
Knowledge representation in logic

The state space search algorithms covered earlier had a relatively general formulation,
but required the problem to be represented in a specific format. This format included
the definition of the state space, the set of state transition operators, and a heuristic
state evaluation function.

Generally, the structure and format of knowledge representation are highly important
and affect the efficiency — or even the ability — of searching for the solution.

There exist a number of paradigms for knowledge representation in artificial
intelligence. These knowledge representation paradigms usually come with associated
with them algorithms for reasoning, i.e. making subsequent findings ultimately
leading to determining the solution to the problem.

One of the most powerful and popular knowledge representation schemes is the
language of mathematical logic.

Logic based methods — knowledge representation in logic 1

Why is mathematical logic a good representation language in artificial intelligence?

On the one hand, it is close to the way people think about the world and express their
thought in natural language. People even view their way of thinking as “logical”. The
categories by which people think and speak include such constructs as: objects and
relations between them, simple and complex assertions, sentences, connectives,
conditionals, and even quantifiers.

On the other hand, the mathematical logic offers a precise apparatus for reasoning,
based on theorem proving. People, likewise, use logical reasoning in their thinking, so
mathematical logic seems to be a good representation platform for the knowledge base
of an intelligent agent, whose way of expressing facts and reasoning should be similar
to the human’s.

Logic based methods — knowledge representation in logic 2

Example: the wumpus world

It is useful to have a good testing environment for verifying the methods being
developed. This environment needs to be simple enough to allow developing intuitions
and quickly discovering properties, but at the same time rich enough to pose some
significant demands of the problem solving abilities, and allow to formulate problems of
various degree of difficulty.

One of such “textbook” testing environment is the wumpus world.1 An intelligent
agent moves around this environment in search for gold, which she intends to carry out
safely. The agent is however faced with some dangers, such as the pits), into which she
may fall, and the title wumpus monster, which may eat the agent.

The agent may only turn right or left, move forward by one step, shoot a single arrow
from a bow (ahead), pick up gold, and leave the environment when she is in the
starting position.

1The examples and diagrams of the wumpus world presented here are borrowed from the textbook by Russell and
Norvig “Artificial Intelligence A Modern Approach” and the materials provided on Stuart Russell’s Web page.

Logic based methods — the wumpus world 3

The agent receives some information about her environment (the data obtained by the
agent by her perception are called the percepts). She can smell the wumpus stench

and feel the breeze from the pits, but only in the fields directly neighboring the
wumpus or the pits. She can also detect the gold, but only when she enters the field it
is in. She cannot determine her absolute position (à la GPS), but she can remember
her position and covered trail. She can sense the walls only by trying to enter them,
which results in getting bumped back.

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze

PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Logic based methods — the wumpus world 4

Example: moving around the wumpus world

A

OK

OKOK

OK

OK OK

A

A

B OK

OK OK

A

A

B

P?

P?

OK

OK OK

A

A

B

P?

P?

A

S

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

Logic based methods — the wumpus world 5

Example: moving around the wumpus world (contd.)

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

OK

OK

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

OK

OK

A

BGS

However, it is not always
possible to act so efficiently in
the wumpus world by using only
logical reasoning.

In some cases the only solution
is to “shoot”, ie. blindly select
a move, and analyze the
outcome. Provided that we
survive!!

A

B OK

OK OK

A

B

A

P?

P?

P?

P?
A

S

Logic based methods — the wumpus world 6

Propositional logic: syntax and wffs

Propositional logic is a very simple logical language. It allows writing atomic
formulas based on propositional symbols. By writing a logical formula we state
some fact. Examples of atomic formulas: P,Q,R,WumpusAt 1 5, HaveGold.

We can also write complex formulas which are constructed from other formulas
using the logical connectives: ¬ (negation), ∧ (conjunction), ∨ (alternative),
⇒ (implication), and ⇔ (biconditional).

Complex formulas can be made up of complex formulas using parentheses, or without
parentheses, where not ambiguous. These rules of how legal language expressions,
called well-formed formulas or wffs, may be created, jointly form the syntax of the
language.

