced to action planning. For example, for
the above example the correct solution would be the action plan: U-U-R-R-R. Equally
good would be the plan: R-R-U-U-R. If the single actions did not cost anything (ie.
only the final state did matter), then equally good would also be the plan:
R-R-R-L-L-L-U-U-R-R-R, and many others.

Making complex decisions — sequential decision problems 1

The uncertainty of agent’s action effects

However, considering the uncertainty, the result of the agent’s actions corresponds
with its intentions only with some probability. For example, we may assume that the
action U (Up) transfers the agent to the desired position with probability 0.8, and with
probabilities 0.1 takes the agent left or right. It is only certain that the agent will not
end up in the direction opposite to the intended one. For simplicity let us also assume
that the presence of the walls does not change this probability distribution, and only
makes the agent stay in place, if it turned out that it should move into the wall.

0.8

0.10.1

We can now compute the expected values of the sequences of agent’s moves. In
general, there is no guarantee, that after executing any of the above sequences, the
agent will indeed end up in the desired terminal state.

Making complex decisions — sequential decision problems 2

The agent’s policy

As opposed to the action planning algorithms, here the agent should work out its
strategy not as a specific sequence of actions, but as its policy, which is a scheme
determining actions the agent should take for any specific state it would find itself in.

We can determine the optimal policy for
the previous example problem. Note that
at point (3,2) the policy makes the agent
move left, which may seem wrong, but
allows the agent to avoid ending up in
state (4,2). Similarly in state (4,1).

1 2 3 4

+ 1

− 12

1

3

This policy obviously results from the assumption of zero cost of the moves. If the
agent’s outcome depended not only on the final state, but also on the number of
moves, then such conservative policy would probably no longer be optimal.

Making complex decisions — sequential decision problems 3

Considering the cost of the moves

Considering a positive cost of the moves, lowers the result achieved in the final states
by the cumulative cost of all the moves. This certainly affects the agent’s optimal
policy.

For example, the following diagram shows the optimal policy when the cost of the
moves equals 1/25 of a unit. Let’s note that in the states (4,1) and (3,2) the optimal
policy dictates the move toward the state (4,3), despite the risk. However, in the states
(2,1) and (3,1) the policy still recommends going around.

1 2 3 4

+ 1

− 12

1

3

Formally, the cost of the moves is introduced as a reward function R for states, so
R(s) = −0.04 for all the nonterminal states.

Making complex decisions — sequential decision problems 4

Markov decision problems

Computing the policy as a complete mapping from states to the set of actions is called
the Markov decision problem (MDP), if the probabilities of transitions resulting
from the agent’s actions depend only on the current state of the agent, and not on its
history. Such problems are said to have the Markov property.

Formally, a Markov decision problem is defined by the following elements:

• the set of states with the starting state s0,
• the set Actions(s) of actions allowed in state s,
• transition model P (s′|s, a),
• reward function R(s) (also possible is: R(s, a), R(s, a, s′)).

The solution to an MDP is the policy π(s) mapping from states to actions. Let’s note
that under uncertainty each pass of the agent through the environment according to
the policy may result in a different sequence of states, and possibly different outcome.
The optimal policy π∗(s) is the policy achieving the greatest expected utility.

Making complex decisions — sequential decision problems 5

Influence of rewards on the optimal policy

Varying the reward values results in the changes of the optimal policy for a problem.
With very high negative rewards the policy recommends going directly to the final
state, regardless which one. With the rewards approaching zero the initial policy
gradually returns.

− 1

+ 1

r = [−0.4278 : −0.0850]

− 1

+ 1

r = [−0.0480 : −0.0274]

− 1

+ 1

r = [−0.0218 : 0.0000]

− 1

+ 1

r = [− : −1.6284]

8

1 2 3 4

+ 1

− 12

1

3

In case of positive rewards, it is no longer profitable for the agent to terminate the
game, so the optimal policy tells it to avoid the terminal states. Executing actions is
profitable, so the agent should keep running, and avoid termination.

Making complex decisions — sequential decision problems 6

The horizon problem

In MDP problems, states do not have utilities, except terminal states. We could speak
of the utility of a sequence (history) of states Uh([s0, s1, ..., sn]), if it corresponds to an
actual sequence of agent’s actions, and leads to a final state. It then equals the final
result obtained.

Previously we have defined the optimal policy based on the expected utility of
a sequence of states. But determining the optimal policy depends on one important
factor: do we have an infinite time horizon, or is it limited to some finite number of
steps? In the latter case, the specific horizon value will likely affect the optimal policy.
If it is so, then we say the optimal policy is nonstationary. For infinite horizon
problems the optimal policy is stationary.

