
Knowledge representation in first order logic

The state space search algorithms covered earlier had a relatively general
formulation, but required the problem to be represented in a specific format.
This format included the definition of the state space, the set of state transition
operators, and a heuristic state evaluation function.

Generally, the structure and format of knowledge representation are highly
important and affect the efficiency — or even the ability — of searching for the
solution.

There exist a number of paradigms for knowledge representation in artificial
intelligence. These knowledge representation paradigms usually come with
associated with them algorithms for reasoning, ie. making subsequent findings
ultimately leading to determining the solution to the problem.

One of the most powerful and popular knowledge representation schemes is the
language of mathematical logic.
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Why is mathematical logic a good representation language in artificial
intelligence?

On the one hand, it is close to the way people think about the world and
express their thought in natural language. People even view their way of
thinking as“logical”. The categories by which people think and speak include
such constructs as: objects and relations between them, simple and complex
assertions, sentences, connectives, conditionals, and even quantifiers.

On the other hand, the mathematical logic offers a precise apparatus for
reasoning, based on theorem proving. People, likewise, use logical reasoning in
their thinking, so mathematical logic seems to be a good representation
platform for the knowledge base of an intelligent agent, whose way of expressing
facts and reasoning should be similar to the human’s.
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Example: the wumpus world

It is useful to have a good testing environment for verifying the methods being
developed. This environment needs to be simple enough to allow developing
intuitions and quickly discovering properties, but at the same time rich enough
to pose some significant demands of the problem solving abilities, and allow to
formulate problems of various degree of difficulty.

One of such“textbook” testing environment is the wumpus world.1 An
intelligent agent moves around this environment in search for gold, which she
intends to carry out safely. The agent is however faced with some dangers, such
as the pits), into which she may fall, and the title wumpus monster, which may
eat the agent.

The agent may only turn right or left, move forward by one step, shoot a single
arrow from a bow (ahead), pick up gold, and leave the environment when she is
in the starting position.

1The examples and diagrams of the wumpus world presented here are borrowed from the textbook by Russell
and Norvig“Artificial Intelligence A Modern Approach”and the materials provided on Stuart Russell’s Web page.
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The agent receives some information about her environment (the data obtained
by the agent by her perception are called the percepts). She can smell the
wumpus stench and feel the breeze from the pits, but only in the fields directly
neighboring the wumpus or the pits. She can also detect the gold, but only
when she enters the field it is in. She cannot determine her absolute position
(à la GPS), but she can remember her position and covered trail. She can sense
the walls only by trying to enter them, which results in getting bumped back.
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Example: moving around the wumpus world
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Example: moving around the wumpus world (cntd.)
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However, it is not always
possible to act so efficiently in
the wumpus world by using only
logical reasoning.

In some cases the only solution
is to“shoot”, ie. blindly select
a move, and analyze the
outcome. Provided that we
survive!!
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First order predicate calculus — terms

The terms represent objects in the language of logic and may be: constants
(denoting a specific object), variables (can assume the values of various
objects), or functions (determine an object from the value of their object
argument(s), or map some objects into some others).

Examples of terms: A, 123, x, f(A), f(g(x)), +(x, 1)

By convention, we will write constant terms in capital letters, and variables in
lowercase.

Let us make a note, that the last term in the above examples is an indirect
notation of the subsequent value for x, and not a subtraction. In pure logic
there is no arithmetic. We will see the consequences of this often.
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First order predicate calculus — predicates

The predicates represent relations over the set of terms. We can treat them as
functions assuming the values of true or false (1 or 0), assigning 1 to each
vector of n terms satisfying the relation, and 0 to each vector of n terms not
satisfying the relation.

A predicate symbol written with the set of terms is called an atomic formula.

Examples of atomic formulas: P , Q(A), R(x, f(A)), > (x, 10)

The expression > (x, 10) is the functional equivalent of x > 10. In arithmetic
we treat such an expression as inequality and we could solve it. But as a logical
formula we can only evaluate it, meaning determine its truth value. But if
a formula contains a variable then often its truth value cannot be determined.

Logic based methods — predicate calculus 8

Representing facts with logical formulas

What is the purpose of the predicate language?

We could use it to write the facts we want to express, like:

At(Wumpus, 2, 2)
At(Agent, 1, 1)
At(Gold, 3, 2)

The selection of the set of symbols, by which we intend to describe the objects
and relations of some world is called conceptualization. For example, an
alternative conceptualization for the above facts could be the following:

AtWumpus(loc(2, 2))
AtAgent(loc(1, 1))
AtGold(loc(3, 2))

These two conceptualizations are similar, but have different properties. For
example, in the latter the wumpus, agent and gold are not mentioned directly.
In general, the accepted conceptualization has influence on the ease or even the
ability to express different facts about the problem domain.
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Representing facts with logical formulas (cntd.)

A problem with the conceptualization of the wumpus world is the description of
the presence and location of the pits. We could give the pits full citizenship and
identity:

At(Pit4, 3, 3)

In this way it would be easy to describe the“bird’s eye view”of the wumpus
world, by giving different pits some names (constant terms). But from the point
of view of the agent acting in the wumpus world this conceptualization is very
uncomfortable. It would be hard to describe the world as it is gradually learned,
when at first the agent does not even know the total number of pits. The
presence of a pit at some location would have to be described by a variable:

At(x, 3, 3)

Unfortunately, this description does not indicate that x is a pit so this requires
further descriptions. A comfortable alternative is to view the pits as anonymous,
and only denote the presence or absence of pits at specific locations:

PitAt(3, 3)
NoPitAt(1, 1)
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Logical connectives and complex formulas

Complex formulas can be constructed from atomic formulas using the
logical connectives: ¬,∧,∨,⇒,⇔. As a special case, an atomic formula or
a negation of an atomic formula is called a literal.
Examples of complex formulas (the first one is a single literal):

¬At(Wumpus, 1, 1)
PitAt(2, 1) ∨ PitAt(1, 2)
[At(Agent, 1, 1) ∧ PitAt(2, 1)] ⇒ Percept(Breeze)

Let us observe that the last formula is of a different nature. The first two could
be a fragment of a world description obtained or constructed by the intelligent
agent during her activity in the wumpus world. But the last one expresses one
of the laws of this world. The agent knows this law and can hold such a formula
in her knowledge base.

The facts generally true in a problem domain are called the axioms of the
world. The facts describing a specific instance of the problem are called
incidental.
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It is further worth noting, that the ⇒ and ⇔ are just logical connectives,
transforming any two formulas into a complex formula. They are not part of the
reasoning processes, which we will consider later.
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Quantifiers
The complex formulas can also be built using the quantifiers: ∀,∃, which bind
variables in formulas. The general scheme for the formula with a quantifier is:

∀xP (x)

A variable not bound by a quantifier in a formula is called free. The formula:

∃yQ(x, y)

contains two variables, one free (x) and one bound by a quantifier (y).

A sentence, or a closed formula is a formula without free variables.