Examples of wffs:

(P ∧Q) ∨ (¬P ∧ ¬Q)
¬¬P
(AgentAt 1 1 ∧ PitAt 1 2) ⇒ Breeze

HaveGold ∨ ¬HaveGold
HaveGold ∧ ¬HaveGold

Examples of non-wffs:

P ∧ ∧Q
P¬Q
P (WumpusAt 1 5)

Explain why these are not wffs.

Logic based methods — propositional logic 7

Propositional logic: semantics

The syntax defines the language. In the case of propositional logic it consists of: a set
of propositional symbols (these can be arbitrary), the set of logical connectives (these
are only the five we introduced), and the rules of their use.

The syntax does not concern the meaning of the formulas. This is the role of the
semantics of the language. The semantics assigns a meaning to each of the
propositional symbols. Having defined a meaning of any formula we can start talking
about whether it is true of false. Which is the ultimate goal of the logical
representation.

Note that we have already written some of the propositional symbols in such a way as
to suggest what we intend them to mean: AgentAt 1 1, P itAt 1 2, HaveGold.
Other symbols are just generic; they can be assigned any meaning, abstract or very
specific: P,Q,R.

However, the language of logic must be flexible and very general — we can never infer
from the mere notation of a propositional symbol what it actually means.

Logic based methods — propositional logic 8

Propositional logic: semantics — possible worlds,

interpretations

If we associate the formula (written with a single propositional symbol) AgentAt 1 1
with the meaning that the wumpus world agent is currently at position (1,1) then it
still does not give us a way to verify whether the formula states the truth or not. It is
entirely possible, that in one specific instance of the game it is true, while in many
other instances it is false.

The semantics resolves this by associating each atomic formula with a possible
world, which is a concrete configuration of the problem domain being described,
where all the objects being described are in precisely defined states. This is done by
way of an interpretation function which associates each atomic formula (or
propositional symbol) with a specific meaning with respect to such possible world, and
thus defines the truth value of such formula.

It is important that the interpretation function is completely defined, i.e. each
propositional symbol present in the language is associated with some aspect of the
possible world, and the corresponding atomic formula can be unambiguously
interpreted as having value 1 or 0.

Logic based methods — propositional logic 9

Propositional logic: semantics — interpretations, models

The interpretation using the possible world on the left assigns the formula
AgentAt 1 1 the truth value 1 (or True), while another one using the possible world
on the right assigns the same formula the truth value 0 (or False):

M M P
W

P M
A M

M P
M

A
P M W

Possible worlds are also more precisely referred to as models.

Note that the locations of all the objects (agent, wumpus, pits), if described by the
propositional symbols of the language, must be specified by each model, whether the
wumpus world agent knows these locations or not.

With these models it is not possible, for example, to have another object F whose
position might be described by formulas such as FAt 2 2. It this was the case then
the above configurations would not be models for such a problem domain, as they do
not reflect the location of the F object.

Logic based methods — propositional logic 10

Propositional logic: semantics — formula satisfaction

Given a specific propositional formula, atomic or complex, some models assign it the
truth value 1, while others assign it the truth value 0. Note that there is no other
option. All the objects described by the propositional symbols are present in the model,
and all their properties are reflected there.

We will say that a model m satisfies a formula f if it assigns it the truth value 1. We
will also say that a model m, which satisfies a formula f , is a model of this formula.

Note the different meaning of the word: model. Any model (for a specific problem
domain) can either satisfy a given formula, or falsify it. But if it satisfies it, then it is
the model of this formula.

For the sake of definition, if a formula is satisfied by all models, then it is called
a tautology. An example of a tautology is P ∨ ¬P . Its truth value does not depend
on the model — it must be assigned the truth value 1 with any model.

Conversely, if a formula cannot be satisfied by any model, then it is called
unsatisfiable. An example of an unsatisfiable formula may be P ∧ ¬P .
Its truth value also does not depend on the model — it is a constant 0.

Logic based methods — propositional logic 11

Propositional logic: semantics — complex formula satisfaction

Let’s stop for a moment to note an important detail. Primarily, a model defines the
truth values of all the atomic formulas (propositional symbols). Once that is done, all
other formulas (complex) have their truth values determined by the semantics of the
specific logical connectives.