Computing the optimal policies for finite horizon problems is harder, and we will
consider only infinite horizon problems.

Making complex decisions — sequential decision problems 7

Discounting

As can be seen in our simple example, infinite action sequences are possible, and can
even be optimal policies for an agent. Considering infinite, or very long, sequences is
sometimes necessary, eg. if the problem does not have terminal states, or if the agent
is not expected to reach them. Such computation is difficult, however, as the reward
sums are infinite, and it is hard to compare them then.

To deal with this, a technique of discounting is used, which works by reducing the
effective utilities of future states by some factor 0 < γ < 1. The utility of a sequence
of states H is then defined as U (H) = ∑

i γiRi, or:

Uh([s0, s1, ..., sn]) = R(s0) + γR(s1) + γ2R(s2) + ... + γnR(sn)

For γ < 1 and R ≤ Rmax the utilities so defined are always finite.

The discounting technique has an intuitive justification in many real life problems. It
reflects the smaller value of very distant rewards. Likewise, the technique of
discounting is used in economy to evaluate the investments.

Making complex decisions — sequential decision problems 8

Proper policies and averaging

In the case of infinite action sequences there are other approaches possible, beside
discounting. For example, the average reward, computed for a single step, can be
used as the utility of a sequence.

If the problem has terminal states, then it is possible to determine a policy which
guarantees bringing the agent to one of these states. Then, it is not necessary to
analyze infinite sequences. The policies guaranteeing bringing the agent to one of the
terminal states are termed proper.

Making complex decisions — sequential decision problems 9

The properties of the utilities of state sequences

A utility function for the sequences of states is called separable, if:

U ([s0, s1, ..., sn]) = f(s0, U ([s1, ..., sn]))

In our example 4 × 3 problem the utility function is separable since we can compute it
using the formula:

U ([s0, s1, ..., sn]) = R(s0) + R(s1) + · · · + R(sn)

We call a utility function additive if it has the following property:

U ([s0, s1, ..., sn]) = R(s0) + U ([s1, ..., sn])

It turns out that for many practical cases the utility functions are additive. For
example, when considering the cost function in the state space search, we implicitly
assumed that they are additive. The incurred cost in a state was simply the cost in the
previous state, plus the cost of the move.

Making complex decisions — sequential decision problems 10

Computing the optimal policy — utilities of the states

In order to determine the optimal policy it would be useful to have state utilities, such
as these marked in the diagram on the left (the question where these came from we
shall postpone until later). We could then employ the MEU (Maximum Expected
Utility) principle, and for each state designate the move, which maximizes the
expected utility.

1 2 3 4

+ 1

− 12

1

3

0.762 0.660

0.705 0.655 0.611

0.812

0.388

0.868 0.918

1 2 3 4

+ 1

− 12

1

3

However, in MDP problems states do not have utilities, except for the final states. The
“utility” of a state (intermediate) depends on the agent’s policy, ie. what it intends to
do in that state. At the same time, the agent’s policy depends on the “utilities” of the
states.

We can introduce state utilities based on policies.

Making complex decisions — sequential decision problems 11

The utilities of states

The utility of a state with respect to a policy can be defined as the expected value of
the rewards obtained by initiating actions from this state:

Uπ(s) = E

∞
∑

t=0

γtR(st)

By St we denote here the random variable signifying the state the agent will be at step
t after starting from state s and executing the policy π.

It turns out that, even though theoretically the optimal policy π∗ = argmax
π

Uπ(s) may

depend on the choice of the starting state, for the decision processes with the Markov
property, for infinite sequences with discounting, there is no such dependence. The
agent’s optimal policy, determining all her actions, is independent on the starting point.

For the utility of a state U (s) we will take its utility computed with respect to the
optimal policy Uπ∗

(s).

Making complex decisions — sequential decision problems 12

Dynamic programming

The optimal policy π⋆, being a function defined on the set of states, may then be
associated with the (yet unknown) state utility function:

π∗(s) = argmax
a

∑

s′
P (s′|s, a)U (s′)

where P (s′|s, a) is the probability that the agent will reach the state s′ if she executes
the action a in the state s.

Since we want to express the utility of a state as the expected value of a discounted
sum of rewards of a sequence of states, then it can be tied to the utilities of its
descendant states with the following equation (Bellman, 1957):

U (s) = R(s) + γ max
a

∑

s′
P (s′|s, a)U (s′)

For the n states we thus obtain n equations — unfortunately nonlinear, due to the max
term — with n unknowns. Solving these equations is called dynamic programming.

Making complex decisions — sequential decision problems 13

n-step decision problems

If in some problem the final states were achieved with known utilities in exactly n
steps, then we could solve the Bellman equation by first determining the utilities for the
states at step n − 1, then at step n − 2, etc., until reaching the start state. Problems
of such type are called n-step decision problems, and solving them is relatively easy.