Examples:

∃x, y At(Gold, x, y)
∀x, y [At(Wumpus, x, y) ∧At(Agent, x, y)] ⇒ AgentDead

∀x, y [At(Wumpus, x, y) ∧At(Agent,−(x, 1), y)] ⇒ Percept(Stench)

Let’s note that the −(x, 1) is an indirect notation of the column left of x, and
not a subtraction. There is no subtracting in logic.
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Short review

1. Work out a complete representation for the wumpus world in the first order
predicate calculus. That is: introduce term symbols (constants and
functions), and predicate symbols necessary to describe problem instances for
the domain.

Note: we do not consider the process of searching for the solution, analyzing
alternative moves and their consequences, describing sequences of steps etc.
We only seek a scheme for describing static snapshots of a problem instance.

2. Using the representation worked out in the previous question, describe
a problem instance given on page 4.

3. Try to write the axioms for the wumpus world, that is, the general rules for
this domain.
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Semantics

The definition of the predicate language introduced only one component of
a representation, which is its syntax. The second component is the
semantics, which is the apparatus for describing the meaning.

It might seem that some formulas are self-explanatory. So far we intuitively
guessed the meaning of At(Agent, 2, 2). In general, however, this is
insufficient. Even restricted to the wumpus world, we do not know which
instance and which state of the game the formula refers to.

An interpretation is an assignment of objects from some domain to the
syntactic elements (terms and predicates) of the predicate language.

Obviously, a formula written with a few symbols can refer to different domain.
For example, the formula At(Agent, 2, 2) can refer to some episode of the
wumpus world, a scene from a James Bond movie, some real world agent, of
something different still. There could be very many interpretations for a given
formula.
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Models

Let us note, that the interpretation determines the truth value of atomic
formulas. If in the domain of the interpretation a relation holds between some
objects, then the atomic formula describing this using appropriate terms is true
under this interpretation.

Also conversely, having any written formula, we can determine its truth value by
checking whether in the domain of the interpretation the relation described by
the formula holds. (However, if a formula contains free variables then its truth
value may not be determined by an interpretation.)

Consequently, from the definitions of the logical connectives and quantifiers we
can determine the truth value of any (closed) formula for a given interpretation.
We can say that interpretations assign truth values to formulas (at least closed).

An interpretation assigning a formula the value true is called a satisfying
interpretation, or a model of this formula.
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Satisfiability

A formula is called satisfiable if there exists a satisfying interpretation for it (in
other words: there exists its model). A formula is unsatisfiable if there exists
no satisfying interpretation (model) for it. If a formula has the truth value of 1
for every interpretation, then it is called a tautology, or a valid formula.

Consider examples:

At(Wumpus, 2, 2)
∃x, y At(Gold, x, y)
∀x, y [At(Wumpus, x, y) ∧At(Agent, x, y)] ⇒ AgentDead

All above formulas are satisfiable, as we can easily make up an instance of the
wumpus world, where the corresponding facts would hold. None of them are
tautologies though. The latter two formulas hold for every episode of the
wumpus world adhering to the rules of this world. However, it is easy to think of
another, similar world, where they would not hold.

An example of a valid formula (tautology) can be the less interesting, though
probably fascinating from the mathematical point of view formula: P∨¬P, where
P is any 0-argument predicate, or, in other words, a statement of some fact.
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Short review

1. For the predicate calculus formulas given below answer whether the formula
is: satisfiable, unsatisfiable, a tautology.

(a) P
(b) P (x)
(c) ∀x P (x)
(d) ∃x P (x)
(e) [P ⇒ Q] ∧ P ∧ ¬Q
(f) [P ⇒ Q] ⇔ [¬P ∨Q]
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Logical following

In many situations an agent would like to conduct some reasoning. A typical
case is to determine some facts, of which the agent has no information, but
which can follow from the information she does have. We saw these cases in the
wumpus world examples. Another case might be of the agent trying to
determine the possible consequences of her actions; the desired as well as
undesired.

We would like to have an effective way of verifying if some facts follow from
others. However, logic only allows to determine the following of formulas.

A formula ϕ logically follows from the set of formulas ∆ if every
interpretation satisfying all the formulas of ∆ also satisfies the formula ϕ.
This is denoted by:

∆ |= ϕ

Why do we define the following this way? Because we want to have a universal
logical apparatus, for reasoning correct in all possible interpretations. While
working with formulas, we want to be sure that our reasoning process is correct
also for the specific problem domain of the agent.
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A digression — the propositional calculus

There is a logical formalism simpler than the predicate calculus, called the
propositional calculus. It does not have the terms, so the predicates are
reduced to 0-argument predicates, called propositions. The atomic formulas are
single relation symbols, and the complex formulas can be constructed using the
connectives. There are no quantifiers.

The semantics of the propositional calculus is very simple. Instead of
considering all possible interpretations for the given formula, it suffices to divide
them into groups, which assign truth or false values to the specific propositional
symbols. In fact, instead of considering interpretations, we can just consider all
combinations of truth and false values for all propositional symbols. A simple
procedure for this uses truth tables.

Such procedure does not work for the predicate calculus, as the truth values of
an atomic formula depends on the values of the argument terms. Unfortunately,
the propositional calculus is too weak (not expressive enough) for practical
applications.
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Inference rules

However, verifying the logical following by interpretations and unsatisfiability
can be tedious. This is because all possible interpretations need to be examined,
and there could be very many of them.

In mathematics, instead of checking the logical following, a different approach
of theorem proving is used. It is done by introducing inference rules, which
create new formulas from the existing ones by way of syntactic transformations.

For example, one of the most basic inference rules is the following, called the
modus ponens, or the derivation rule:

ϕ,ϕ⇒ ψ

ψ

For example, if the agent had the facts: Drought i Drought⇒ LowCrops,
then inserting them into the above schema, she would be allowed to inference
a new fact: LowCrops.
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Theorem proving

The proof of the formula ϕ for the set of formulas ∆, called the axioms, we
will call a sequence of formulas of which the last one is ϕ, where each formula
in the sequence satisfies one of the following conditions:

1. is a tautology,
2. is one of the axioms,
3. is a formula derived from the formulas preceding it in the proof (located to

the left of it) using one of the inference rules.

A theorem of a set of formulas ∆ we will call each formula ϕ which has
a proof for ∆. We the say that the formula ϕ can be inferred from the set of
axioms ∆ and denote this by:

∆ ⊢ ϕ

The set of all theorems of the set of formulas ∆ is called the theory of this set,
and is denoted by T (∆).

Logic based methods — inferencing 22

Reasoning by proving theorems

We initially introduced the logical following (∆ |= ϕ) as a way of reasoning, ie.
determining the fact following. However, we lacked an efficient procedure to
verify this.

Theorem proving (∆ ⊢ ϕ) offers a potentially good reasoning procedure for an
agent using logic as a representation language. Wanting to prove some fact
from the set of axioms we can at worst systematically generate all finite
sequences of formulas, satisfying the definition of the proof of this fact. If
a proof exists, and has the length N, then it will be generated by this procedure.
This is significantly better than checking all interpretations, some of which are
even hard to imagine.