For example, assume a model m assigns the symbol AtAgent 1 1 the value 1. Then
consider the formula ¬AtAgent 1 1. We are not free to choose any truth value we
like for it; we are obliged to assume its value is 0. The same applies to any formulas
using ∧,∨, etc. The truth values of any formulas containing them are defined by their
truth tables.

At the same time, we would like to make sure that this model assigns 0 to all the
formulas (atomic) of the kind: AtAgent 1 2, AtAgent 2 1, AtAgent 2 2, But
the propositional logic’s rules do not enforce this. The preceding formulas are not
associated in any way, so a model can assign them any truth values. Having any of
them equal to 1 would break the rules of the wumpus world (since there should be only
one agent, and can be only in one place at a time), but from the logical point of view
nothing would be wrong.

Logic based methods — propositional logic 12

Propositional logic: semantics — the interpretation functions

In principle, an interpretation function assigns an atomic formula some model (which
may be a model of this formula, or not). There are a lot of models (possible worlds)
which can be considered. But from the point of view of establishing truth values of
formulas, the only important thing is which propositional symbols they satisfy, and
which they do not.

Since in a specific problem domain there might be only some number of propositional
symbols (determined by the number of objects and their significant properties), there
are only 2N (N - the number of the propositional symbols) types of models which
really count: those which satisfy a specific symbol, and those which falsify it.

For this reason, for the propositional logic, we often dismiss the great variety of
possible worlds, and reduce the set of models to the set of different 0/1 N -tuples
associating truth values to all the propositional symbols:

AgentAt 1 1 WumpusAt 1 5 ...
m1 0 0 ...
m2 0 1 ...
m3 1 0 ...
m4 1 1 ...
...

Logic based methods — propositional logic 13

Propositional logic: semantics — sets of models

Given the previous generalization, we can alternatively start looking at logical formulas
as a compact way of representing sets of models, namely those which are models of a
specific formula.

For example, the formula AgentAt 1 1 can be thought of as representing all the
models where the agent is located in position (1,1).

Logic based methods — propositional logic 14

Propositional logic: some laws of logic

Since for a given (complex) formula, we will be primarily interested in determining its
truth value, it could be advantageous to note some transformations which can be done
on logical formulas while preserving their truth value. In the following formulas the
equivalence symbol ≡ is used to denote that one side can be replaced by the other in
the process of truth evaluation of a formula.

Associativity:

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Because of the associativity of both conjunction and alternative, we can write multiple
consecutive applications of either of these connectives without parentheses. This is
because the truth value of the formula with multiple applications of either of these
connectives does not depend on the order in which the connectives are interpreted:

p1 ∧ (p2 ∧ (p3 ∧ (...))) ≡ p1 ∧ p2 ∧ p3 ∧ ...

p1 ∨ (p2 ∨ (p3 ∨ (...))) ≡ p1 ∨ p2 ∨ p3 ∨ ...

Logic based methods — propositional logic 15

Distributivity:

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

de Morgan laws:

¬(p ∧ q) ≡ (¬p) ∨ (¬q)

¬(p ∨ q) ≡ (¬p) ∧ (¬q)

Other useful identities:

p ⇒ q ≡ ¬p ∨ q

Logic based methods — propositional logic 16

Logical reasoning — entailment

A knowledge base (KB) is a set of formulas representing a conjunction of all its
member formulas. The set of models of such a set is an intersection of the sets of
models of the member formulas.

In Artificial Intelligence a knowledge base is typically the database of all facts that an
AI agent possesses. An AI agent’s knowledge is naturally a conjunction of many facts.
A typical activity of such an agent is trying to answer a question, of whether another
fact, represented by a formula f holds with such a knowledge base.

It may happen, that assuming all formulas of some set KB are true, another formula f
must also be true, under all possible interpretations.

In such case we say that KB entails f , written KB |= f .
Alternatively, we can say the f logically follows from the set of formulas KB.