Unfortunately, in most practical cases we may not assume to have constant, n-step
sequences, due, for example, to looping.

Making complex decisions — sequential decision problems 14

The value iteration algorithm

For problems, which cannot be stated as the above n-step decision problems, we can
compute approximate values of the state utilities in an iterative procedure called the
value iteration:

Ut+1(s) = R(s) + γ max
a

∑

s′
P (s′|s, a)Ut(s

′)

At step (t = 0) we assume arbitrary state utility values, and at the subsequent steps of
the algorithm we compute their subsequent approximations.

The algorithm may be terminated by comparing the obtained utilities and estimating
the error. Note that the optimal agent’s policy may be precisely determined by
approximate utility values, even before they converge.

Making complex decisions — sequential decision problems 15

The value iteration algorithm: an example

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)

(1,1)
(3,1)

(4,1)

(4,2)

Making complex decisions — sequential decision problems 16

Convergence of value iteration

As we saw in the example the value iteration procedure converged nicely in all states.
The question is, is it always this way?

It turns out that it is. The value iteration algorithm always leads to stable values of
state utilities, which are the sole solutions of the Bellman equation. The number of
iterations of the algorithm needed to reach an arbitrary error level ǫ is given by the
following formula, where Rmax is the upper bound on the reward values:

N = ⌈log(2Rmax/ǫ(1 − γ))/ log(1/γ)⌉

Making complex decisions — sequential decision problems 17

Convergence of value iteration — further remarks

• In practice, the following termination condition can be used for the value iteration:
||Ui+1 − Ui|| < ǫ(1 − γ)/γ

• In practice, the optimal policy can be reached much further than the utility values
stabilize with desired small errors.

• N grows unboundedly when γ approaches one. The convergence can be sped up by
decreasing γ, although this implies shortening the agent’s horizon, and neglecting
the long-term effects.

• For γ = 1, if there exist terminal states, similar convergence criteria and error
estimates can be derived.

Making complex decisions — sequential decision problems 18

The policy iteration algorithm

Just because the optimal policy is often relatively insensitive to the specific values of
the utilities, it can be computed by a similar iterative process, called the policy
iteration. It works by selecting an arbitrary initial policy π0, and initial utilities, and
then updating the utilities determined by the policy, according to the following formula:

Ut+1(s) = R(s) + γ
∑

s′
P (s′|s, πt(s))Ut+1(s

′)

alternating it with subsequent update of the policy

πt+1(s) = argmax
a

∑

s′
P (s′|s, a)Ut(s

′)

In the above formulas πt(s) denotes the action designated by the current policy for the
state s. The first formula gives a set of linear equations, which can be solved exactly
for Ut+1 in O(n3) time (they are the exact utilities for the current approximate policy).

Making complex decisions — policy iteration 19

The policy iteration algorithm (cntd.)

The policy iteration algorithm terminates when the policy update step make no
change. Since for a finite space there exist a finite number of policies, the algorithm is
certain to terminate.

For small state spaces (n in O(n3)) the above procedure is often most efficient. For
large spaces, however, the O(n3) causes it to run very slowly. In these cases a
modified policy iteration can be used, which works by iteratively updating the
utilities — instead of computing it exactly each time — using a simplified Bellman
updating given by the formula:

Ut+1(s) = R(s) + γ
∑

s′
P (s′|s, πt(s))Ut(s

′)

Compared with the original Bellman equation the determination of the optimal action
has been dropped here, since the actions are determined here by the current policy.
Thus this procedure is simpler, and even several such update steps can be made before
the next policy iteration step (updating the policy).

Making complex decisions — policy iteration 20

The case of uncertain state information — POMDP

In a general case the agent may not be able to determine the state it ended up in after
taking an action, or rather can only determine it with a certain probability. Such
problem are called partially observable Markov decision problems (POMDP).
In these problems the agent must compute the expected utility of its actions, taking
into account both their various possible outcomes, and various possible new
information (still incomplete), that it may acquire, depending on the state it ends up in.

The solution to the problem can be obtained by computing the probability distribution
over all possible states that the agent can possibly be in, by considering the uncertain
information about its environment that it was able to accumulate. In the general case,
however, this computation is made difficult by the fact, that undertaking an action
causes the agent to acquire new information, which may change its knowledge of the
environment in ways difficult to consider. In practice, the agent must take into account
new information it may acquire, along with the states it may transfer to. This may
involve computing the value of information, which was covered earlier.