But is theorem proving as good a method for checking the fact following for
any real problem domain? This is by no means obvious.
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Proof systems

A number of proof systems have been defined in mathematical logic, which
introduce alternative sets of inference rules, along with certain initial formulas
(axioms). We will not cover the construction of such systems in this course.
However, we need to know and understand their properties, since we will learn
to use one of such systems.

An inference rule is sound if it allows to infer the false formula only from an
unsatisfiable set of premises.

A set of inference rules is complete if it allows to infer the false formula from
any unsatisfiable set of premises.

In a proof system which is sound and complete, false formula can be inferred
from a set of clauses if and only if this set is unsatisfiable (provided these are
closed clauses).

What would be needed in artificial intelligence, is a sound and complete proof
system, with a computationally efficient proof generator.
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Short review

1. Explain why the reasoning of an agent about her world should be based on
logical following.

2. What is theorem proving and what role in it have the inference rules?

3. When can we apply theorem proving for determining properties of some
problem domain?
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The disjunctive normal form (DNF)

The automatic processing of logical formulas requires writing them in some
uniform normal forms.

We will call literals any atomic formulas, and their negations, eg.:
P,¬Q(x, f(a)).

A formula is in the Disjunctive Normal Form (DNF) if it has the form of
an alternative of conjunctions of literals. Both alternative and conjunctions here
will typically be n-way rather than binary connectives, thanks to associativity.

For any logical formula there exists a formula in DNF form, which is logically
equivalent to it. For example, the formula (¬P ∧Q) ∨R is already in DNF
form, while the formula ¬P ∧ (Q ∨R) could be transformed to an equivalent
DNF form using the law of the distributivity of conjunction over alternative:
(¬P ∧Q) ∨ (¬P ∧R).

There could be many different DNF forms of a given formula.
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Converting formulas to DNF

One specific construction of the DNF form can be obtained from the truth table
of a formula in terms of its component atomic formulas.

Example:
(P ⇒ Q) ∧ (Q⇒ P )

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P )

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

By selecting the rows of the truth table for which the formula is true (one in the
last column), we can construct the DNF formula:

(¬P ∧ ¬Q) ∨ (P ∧Q)
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The conjunctive normal form (CNF)

A formula in the form of a conjunction of alternatives of literals is said to be in
the Conjunctive Normal Form (CNF). Formulas, which are alternatives of
literals are called clauses. So a formula in the CNF form is a conjunction of
clauses. (For this reason CNF could also be spelled out as Clausal Normal
Form.)

An example of a formula in the CNF form: (P ∨Q ∨ ¬R) ∧ (P ∨ ¬Q ∨R).
CNF is analogous, dual to the DNF form of writing formulas. It may seem less
intuitive at first, but is, in fact, much more useful in the automatic theorem
proving systems.

For example, it is modular, ie. if we wanted to add a new fact (in CNF) to the
already existing formula (also in CNF), then it is a syntactically trivial
operation, and does not require any transformations to either of the formulas,
unlike in the case of DNF.
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Converting formulas to CNF

Consider again an example formula and its truth table:

(P ⇒ Q) ∧ (Q⇒ P )

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P )

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

Analogous to the algorithm for constructing the canonical DNF of the formula,
we can construct the CNF by taking the rows from the table with a zero in the
last column, and writing clauses eliminating these rows:

(¬P ∨Q) ∧ (P ∨ ¬Q)
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Empty conjunctions and empty clauses

We can talk of single literals as of 1-ary (unary) conjunctions of clauses, or of
unary clauses (alternatives of literals). Moreover, we allow empty (0-ary)
clauses, and empty conjunctions of clauses.

p1 ∧ p2 ∧ ... ∧ pn = ∧(p1, p2, ..., pn) p1 ∨ p2 ∨ ... ∨ pn = ∨(p1, p2, ..., pn)
p ∧ q = ∧(p, q) p ∨ q = ∨(p, q)

p = ∧(p) p = ∨(p)
 = ∧()  = ∨()

While the truth value of any nonempty conjunction or clause depends on the
truth values of its components, the empty formulas should have a constant
logical interpretation. By a simple generalization of the definition of the logical
values of these connectives we can obtain that the empty conjunction is a valid
formula (tautology), while the empty clause is a false (unsatisfiable) formula.

When writing the logical formulas as sets, or lists, the empty conjunctions and
clauses appear as empty sets {}, or lists: () or NIL. Additionally, in the logical
notation, the symbol ✷ is used to denote the empty clause.
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Example:

Let’s consider the formula (P ∧Q) written as a set of clauses (of single
literals): {P,Q}. Adding to this set the empty conjunction: {P,Q} ∪ {}
corresponds to taking the following conjunction in the logical notation:
(P ∧Q) ∧ T ≡ (P ∧Q) (where T represents the truth). This confirms the
correctness of interpreting the empty conjunction as tautology.

Analogously, we can write the clause (P ∨Q) as a set of literals: {P,Q}.
Adding to this set the empty clause: {P,Q} ∪ {} in the logical notation
corresponds to: (P ∨Q) ∨ F ≡ (P ∨Q) (where F represents falsity). So the
interpretation of the empty clause as a false formula is also correct.
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Rewriting logical formulas as sets of clauses

A variable-free formula can be converted to a set of clauses, also called the
prenex form, where all quantifiers are written in front of the formula:

(i) rename the variables bound by quantifiers to be unique,
(ii) replace all logical connectives with only conjunctions and alternatives,
(iii) move negations to inside the formulas (to predicate symbols),
(iv) extract the quantifiers outside the formula,
(v) convert the formula to CNF,
(vi) replace all existential quantifiers with Skolem functions.

The first five steps are logically equivalent transformations (as long as the right
order of the extracted quantifiers is maintained in step (iv)). The (vi) step,
called skolemization, converts all the formulas of the form:

∀x1∀x2...∀xn∃y Φ(x1, x2, ..., xn, y)

with:
∀x1∀x2...∀xn Φ(x1, x2, ..., xn, fy(x1, x2, ..., xn))

where fy is a newly introduced functional symbol called the Skolem function.
In case there are no universal quantifiers ∀ this will be a Skolem constant.
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Skolem’s theorem

The last step in the algorithm for the conversion of formulas into the prenex
form is not a logically equivalent transformation. That means, that for the
original formula Φ and the resulting prenex formula Φ′, in general Φ 6≡ Φ′.

However, the following property, called the Skolem theorem holds: for
a closed formula Φ, if Φ′ is its prenex form, then Φ is satisfiable if and only if
Φ′ is satisfiable.

Therefore, while we cannot in general use the derived prenex form Φ′ for any
logical reasoning instead of Φ, we can use it for proving satisfiability (or
unsatisfiability).