Examples: {P,Q} |= P ∧Q {P ∧Q} |= P {P ∨Q,¬P} |= Q {P ⇒ Q,P} |= Q

In propositional logic, one way of determining entailment is by truth tables. In such a
table we enumerate all models (truth assignments for propositional symbols) and verify
that all those models which satisfy the full KB, also satisfy f .

Logic based methods — propositional logic 17

Short review

For the following examples answer whether the specified entailment holds.

1. {P ∨Q} |= P ∧Q

2. {P ∧Q} |= P ∨Q

3. {P,Q} |= P ⇒ Q

4. {P,Q} |= ¬P ∨Q

5. {P ⇒ Q,¬Q} |= ¬P

6. {P ⇒ Q,¬P} |= ¬Q

7. {P ⇒ Q,¬P} |= Q

8. {P ⇒ Q,Q} |= P

9. {P ⇒ Q,Q ⇒ R} |= R

Logic based methods — propositional logic 18

Logical reasoning — modus ponens

In some cases we can apply a process on logical formulas called an inference.
Example:

It is raining. (Raining)
If it is raining, then the road is wet. (Raining⇒RoadWet)
Conclusion: the road is wet. (RoadWet)

This is an example of an inference rule called modus ponens:

For any propositional symbols p and q:

p, p ⇒ q

q

or more generally:

For any p1, . . . , pk, q:

p1, . . . , pk, (p1 ∧ · · · ∧ pk) ⇒ q

q

Logic based methods — propositional logic 19

Logical reasoning — inference rules

There can be other inference rules, generally written according to a scheme:

f1, ..., fk (premises)

g (conclusion)

We can use inference rules in a reasoning process, by applying them successively on
formulas from the knowledge base, until a desired conclusion is obtained. This is the
process of inferencing, and any formula f obtained in this process is said to be
derived from KB, written KB ⊢ f .

The forward inferencing algorithm:

repeat until no change to KB:
foreach inference rule

f1,...,fk
g

if f1, ..., fk ∈ KB ∧ g 6∈ KB
add g to KB

If f gets eventually added to KB then KB ⊢ f .

Logic based methods — propositional logic 20

Derivation versus entailment of formulas

Note the inferencing process operates strictly in the syntax domain. It operates on the
formulas as they are written, and does not refer to models or truth checking.

A question therefore arises:

How does KB |= f relate to KB ⊢ f ?

Are these equivalent?
Can any entailed formula be derived?

Logic based methods — propositional logic 21

Short review

For the following examples answer whether the specified derivability holds.

First assume that the only inference rule is the modus ponens: φ, φ⇒ψ
ψ

In addition to the inference steps you can use the logic equivalence laws such as those
presented on pages 15 through 16 to convert formulas to the desired equivalent form,
both in the KB set and in the target formula on the right-hand side.

1. {P,Q} ⊢ P ∧Q

2. {P ∧Q} ⊢ P

3. {P ∧Q} ⊢ P ∨Q

4. {P ⇒ Q,¬Q} ⊢ ¬P

Now assume that in addition to modus ponens you can also use the following inference

rules: φ∧ψ
φ

(conjunction elimination), φ, ψ
φ∧ψ (conjunction introduction), and φ

φ∨ψ
(disjunction introduction).
First answer again the above examples, and then also the following:

5. {P,Q} ⊢ P ⇒ Q

6. {¬P,Q} ⊢ P ⇒ Q

7. {P ⇒ Q,P ∨Q} ⊢ Q

8. {P ⇒ Q,P ∧R} ⊢ Q ∧R

Logic based methods — propositional logic 22

Inference rules: soundness and completeness of inference rules

An inference rule is sound if it only allows to derive from any KB formulas which are
entailed by that KB. (But it may not derive ALL such formulas.)

An inference rule is complete if it allows to derive from any KB ALL the formulas
which are entailed by that KB. (But it may also derive other formulas which are not
entailed by the KB.)

It follows from the above, that if we had an inference rule which was both sound and
complete, then we could use the inferencing process, instead of checking all the models
(truth tables).