Making complex decisions — partially observable MDP 21

POMDP — formal description

A POMDP problem is defined by the following four elements:

• the set of states, but with no starting state s0,
• the set Actions(s) of actions allowed in state s,
• the transition function: P (s′|s, a), which is a probability distribution of reaching the

state s′ after executing action a in state s,
• reward function: R(s),
• sensor model: P (e|s), which is a probability distribution of receiving the evidence e

(partially erroneous) in state s,
• initial belief state: b0.

In POMDP problems there is no assumption about knowing the initial state. Instead,
the agent has to work with the belief state b(s), which is a probability distribution
over all possible states s. Initially, we only know the initial belief state b0.

The task is to compute such policy, that would allow the agent to reach the goal with
the highest probability. During the course of action the agent will change her belief
state, due both to the newly received information, and to executing the actions by
itself.

Making complex decisions — partially observable MDP 22

POMDP: an example

Let us again consider the agent in the 4x3
environment, except in this case the agent does not
know which initial state it is in, and must assume
equal probabilities 1

9
of being in each of the

nonterminal states.
What would the agent’s optimal policy be now?

The figures below show subsequent probability distributions of the agent position after
executing subsequently five of each of the following actions: Left, Up, and Right. It is
an extremely cautious and conservative policy, although quite wasteful. Even though
the agent ends up in the “good” terminal state with probability 0.775, the expected
utility of such sequence of moves is only 0.08.

Making complex decisions — partially observable MDP 23 Making complex decisions — partially observable MDP 24

Solving POMDP

The key to solving the POMDP is the understanding that the optimal action depends
only on the agent’s belief state. Since that agent does not know her actual state (and
will never learn it in fact), her optimal policy must be a mapping π⋆(b) from belief
states to actions. The subsequent belief states can be computed using the formula:

b′(s′) = αP (e|s′)
∑

s
P (s′|s, a)b(s)

where P (e|s′) is the probability of receiving the observation e in state s′, and α is an
auxiliary constant normalizing the sum of the belief states to 1.

The work cycle of a POMDP agent, assuming she has already computed her complete
optimal policy π∗(b), is then as follows:

1. For the current belief state b, execute the action π∗(b).
2. Receive the observation e.
3. Move to the belief state b′(s′), and repeat the cycle.

Making complex decisions — partially observable MDP 25

The belief state space

Since the MDP model considers the probability distributions and permits to solve such
problems, a POMDP problem can be transformed to an equivalent MDP problem
defined in the belief space. In this space we operate on the probability distribution of
the agent reaching the set of beliefs b′ where she currently has the set of beliefs b and
executes the action a. For a problem with n states, b are n-element real valued vectors.

Note that the belief state space, which we obtained while studying the POMDP
problems, is a continuous space, unlike the original problem. Furthermore, it is typically
multi-dimensional. For example, for the 4 × 3 environment it has 11-dimensions.

The above value iteration and policy iteration algorithms are not applicable to such
problems. Solving them is computationally very hard (PSPACE-hard).

Making complex decisions — partially observable MDP 26

Converting POMDP to MDP

P (e|a, b) =
∑

s′
P (e|a, s′, b)P (s′|a, b)

=
∑

s′
P (e|s′)P (s′|a, b)

=
∑

s′
P (e|s′)

∑

s
P (s′|s, a)b(s)

P (b′|b, a) = P (b′|a, b) =
∑

e
P (b′|e, a, b)P (e|a, b)

=
∑

e
P (b′|e, a, b)

∑

s′
P (e|s′)

∑

s
P (s′|s, a)b(s)

where

P (b′|e, a, b) =

1 if b′(s′) = αP (e|s′) ∑

s P (s′|s, a)b(s)
0 otherwise

Making complex decisions — partially observable MDP 27

The above equation can be taken as a definition for the transition model for the belief
state space. We need to redefine the reward function:

ρ(b) =
∑

s
b(s)R(s)

and all the elements defined above constitute a totally observable Markov decision
process (MDP) over the belief state space.

It can be proved, that the optimal policy π∗(b) for this MDP is also the optimal policy
for the original POMDP problem.

Making complex decisions — partially observable MDP 28

Computing optimal policies for POMDP’s

A sketch of the algorithm: we define a policy π(b) for regions of the belief space, where
for one region the policy designates a single action. An iterative process analogous to
the value or policy iteration then updates the region boundaries, and may introduce
new regions.

The optimal policy computed with this algorithm for the above example is:

[L, U, U, R, U, U, (R, U, U)*]

(the cyclically repeating R-U-U sequence is necessary due to the uncertainty of the
agent ever reaching the terminal state). The expected effect of this solution is 0.38,
which is significantly better than for the naive policy proposed earlier (0.08).

Making complex decisions — partially observable MDP 29