There exists an extremely useful inferencing scheme, using formulas in prenex
form, often written as sets (or lists) of clauses, with clauses written as sets (or
lists) of literals.
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Short review

Convert to prenex form the following first order predicate calculus formulas:

1. ∀x [(P (x) ⇒ Q(x)) ∧ (P (x) ⇒ R(x))]

2. ∀x [(P (x) ∧Q(x)) ∨ (R(x) ∧ S(x))]

3. ∀x∃y [P (x) ⇒ Q(x, y)]

4. ∃x∀y [P (x, y) ⇒ Q(A, x)]

5. ∀x∃y [P (x, y) ⇒ Q(y, f(y))]
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Resolution — the ground clauses case

The resolution for two ground (fully instantiated) clauses: if there is
a common literal occurring in these clauses with opposite signs, then the
resolution constructs a new clause, called the resolvent, which is a union of all
the literals from both clauses excluding the common literal.

For an example, for the clauses:

P ∨Q(A) and ¬S ∨ ¬Q(A)

the resolution created the resolvent: P ∨ ¬S.

For the pair of clauses: (P ∨Q(A)), (¬S ∨Q(A)) and likewise for:
(P ∨Q(A)), (¬S ∨ ¬Q(B)) there do not exist common literals with opposite
signs, so executing resolution for these pairs of clauses is not possible.

Fact: the resolvent always logically follows from the conjunction of the original
clauses, so resolution is a sound inference rule.

Logic based methods — inferencing 37

Some interesting special cases of resolution (the ❀ symbol denotes here the
possibility of executing the resolution and obtaining the result indicated):

P and ¬P ∨Q ❀ Q modus ponens
P ∨Q and ¬P ∨Q ❀ Q a stronger version
P ∨Q and ¬P ∨ ¬Q ❀ P ∨ ¬P tautology
P ∨Q and ¬P ∨ ¬Q ❀ Q ∨ ¬Q -”-

P and ¬P ❀ NIL contradiction
¬P ∨Q and ¬Q ∨R ❀ ¬P ∨R transitivity of

(P ⇒ Q) (Q⇒ R) (P ⇒ R) implication
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Short review

For the following set of formulas, write all possible to obtain resolvents.
If it is not possible to compute a resolution, then give a short explanation.
Compare the computed resolvents with logical consequences you can derive
intuitively from the formulas given.
Pay attention to commas, to correctly identify formulas in sets.

1. { P ∨Q ∨R , ¬P ∨ ¬Q ∨ ¬R }

2. { P ∨Q , P ∨ ¬Q , ¬P ∨Q }

3. { P ⇒ (Q ∨R) , ¬Q ∧ ¬R }

4. { P ⇒ Q , R⇒ Q , P ∨R }
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Substituting variables in formulas

We shall consider transformations of formulas consisting in replacing variable
occurrences with other expressions (terms). Since the variables in prenex
formulas are implicitly bound with universal quantifiers, replacing variables with
other terms means taking specific cases of the formula.

We will call a substitution a set of mappings indicating terms to be
substituted for specific variables. The term may not contain the variable it is to
replace. An example of a substitution: s = {x 7→ A, y 7→ f(z)}.

Applying a substitution works by syntactically replacing all the occurrences
of a given variable within a formula with its associated term. All replacements
are done simultaneously, so eg. by applying the substitution
s = {x 7→ y, y 7→ A} to the term f(x, y) the result will be the term f(y, A).

Note that this way it does not matter in which order the variables are
substituted, even though a substitution is a set (unordered).
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A composition of substitutions s1 and s2 (written as: s1s2) is called
a substitution obtained by applying the substitution s2 on terms from s1, and
appending to the resulting set all the pairs from s2 with variables not in s1.

Φs1s2 = (Φs1)s2

s1(s2s3) = (s1s2)s3
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Unification

Unification is the procedure of finding a substitution of terms to variables in
a set of formulas, to reduce it to a singleton set (or to logically equivalent
formulas, see explanation below).

A unifier of a set of formulas is a substitution reducing it to a singleton set.
A set of formulas is unifiable if there exists a unifier for it.

For example, the set {P (x), P (A)} is unifiable, and its unifier is
s = {x 7→ A}.

Likewise, the set {P (x), P (y), P (A)} is unifiable, and its unifier is
s = {x 7→ A, y 7→ A}.

The set {P (A), P (B)} is not unifiable, and neither is {P (A), Q(x)}.
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Unification (cntd.)

While unification is a general procedure, here we will compute it only on sets of
clauses. Consider the following example clause sets:

Φ = {P ∨Q(x), P ∨Q(A), P ∨Q(y)}

Ψ = {P ∨Q(x), P ∨Q(A), P ∨Q(f(y))}

Ω = {P ∨Q(x), P ∨Q(A) ∨Q(y)}

The set Φ is unifiable, its unifier is: s = {x 7→ A, y 7→ A}, and the unified set
is the singleton set: Φs = {P ∧Q(A)}).

The set Ψ is not unifiable.

The set Ω is a more complex case. By applying a purely syntactic
unification, it is not unifiable, since after applying the substitution the
formulas are not the same. However, by applying a semantic unification, the
set is unifiable, since the formulas after applying the substitution are logically
equivalent. We will allow semantic unification using associativity and
commutativity of the alternative.
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Most general unifier (mgu)

The most general unifier (mgu) of a unifiable set of formulas is the simplest
(minimal) unifier for that set.

For a unifiable set of formulas there always exists its mgu, and any other unifier
for this set can be obtained by composing the mgu with some additional
substitution. The unification algorithm computes the mgu of a set of
formulas.
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Short review

For the following set of clauses answer if each set is unifiable.
If so, then write its unifier. Try to give both the mgu, and another unifier, which
is not mgu. If the set is not unifiable, then explain why.
Pay attention to commas, to correctly identify formulas in sets.

1. {P (x) , P (f(x))}

2. {P (x, y) , P (y, x)}

3. {P (x, y) , P (y, f(x))}

4. {P (x, y) , P (y, f(y))}

5. {P (x, y) , P (y, z) , P (z,A)}
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Resolution — the general case

Resolution in the general case: if for two clauses (sets of literals): {Li} and
{Mi} there exist respective subsets of literals: {li} and {mi}, called the
collision literals such, that the set: {li} ∪ {¬mi} is unifiable and s is its
mgu, then their resolvent is the set: [{Li} − {li}]s ∪ [{Mi} − {mi}]s.

There can exist different resolvents for given clauses, by different selection of
collision literals. For example, consider the following clauses:

P [x, f(A)] ∨ P [x, f(y)] ∨Q(y) and ¬P [z, f(A)] ∨ ¬Q(z)

By choosing {li} = {P [x, f(A)]} and {mi} = {¬P [z, f(A)]} we obtain the
resolvent:

P [z, f(y)] ∨ ¬Q(z) ∨Q(y)

But by choosing {li} = {P [x, f(A)], P [x, f(y)]} and {mi} = {¬P [z, f(A)]}
we obtain:

Q(A) ∨ ¬Q(z)

Logic based methods — inferencing 47

Short review

For the following set of clauses, write all possible to obtain resolvents.
For each resolvent, note which clauses it was derived from, and what
substitution was used. If it is not possible to compute a resolution, then give
a short explanation.
Pay attention to commas, to correctly identify formulas in sets.