But it is not easy to find such an inference rule. For example, modus ponens is sound,
but is not complete. To see this, consider that for the previous example:

KB={Raining, Raining⇒RoadWet}

we have been able to derive RoadWet using modus ponens, but this KB also entails
(Raining∧Raining⇒RoadWet), which the modus ponens rule cannot derive.

Logic based methods — propositional logic 23

Inference rules: soundness and completeness for sets of rules

Suppose we have more than one inference rule. How does soundness/completeness
work in this case?

It should be clear, that however many inference rules we consider, we want each one of
them to be (individually) sound. A single unsound rule would allow the inferencing
algorithm to introduce contradictory conclusions to the knowledge base, regardless of
what other rules can offer.

Example: consider two hypothetical inference rules: p, q
p∨q ,

p, q
¬(p∨q)

The first is sound, and the second is not.

If both are present in the system, the inferencing algorithm will have to derive
both (p ∨ q) and ¬(p ∨ q). No matter how many sound rules are present, one
unsound rule can spoil the whole system by allowing to derive a false formula.

Logic based methods — propositional logic 24

Inference rules: soundness and completeness for sets of rules

(2)

Completeness is a different story. It may be the case for some set of inference rules
{IR1, IR2, ..., IRn}, that the inferencing system would be able for any KB to derive all
the formulas which are entailed by this KB. Thus a set of inference rules can be
complete as a whole, even though any or all of these rules could individually not be
complete.

So one way to fix the inferencing system to have derivation be equivalent to entailment,
would be to find a set of sound inference rules, which together would be complete.

It is possible, but there is also another solution.

Logic based methods — propositional logic 25

Logic based methods — propositional logic 26

The Conjunctive Normal Form

Some terminology:
We will call a literal any atomic formula, or a negation thereof.
We will call a clause a formula which is an alternative of literals.
A formula, which is a conjunction of clauses will be said to be in the Conjunctive
Normal Form (CNF).

In short, we can say, that a CNF formula is a conjunction of clauses.

Examples: [(P ∨Q ∨ ¬R) ∧ (P ∨ ¬Q) ∧R], (P ∧Q), (P ∨Q),¬P,P
Non-examples: (P ⇒ Q) ∧ (Q ⇒ P),¬(P ∧Q)

A fact: any propositional formula can be converted to an equivalent formula in the
CNF form.

CNF formulas are useful, because they allow to be inferenced over, using resolution.

And, what is equally important, this process can be made completely automatic.

Logic based methods — propositional logic 27

Inference rules: resolution

By using a well-known and useful identity:

(p ⇒ q) ≡ (¬p ∨ q)

we can rewrite the modus ponens to a different form:

p, ¬p ∨ q

q

Note the red terms cancel out, in a sense. This actually makes sense, because if we
know p to be true, then the ¬p is certainly false, and can be dropped from the
alternative, leaving only q as a new conclusion.

This observation can be generalized to the following resolution inference rule:

p1 ∨ · · · ∨ pn ∨ q , ¬q ∨ r1 ∨ · · · ∨ rm

p1 ∨ · · · ∨ pn ∨ r1 ∨ · · · ∨ rm

Resolution can be the used as the only inference rule in a sound and complete theorem
proving system.

Logic based methods — propositional logic 28

Logical reasoning using resolution — examples

Let us consider some common patterns of logical reasoning. Suppose that whenever we
know P then also Q is true, and whenever Q then also R, whenever R then S, and
whenever S then also T . And suppose we also know P . Then we should be able to
infer all these fact as the result of a chain of applications of the modus ponens
inference rule. Let’s see how it works with the CNF form and resolution.

Original facts: P, P ⇒ Q,Q ⇒ R,R ⇒ S, S ⇒ T

The same facts in the CNF form, and the graphical
representation of a chain of resolution inference steps:

(Note that in the graphical form the chain
of the inference steps forms a shape of a tree.
This is typical.)

❅
❅

❅
❅

❅
❅

❅
❅

P

Q

R

S

T

✡
✡

✡
✡

✡
✡
✡

✡
✡

✡
✡

✡
✡

✡✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✡

¬P ∨Q ¬Q ∨ R ¬R ∨ S ¬S ∨ T

In the above inference scheme, all steps performed on the CNF clauses could equally
well be performed with the modus ponens rule on the original implication formulas.
But it does not always work this way.

Logic based methods — propositional logic 29

Now let us consider a different reasoning pattern. Suppose several facts: P,Q,R, S are
all known to be true. Further suppose, that these facts, when all combined, imply T .

Original facts: P,Q,R, S, (P ∧Q ∧R ∧ S) ⇒ T .
Facts in the CNF form: P,Q,R, S, (¬P ∨ ¬Q ∨ ¬R ∨ ¬S ∨ T).

The resolution tree:

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

❆
❆
❆
❆
❆
❆
❆❆

❆
❆
❆
❆❆

❆
❆

✪
✪

✪
✪

✪
✪

✪
✪

P Q R S ¬P ∨ ¬Q ∨ ¬R ∨ ¬S ∨ T

¬P ∨ ¬Q ∨ ¬R ∨ T

¬P ∨ ¬Q ∨ T

¬P ∨ T

T

This time, the inference of the final formula T could not be obtained using modus
ponens. For this, we would first have to obtain the formula P ∧Q ∧R ∧ S, which is
entailed by the set of the original facts, but cannot be derived using modus ponens.
But neither could this be done with resolution. It succeeded to derive T from the CNF
clauses of the original facts, but likewise would not be able to derive the plain
conjunction of the original known facts, because the resolution can only produce
results by merging two clauses with canceled conflicting literals.

In order to be able to derive formulas like the above conjunction, we need to use the
resolution in a special way.

Logic based methods — propositional logic 30

Empty clauses

We can talk of a single literal as of a unary clause, i.e. an alternative of just this one
literal. Moreover, we allow empty clauses, which are treated as alternatives of zero
literals. This can be explained using a functional notation for the alternative, thanks to
associativity.

p1 ∨ p2 ∨ ... ∨ pn ≡ ∨(p1, p2, ..., pn)
p ∨ q ∨ r ≡ ∨(p, q, r)

p ∨ q ≡ ∨(p, q)
p ≡ ∨(p)
␣ ≡ ∨()

While the truth value of any nonempty clause depends on the truth values of its
components, the empty clause must have a constant logical interpretation. By a simple
generalization of the definition of the logical values of the alternative we can obtain
that the empty clause is a false (unsatisfiable) formula. Since we will need to use the
empty clause in logical notation, the symbol ✷ is used to denote it.

The empty clause can be treated as a neutral element for the alternative connective:

✷ ∨ p ≡ p ≡ p ∨ ✷

Logic based methods — propositional logic 31

Resolution-based refutation reasoning

A sound and complete theorem proving system can be set up using resolution by using
refutation reasoning. Whenever we want to obtain:

KB ⊢ f

we add the negation of the theorem formula ¬f to the KB set and — hoping that the
resulting set of formulas KB ∪ {¬f} is now inconsistent (false) — try to derive an
unsatisfiable (false) formula. Assuming that the original KB is satisfiable, the only
source of unsatisfiability can be the added (¬f) formula, which proves the original f .

Since a resolution-based inferencing system works with clauses, the result which is
sought in this refutation process is an empty clause. If it can be obtained, the proof is
complete. If it is not possible to obtain the empty clause, the theorem we tried to
prove must be false (in the propositional logic).

Note however, that a failure to derive the empty clause is not by itself a proof of the
falsity of the theorem, just as a failure to find a proof does not mean that one does not
exist. But if a search for an empty clause is organized in such way, that it is complete,
for example, by assuring that all possible resolution inference steps are tried, then the
conclusion of the theorem being false can be correctly made.

Logic based methods — propositional logic 32

Resolution refutation reasoning — an example

For a simple illustration of a resolution refutation proof let us consider the previous
case of having in the database four facts: P,Q,R, S, and trying to derive their
conjunction: P ∧Q ∧R ∧ S. The derivation: {P,Q,R, S} ⊢ (P ∧Q ∧R ∧ S) is not
possible by either modus ponens or resolution used in a straightforward way.