1. {¬P (x) ∨Q(x) , P (A)}

2. {¬P (x) ∨Q(x) , ¬Q(x)}

3. {¬P (x) ∨Q(x) , P (f(x)) , ¬Q(x)}
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Resolution as an inference rule

Resolution is a sound inference rule, since a clause obtained from a pair of
clauses by resolution is their logical consequence. It is, however, not complete,
ie. we cannot derive by resolution just any conclusion ϕ of a given formula ∆,
such that ∆ ⊢ ϕ.

For example, for ∆ = {P,Q} we cannot derive by resolution the formula P ∨Q
or P ∧Q, and for ∆ = {∀xR(x)} we cannot derive the formula ∃xR(x).

However, if resolution is used in the refutation proof procedure, ie. by
negating the thesis and deriving falsity, represented by the empty clause
(denoted by ✷), then any theorem can be proved by resolution. So resolution is
said to be refutation complete.

Consider the above examples. For: ∆ = {P,Q} negating the formula P ∨Q
gives the clauses ¬P and ¬Q and each of them immediately gives the empty
clause with the corresponding clause from ∆. The negation of P ∧Q is the
clause ¬P ∨ ¬Q and the empty clause can be derived in two resolution steps.
For ∆ = {∀xR(x)} the negation of ∃xR(x) is ¬R(y), which unifies with the
clause R(x) derived from ∆ and derives the empty clause in one resolution step.
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Theorem proving based on resolution

The basic reasoning scheme based on resolution, when we have a set of axioms
∆ and want to derive from it the formulaϕ, is the following. We make a union
of the sets of clauses obtained from ∆ and ¬ϕ, and we try to derive falsity (the
empty clause) from it, generating subsequent resolvents from the selected pairs
of clauses. At each step we add the newly obtained resolvent to the main set of
clauses, and repeat the procedure.

The main result from the mathematical logic being used here is the following
two facts. If resolution is executed on a set of clauses obtained from an
unsatisfiable formula, with some systematic algorithm of generating resolvents,
then we will obtain the empty clause at some point. And the other way around,
if the empty clause can be generated from a set of clauses obtained from some
formula, then this set of clauses, but also the original formula, are both
unsatisfiable. This applies as well to the clauses created by skolemization, so is
a confirmation of the correctness of the whole procedure.
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Theorem proving: an example

We know that:

1. Whoever can read is literate. (∀x)[R(x) ⇒ L(x)]
2. Dolphins are not literate. (∀x)[D(x) ⇒ ¬L(x)]
3. Some dolphins are intelligent. (∃x)[D(x) ∧ I(x)]

We need to prove the statement:

4. Some who are intelligent cannot read. (∃x)[I(x) ∧ ¬R(x)]

After converting the statements to the prenex CNF form we obtain the clauses:

C1: ¬R(u) ∨ L(u) from the first axiom
C2: ¬D(v) ∨ ¬L(v) from the second axiom
C3a: D(A) from the third axiom, p.1
C3b: I(A) from the third axiom, p.2
NT: ¬I(w) ∨R(w) from the negation of the theorem

From the subsequent resolution steps we obtain:

C5: R(A) resolvent of clauses C3b and NT
C6: L(A) resolvent of clauses C5 and C1
C7: ¬D(A) resolvent of clauses C6 and C2
C8: ✷ resolvent of clauses C7 and C3a

C3a C2 C1 C3b NT
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

w=A

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊

u=A

❉
❉
❉
❉❉

v=A

✂
✂
✂
✂✂

C5
✂
✂
✂
✂✂

C6
✂
✂
✂
✂✂

C7
✂
✂
✂
✂✂

C8=✷
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Theorem proving: an example from mathematics

Let us consider the following example from mathematics.2 We would like to
prove that the intersection of two sets is contained in either one of them. We
start from writing the axioms which are necessary for this reasoning. In this case
they are the definitions of the set intersection and inclusion.

∀x∀s∀t (x ∈ s ∧ x ∈ t) ⇔ x ∈ s ∩ t
∀s∀t (∀x x ∈ s⇒ x ∈ t) ⇔ s ⊆ t

Theorem to be proved:
∀s∀t s ∩ t ⊆ s

2This example is borrowed from the book“Logical Foundations of Artificial Intelligence”by Genesereth and
Nilsson.
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After converting the formulas to prenex CNF sets of clauses:

1. {x 6∈ s, x 6∈ t, x ∈ s ∩ t} from the definition of intersection
2. {x 6∈ s ∩ t, x ∈ s} from the definition of intersection
3. {x 6∈ s ∩ t, x ∈ t} from the definition of intersection
4. {F (s, t) ∈ s, s ⊆ t} from the definition of inclusion
5. {F (s, t) 6∈ t, s ⊆ t} from the definition of inclusion
6. {A ∩B 6⊆ A} from the negation of the theorem

Let us note the Skolem functions in clauses 4 and 5, and Skolem constants in
clause 6. Below is the proof sequence leading quite directly to the empty clause.

7. {F (A ∩B,A) ∈ A ∩B} from clauses 4. and 6.
8. {F (A ∩B,A) 6∈ A} from clauses 5. and 6.
9. {F (A ∩B,A) ∈ A} from clauses 2. and 7.
10. {} from clauses 8. and 9.

This is it. Theorem proved. But somehow, it is hard to feel the satisfaction
which typically accompanies completing a real mathematical proof. Furthermore,
in case one wanted to review the proof, or verify it, one has to do some
nontrivial extra work, although in this particular case it is still relatively simple.
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Short review

For the following axiom sets ∆ and theorems ϕ, try proving ∆ ⊢ ϕ using
resolution refutation.

1. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = Likes(Dick,Ed)

2. ∆ = {∀x(Likes(x,Dick) ⇒ Likes(Dick, x)),¬Likes(wife(Ed),Dick)}
ϕ = Likes(Dick,wife(Ed))

3. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = (Likes(Dick,Ed) ∨ Likes(Dick,wife(Ed))

4. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = (Likes(Dick,Ed) ∧ Likes(Dick,wife(Ed))

Logic based methods — inferencing 55 Logic based methods — inferencing 56

Knowledge engineering

The presented formalism of first order predicate logic, along with resolution as
a method of theorem proving, constitute a technique for building intelligent
agents capable of solving problems presented to them. The construction of such
an agent, however, requires an efficient design of a representation, which can be
formulated as the following process termed knowledge engineering:

problem identification
Define the scope of questions which the agent would have to be able to
answer, the type of facts, which she will be able to use, etc. For example, in
relation to the wumpus world, we must declare whether the agent should be
able to plan activities, or, for example, only create the representation of the
state of the world identified by previous actions.

knowledge acquisition
The developer of the agent software (knowledge engineer) may not
understand all the nuances of the described world, and must cooperate with
experts to obtain all the necessary knowledge.
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definition of the representation dictionary
The concepts and objects of the problem domain must be described with
logical formulas. It is necessary to define a vocabulary of predicates and
terms, ie term functions and constants. This stage may prove crucial for the
ability to effectively solve problems, eg. in the wumpus world, would pits
better be represented as objects, or properties of locations.

encoding general knowledge
Encode axioms containing general knowledge about the problem domain, the
rules governing this world, existing heuristics, etc.

encoding specific knowledge
The statement of a specific problem to be solved by the agent, including the
facts about all specific objects, as well as the question to answer, or, more
generally, the theorem to prove.

submit queries to the reasoning device
Run the theorem proving procedure on the knowledge base constructed.
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debug the knowledge base
Unfortunately, as is also the case with normal programs, rarely designed
system will immediately work properly. There may occur such problems as
the lack of some key axioms, or axioms imprecisely stated, that permit
proving too strong assertions.
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Dealing with equality

One very special relation occurring in logical formulas is the equality (identity)
of terms.

Example:
∆ = {=(wife(Ed),Meg),Owns(wife(Ed), alfa-8c)}.
Does it mean that Meg owns an Alfa 8c Competizione?
Can we prove it using resolution?
Owns(Meg, alfa-8c)?

Unfortunately not. The resolution proof procedure does not treat the equality
predicate in any special way, and will not take advantage of the term equality
information it has. For the resolution proof in the above example to succeed, we
would have to formulate an appropriate equality axiom:

∀x, y, z [Owns(x, y) ∧ =(x, z) ⇒ Owns(z, y)]

Logic based methods — auxiliary algorithms 61

Using the above axiom, connecting Owns with equality, we can prove that Meg
owns the Alfa, as well as any other facts and equalities of the owners. However,
to likewise extend the reasoning to the equality of the objects owned, an
additional axiom has to be introduced:

∀x, y, z [Owns(x, y) ∧ =(y, z) ⇒ Owns(x, z)]

Worse yet, for the system to properly handle all the facts of the term identities
with respect to all relations, similar axioms would have to be written for all the
predicate symbols. Unfortunately, in the first order predicate language it is not
possible to express this in one general formula, like:

∀P, y, z[P (y) ∧ =(y, z) ⇒ P (z)]

An alternative solution would be to incorporate the processing of term equality
in the theorem proving process. Several solutions exist: a formula reduction rule
with respect to term equality, called demodulation, a generalized resolution
rule called paramodulation, and an extended unification procedure which
handles equalities.
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Answer extraction from the proof tree

Consider a simple example, we know:

1. Where is John, there is Fido. (∀x)[At(John, x) ⇒ At(Fido, x)]
2. John is at school. At(John, School)

The question we need to answer is:

3. Where is Fido? (∃x)[At(Fido, x)]

The logical version of the original question is ¬At(Fido, x), and the proof is
generated easily:

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL

Unfortunately, it does not provide an answer to the original question.
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Answer extraction from the proof tree (cntd.)

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL ⇒

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)∨At(Fido,y)
PPPPPPPPPPPPPPP

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)∨At(Fido,x)

❜
❜
❜
❜
❜
❜
❜
❜

✧
✧

✧
✧

✧
✧

✧
✧

At(Fido,School)

• The basic procedure converts the refutation proof to a direct proof of the
theorem.

• If the theorem contains alternatives (which become conjunctions after
negation) then the resulting formula may be complex and hard to interpret.

• If the theorem contains a universal quantifier then after negation it contains
Skolem functions or constants, which are carried to the result formula, but
can be converted to a universally quantified variable.
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Resolution speedup strategies

In proving theorems using the resolution refutation procedure, we aim to
generate the empty clause, indicating a contradiction. To be sure that the
empty clause obtains, assuming that this is at all possible, we need to generate
the resolvents in some systematic way, for example, using the breadth-first
search. But with larger databases, this can lead to generating a large number of
conclusions, of which most may not have anything to do with the theorem
being proved.

It would be useful to have some speedup strategies, which would cut off this
search and prevent generating at least some resolvents. These strategies can be
complete, ie such that will always find a solutions (contradiction) if at all
possible, or incomplete ie giving no such a guarantee (but typically much
more effective).
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Speedup strategies:

• single literal preference (by itself incomplete, but complete if used as
a preference)

• set of support: allow only resolution steps using one clause from a certain
set, initially equal to the negated theorem clauses (complete)

• input resolution permits only resolution steps using an original input clause
(complete only in some cases, eg. for Horn clause databases)

• linear resolution (incomplete)

• repetition and subsumption reduction (complete)
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Undecidability of predicate calculus

The predicate calculus seems well suited to expressing facts and reasoning in
artificial intelligence systems. However, we need to be aware of some of its
fundamental limitations, which constrain its practical applications.

Church’s theorem (1936, of the undecidability of predicate calculus): there does
not exist a decision procedure, which could test the validity of any predicate
calculus formula. We say that the predicate calculus is undecidable.

This property significantly restricts what can be inferred in the predicate
calculus. However, for a number of classes of formulas, there does exist
a decision procedure. Furthermore, the predicate calculus has the property of
semidecidability, which means that there exists a procedure which can
determine, in a finite number of steps, that a formula is unsatisfiable, if it is so.
However, for satisfiable formulas such procedure may not terminate.
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Incompleteness in predicate calculus

One could think, that the undecidability of predicate calculus can be
circumvented by taking advantage of its semidecidability. Attempting to derive
a formula ϕ from an axiom set ∆, we start two simultaneous proof procedures:
∆ ⊢ ϕ and ∆ ⊢ ¬ϕ. By semidecidability, we could expect that at least one of
these proofs should terminate. Unfortunately, this is not so.

Gödel’s theorem (1931, of incompleteness): in predicate calculus one can
formulate incomplete theories: theories with (closed) formulas, which cannot
be proved true or false. What’s more, such theories are quite simple and
common, eg. the theory of natural numbers is one such theory.

A theory T is called decidable if there exists an algorithm that for any closed
formula ϕ can test whether ϕ ∈ T , or ϕ 6∈ T . Incomplete theories are
obviously undecidable.

The effect of the Gödel’s theorem is, that if, after some number of steps of
a proof ∆ ⊢ ϕ (and, perhaps a simultaneous proof ∆ ⊢ ¬ϕ), there is still no
derivation, then we still cannot be certain whether the proof will eventually
terminate (or at least one of them will), or that we have an incomplete theory.
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Representing changes

The predicate calculus works well as a representation language for static
domains, ie. such where nothing ever changes, and whatever is true, stays so
forever. Unfortunately, the real world is not like this.

For example, if the formula: At(John, School) correctly describes the current
state of the morning of some weekday, then, unfortunately, we must accept that
John will go home eventually. If the axioms correctly describe the effects of
agents’ actions, then the system might be able to derive a new fact:
At(John,Home). Unfortunately, the fact database will then contain
a contradiction, which for a logical system is a disaster. A proof system
containing a false formula among its axioms can prove any theorem!