Trying the resolution refutation, the negation of the theorem turns out to be a single
clause: ¬P ∨ ¬Q ∨ ¬R ∨ ¬S. And the sequence of the steps leading to an empty
clause is straightforward:

❚
❚

❚
❚
❚
❚❚

❚
❚
❚
❚
❚
❚
❚❚

❚
❚
❚
❚
❚
❚
❚
❚
❚
❚ ✪✪

✪✪

✪✪

✪✪

P Q R S ¬P ∨ ¬Q ∨ ¬R ∨ ¬S

¬P ∨ ¬Q ∨ ¬R

¬P ∨ ¬Q

¬P

✷

Logic based methods — propositional logic 33

Short review

For the following set of formulas, write all possible to obtain resolvents.
If it is not possible to perform any resolution, then give a short explanation.
Compare the computed resolvents with logical consequences you can derive intuitively
from the formulas given.
Pay attention to commas, to correctly identify formulas in sets.

1. { P ∨Q , ¬P ∨ ¬Q }

2. { P ⇒ Q , Q ⇒ R }

3. { ¬P ⇒ Q , Q ⇒ R }

4. { P ∨Q ∨R , ¬P ∨Q ∨R }

5. { P ∨Q ∨R , ¬P ∨ ¬Q ∨ ¬R }

6. { P ∨Q , P ∨ ¬Q , ¬P ∨Q }

7. { P ⇒ (Q ∨R) , ¬Q ∧ ¬R }

8. { P ⇒ Q , R ⇒ Q , P ∨R }

Logic based methods — propositional logic 34

First order predicate calculus — terms

The terms represent objects in the language of logic and may be: constants (denoting
a specific object), variables (can assume the values of various objects), or functions
(determine an object from the value of their object argument(s), or map some objects
into some others).

Examples of terms: A, 123, x, f(A), f(g(x)), +(x, 1)

By convention, we will write constant terms in capital letters, and variables in
lowercase.

Let us make a note, that the last term in the above examples is an indirect notation of
the subsequent value for x, and not a subtraction. In pure logic there is no arithmetic.
We will see the consequences of this often.

Logic based methods — first order predicate calculus 35

First order predicate calculus — predicates

The predicates represent relations over the set of terms. We can treat them as
functions assuming the values of true or false (1 or 0), assigning 1 to each vector of n
terms satisfying the relation, and 0 to each vector of n terms not satisfying the relation.

A predicate symbol written with the set of terms is called an atomic formula.

Examples of atomic formulas: P , Q(A), R(x, f(A)), > (x, 10)

The expression > (x, 10) is the functional equivalent of x > 10. In arithmetic we treat
such an expression as inequality and we could solve it. But as a logical formula we can
only evaluate it, meaning determine its truth value. But if a formula contains
a variable then often its truth value cannot be determined.

Logic based methods — first order predicate calculus 36

Representing facts with logical formulas

What is the purpose of the predicate language?

We could use it to write the facts we want to express, like:

At(Wumpus, 2, 2)
At(Agent, 1, 1)
At(Gold, 3, 2)

The selection of the set of symbols, by which we intend to describe the objects and
relations of some world is called conceptualization. For example, an alternative
conceptualization for the above facts could be the following:

AtWumpus(loc(2, 2))
AtAgent(loc(1, 1))
AtGold(loc(3, 2))

These two conceptualizations are similar, but have different properties. For example, in
the latter the wumpus, agent and gold are not mentioned directly. In general, the
accepted conceptualization has influence on the ease or even the ability to express
different facts about the problem domain.

Logic based methods — first order predicate calculus 37

Representing facts with logical formulas (contd.)