Exercise: assume the axiom set ∆ contains, among others, two clauses: P and
¬P . Give a proof of an arbitrary formula Q. Hint: prove first that P ∨ ¬P ∨Q
is a tautology (sentence always true) for any P and Q. This can be
accomplished constructing a proof: |= (P ∨ ¬P ∨Q), this is, proving the thesis
with an empty set of axioms. Next add such a tautology to the ∆ set and
proceed to prove Q.
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Temporal logics

To solve the problem of representation of the changes, a number of special logic
theories, called temporal logics were created. Ordinary facts expressed in these
logics occur at specific points in time. However, the time, its properties, and
special inference rules concerning its passage, are built into the theory (instead
of being represented explicitly, along with other properties of the world).

One of the main issues, which these theories treat differently, is the
representation of the time itself. Time can be discrete or continuous, may be
given in the form of points or intervals, may be bounded or unbounded, etc.
Moreover, time can be a linear concept or can have branches. Usually it should
be structured, although there exist circular representations of time.

For each of these temporal logics, to be able to effectively reason about
formulas created, which represent the phenomena that an intelligent agent
faces, there must exist a proof procedure. The construction of such a procedure
may be based on projections of the given theory to first-order predicate logic.
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The situation calculus

An alternative to temporal logics is a direct recording of time moments in the
representation language. An example of such an approach is the situation
calculus:
At(Agent, [1, 1], S0) ∧At(Agent, [1, 2], S1) ∧ S1 = Result(Forward, S0)

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S
0

Forward

S
1
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The situation calculus (cntd.)

The situation calculus uses the concepts of: situations, actions, and fluents:

situations: a situation is the initial state s0, and for any situation s and action
a a situation is also Result(a, s); situations correspond to sequences of
actions, and are thus different from states, ie. an agent may be in some state
through different situations,

fluents: functions and relations which can vary from one situation to the next
are called fluents; by convention their last argument is the situation
argument,

possibility axioms: describe preconditions of actions, eg. for action Shoot:
Have(Agent, Arrow, s) ⇒ Poss(Shoot, s)
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successor-state axioms: describe for each fluent what happens depending
on the action taken, eg. for action Grab the axiom should assert, that after
properly executing the action the agent will end up holding whatever she
grabbed; but we must also remember about situations when the fluent was
unaffected by some action:

Poss(a, s) ⇒
(Holding(Agent, g, Result(a, s)) ⇔

a = Grab(g) ∨ (Holding(Agent, g, s) ∧ a 6= Release(g))).

unique action axioms: because of the presence of the action inequality
clauses on the successor-state axioms, we must enable to agent to effectively
derive such facts, by adding the unique action axioms; for each pair of action
symbols Ai and Aj we must state the (seemingly obvious) axiom Ai 6= Aj;
also, for actions with parameters we must also state:

Ai(x1, ..., xn) = Aj(y1, ..., yn) ⇔ x1 = y1 ∧ ... ∧ xn = yn
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Example: monkey and bananas — the axioms

• general knowledge of the world and operators (partial and simplified):

A1: ∀p∀p1∀s [At(box, p, s) ⇒ At(box, p, goto(p1, s))]

A2: ∀p∀p1∀s [At(bananas, p, s) ⇒ At(bananas, p, goto(p1, s))]

A3: ∀p∀s [At(monkey, p, goto(p, s))]

A4: ∀p∀p1∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ At(box, p1,move(box, p, p1, s))]

A5: ∀p∀p1∀p2∀s [At(bananas, p, s) ⇒ At(bananas, p,move(box, p1, p2, s))]

A6: ∀p∀p1∀s [At(monkey, p, s) ⇒ At(monkey, p1,move(box, p, p1, s))]

A7: ∀s [Under(box, bananas, s) ⇒ Under(box, bananas, climb(box, s))]

A8: ∀p∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ On(monkey, box, climb(box, s))]

A9: ∀s [Under(box, bananas, s) ∧ On(monkey, box, s) ⇒ Havebananas(grab(bananas, s))]

A10: ∀p∀s [At(box, p, s) ∧ At(bananas, p, s) ⇒ Under(box, bananas, s)]

• specific case data:

A11: [At(monkey, P1, S0) ∧ At(box, P2, S0) ∧ At(bananas, P3, S0)]

• theorem to prove:

∃s(Havebananas(s))
2The solution to the monkey and bananas problem presented here is based on an example in book

”
Artificial

Intelligence”by Philip C. Jackson Jr.
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Example: monkey and bananas — the clauses

A1: {¬At(box, p, s1), At(box, p, goto(p1, s1))}

A2: {¬At(bananas, q, s2), At(bananas, q, goto(q1, s2))}

A3: {At(monkey, r, goto(r, s3))}

A4: {¬At(box, u, s4),¬At(monkey, u, s4), At(box, u1,move(box, u, u1, s4))}

A5: {¬At(bananas, t, s5), At(bananas, t,move(box, t2, t3, s5))}

A6: {¬At(monkey, v1, s6), At(monkey, v2,move(box, v1, v2, s6))}

A7: {¬Under(box, bananas, s7), Under(box, bananas, climb(box, s7))}

A8: {¬At(monkey, w, s8),¬At(box, w, s8),On(monkey, box, climb(box, s8))}

A9: {¬Under(box, bananas, s9),¬On(monkey, bananas, s9),

Havebananas(grab(bananas, s9))}

A10: {¬At(box, p, s10),¬At(bananas, p, s10), Under(box, bananas, s10)}

A11a: {At(monkey, P1, S0)}

A11b: {At(box, P2, S0)}

A11c: {At(bananas, P3, S0)}

NT: {¬Havebananas(z)}
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Example: monkey and bananas — the proof

C1(A1,A11b) {At(box, P2, goto(p1, S0))}

C2(C1,A4) {¬At(bananas, P2, goto(p1, S0)),

At(box, u1,move(box, P2, u1, goto(p1, S0)))}

C3(C2,A3) {At(box, u1,move(box, P2, u1, goto(P2, S0)))}

C4(C3,A10) {¬At(bananas, u1,move(box, P2, u1, goto(P2, S0))),

Under(box, bananas,move(box, P2, u1, goto(P2, S0)))}

C5(A2,A11c) {At(bananas, P3, goto(q1, S0))}

C6(C5,A5) {At(bananas, P3,move(box, t2, t3, goto(q1, S0)))}

C7(C6,C4) {Under(box, bananas,move(box, P2, P3, goto(P2, S0)))}

C8(C7,A7) {Under(box, bananas, climb(box,move(box, P2, P3, goto(P2, S0))))}

C9(A3,A6) {At(monkey, v2,move(box, r, v2, goto(r, r1)))}

C10(C9,A8) {At(box, v2,move(box, r, v2, goto(r, r1))),

On(monkey, box, climb(box,move(box, r, r2, goto(r, r1))))}

C11(C10,C3) {On(monkey, box, climb(box,move(box, P2, u1, goto(P2, S0))))}

C12(C8,A9) {¬On(monkey, box, climb(box,move(box, P2, P3, goto(P2, S0)))),

Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C13(C11,C12) {Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C14(C13,NT) {}
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Example: monkey and bananas — the resolution tree
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The frame problem

As we could see in the wumpus and the monkey and bananas examples,
a correct logical description of a problem requires explicitly stating the axioms
for the effects of actions on the environment, as well as other effect (like rain).
It is also necessary to write the axioms to conclude the lack of change:

∀a, x, s Holding(x, s) ∧ (a 6= Release) ⇒ Holding(x, Result(a, s))
∀a, x, s ¬Holding(x, s) ∧ (a 6= Grab) ⇒ ¬Holding(x,Result(a, s))

Unfortunately, in a world more complex than the wumpus world, there will be
many fluents, and the description must represent their changes, as well as
invariants, both as direct and indirect consequences of the actions.

These axioms, called the frame axioms, are hard to state in a general way,
and they significantly complicate the representation.

Of course, during the course of work, the agent must state and answer many
questions, and prove theorems. The multiplicity of axioms causes a rapid
expansion of her database, which slows down further reasoning, and can result
in a total paralysis.
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Short review

1. Write a situation calculus based representation for the wumpus world, as
described at the beginning of this document.
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Problems with the lack of information
The logic-based methods presented so far assumed that all information
necessary to carry out logical reasoning is available to the agent. Unfortunately,
this is not a realistic assumption.

One problem is that of incomplete information. Agent may not have full
information about the problem, allowing him to draw categorical conclusions.
She may, however, have partial information, such as:

•
”
typical” facts,

•
”
possible” facts,

•
”
probable” facts,

• exceptions to the generally valid facts.

Having such information is often crucial for making the right decisions.
Unfortunately, the classical predicate logic cannot make any use of them.

Another problem is the uncertainty of information. An agent may have data
from a variety of not fully reliable sources. In the absence of certain information,
those unreliable data should be used. She should reason using the best available
data, and estimate the reliability of any conclusions obtained this way. Again,
classical logic does not provide such tools.
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Common sense reasoning

Consider what information a human knows for sure, making decisions in
everyday life. Getting up in the morning, her intention is to go to work. But
what if there is a large-scale failure of public transportation? She should, in
fact, get up much earlier, and first check whether the buses are running. The
day before, she bought products to make breakfast. But can she be sure that
her breakfast salad is still in the refrigerator, or if it did not spoil, or perhaps if
someone has not sneaked to steal it, etc.

Conclusion: a logically reasoning agent needs 100% certain information to
conduct her actions, and sooner or later she will be paralyzed by the perfect
correctness of her inference system. In the real world she will never be able to
undertake any action, until she has full information about the surrounding world.

However, people perform quite well in a world full of uncertain and incomplete
information, defaults facts, and exceptions. How do they do it? We must
conclude that, in their reasoning, the humans use a slightly different logic than
the rigorous mathematical logic. One could generally call this hypothetical
inferencing mechanism a logic of common sense reasoning.
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Nonmonotonic logics

Part of the blame for the problems of inference using classical logic bears its
property known as monotonicity. In classical logic, the more we know, the
more we can deduce using inferencing.

Humans use a different model of inference, much more flexible, utilizing typical
facts, default facts, possible facts, and even lack of information. This kind of
reasoning seems not to have the monotonicity property.

For example, lacking good information about a situation a human is likely to
make assumptions and derive some conclusions. After having acquired more
complete information, she might not be able to conduct the same reasoning and
work out the same solutions.3

Hence, different models of inference, designed to overcome these problems, and
following a more flexible reasoning model similar to that of humans, are
collectively called nonmonotonic logics.

3The solution produced earlier, in the absence of information, turns out to be wrong now, but perhaps it was
better than the lack of any action. But not necessarily.
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Nonmonotonic logics — example

Minsky’s challenge: to design a system, which would permit to correctly
describe a well-known fact, that the birds can fly.

∀x[bird(x) → canfly(x)]

In order to accommodate the exceptions, eg. ostriches, the preceding formula
must be modified per case.

∀x[bird(x) ∧ ¬ostrich(x) → canfly(x)]

But there are more exceptions: birds bathed in spilled crude oil, wingless birds,
sick birds, dead birds, painted birds, abstract birds, . . .

An idea: we introduce a modal operator M:

∀x[bird(x) ∧M canfly(x) → canfly(x)]

Now the exceptions can be introduced modularly:

∀x[ostrich(x) → ¬canfly(x)]

Logic based methods — nonmonotonic logics 84



For the following set of facts:

∆ = {bird(Tweety), bird(Sam), ostrich(Sam)}

we can deduce: ¬canfly(Sam)
so it should not be possible to derive:

M canfly(Sam) nor canfly(Sam)

However, using the normal proof procedure we cannot prove the Tweety’s
ability to fly:

M canfly(Tweety), canfly(Tweety)

In order to do this, a proof procedure is needed, capable of effective (and
automatic) proving theorems in predicate logic extended with the modal
operator M, consistent with the following inference rule:

Not(⊢ ¬p)

M p
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Nonmonotonic logics — what proof procedure?

Leaving aside the restrictions resulting from the reference to the proof
procedure in the above definition, such a procedure may be neither effective
computationally, nor decidable nor even semidecidable, as are the proof
procedures for the predicate logic.

The premise of the above inference rule contains the statement, that some
formula is impossible to prove. To start, this may not be possible to determine
at all. And to find a positive confirmation of this fact, it will certainly be
necessary to carry out global inferencing over the entire database. For how else
we could say that something can not be proved.

In contrast, proofs in first-order predicate calculus are local in nature. If, for
example, we are lucky to choose the appropriate premises, we can obtain the
proof in several steps, even if the data base contains thousands of facts.
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Problems with logic-based methods

The approach to knowledge representation based on first-order logic at one time
created much excitement and hope for building powerful and universal systems
of artificial intelligence. There are, however, important considerations which
significantly limit the practical applications of this approach:

• combinatorial explosion of the proof procedure; while there exist speedup
strategies, they do not help much; at the same time it is hard to incorporate
in the proof procedure any heuristic information available

• undecidability and the Gödel’s incompleteness of the predicate calculus

• reasoning about changes — situation calculus, temporal logics

◦ reasoning about change exhibits the frame problem — besides
determining what has changed, is is essential to keep track of what has not

• reasoning with incomplete and uncertain information, truly challenging
for the formal approaches, but seems crucial for the human reasoning

◦ taking into account uncertain information leads to nonmonotonic
reasoning, a property of the human reasoning, while the traditional
(mathematical) logic is strictly monotonic
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Applications of the logic-based methods

The above problems with logic-based methods significantly burden their
application as a platform for implementing intelligent agents. Nevertheless, the
first order predicate language itself is commonly used in artificial intelligence for
representing facts.

Still, in some specific applications it is possible to use this methodology, and the
above problems are not critical. Some of these applications are:

• computer program synthesis and verification, software engineering

• design and verification of computing hardware, including the VLSI design

• theorem proving in mathematics; which help seek proofs for any postulated
theorems, for which efforts failed to find a proof in the traditional way
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