A problem with the conceptualization of the wumpus world is the description of the
presence and location of the pits. We could give the pits full citizenship and identity:

At(Pit4, 3, 3)

In this way it would be easy to describe the “bird’s eye view” of the wumpus world, by
giving different pits some names (constant terms). But from the point of view of the
agent acting in the wumpus world this conceptualization is very uncomfortable. It
would be hard to describe the world as it is gradually learned, when at first the agent
does not even know the total number of pits. The presence of a pit at some location
would have to be described by a variable:

At(x, 3, 3)

Unfortunately, this description does not indicate that x is a pit so this requires further
descriptions. A comfortable alternative is to view the pits as anonymous, and only
denote the presence or absence of pits at specific locations:

PitAt(3, 3)
NoPitAt(1, 1)

Logic based methods — first order predicate calculus 38

Logical connectives and complex formulas

Complex formulas can be constructed from atomic formulas using the logical
connectives: ¬,∧,∨,⇒,⇔. As a special case, an atomic formula or a negation of an
atomic formula is called a literal.
Examples of complex formulas (the first one is a single literal):

¬At(Wumpus, 1, 1)
PitAt(2, 1) ∨ PitAt(1, 2)
[At(Agent, 1, 1) ∧ PitAt(2, 1)] ⇒ Percept(Breeze)

Let us observe that the last formula is of a different nature. The first two could be
a fragment of a world description obtained or constructed by the intelligent agent
during her activity in the wumpus world. But the last one expresses one of the laws of
this world. The agent knows this law and can hold such a formula in her knowledge
base.

The facts generally true in a problem domain are called the axioms of the world.
The facts describing a specific instance of the problem are called incidental.

Logic based methods — first order predicate calculus 39

Quantifiers

The complex formulas can also be built using the quantifiers: ∀,∃, which bind
variables in formulas. The general scheme for the formula with a quantifier is:

∀xP (x)

A variable not bound by a quantifier in a formula is called free. The formula:

∃yQ(x, y)

contains two variables, one free (x) and one bound by a quantifier (y).

A sentence, or a closed formula is a formula without free variables.

Examples:

∃x, y At(Gold, x, y)
∀x, y [At(Wumpus, x, y) ∧ At(Agent, x, y)] ⇒ AgentDead

∀x, y [At(Wumpus, x, y) ∧ At(Agent,−(x, 1), y)] ⇒ Percept(Stench)

Let’s note that the −(x, 1) is an indirect notation of the column left of x, and not
a subtraction. There is no subtracting in logic.

Logic based methods — first order predicate calculus 40

Short review

1. Work out a complete representation for the wumpus world in the first order
predicate calculus. That is: introduce term symbols (constants and functions), and
predicate symbols necessary to describe problem instances for the domain.

Note: we do not consider the process of searching for the solution, analyzing
alternative moves and their consequences, describing sequences of steps etc. We
only seek a scheme for describing static snapshots of a problem instance.

2. Using the representation worked out in the previous question, describe a problem
instance given on page 4.

3. Try to write the axioms for the wumpus world, that is, the general rules for this
domain.

Logic based methods — first order predicate calculus 41

Logic based methods — first order predicate calculus 42

Rewriting logical formulas as sets of clauses

A variable-free formula can be converted to a set of clauses, also called the prenex
form, where all quantifiers are written in front of the formula:

(i) rename the variables bound by quantifiers to be unique,
(ii) replace all logical connectives with only conjunctions and alternatives,
(iii) move negations to inside the formulas (to predicate symbols),
(iv) extract the quantifiers outside the formula,
(v) convert the formula to CNF,
(vi) replace all existential quantifiers with Skolem functions.

The first five steps are logically equivalent transformations (as long as the right order
of the extracted quantifiers is maintained in step (iv)). The (vi) step, called
skolemization, converts all the formulas of the form:

∀x1∀x2...∀xn∃y Φ(x1, x2, ..., xn, y)

with:
∀x1∀x2...∀xn Φ(x1, x2, ..., xn, fy(x1, x2, ..., xn))

where fy is a newly introduced functional symbol called the Skolem function. In
case there are no universal quantifiers ∀ this will be a Skolem constant.

Logic based methods — first order predicate calculus 43

Skolem’s theorem

The last step in the algorithm for the conversion of formulas into the prenex form is
not a logically equivalent transformation. That means, that for the original formula Φ
and the resulting prenex formula Φ′, in general Φ 6≡ Φ′.

However, the following property, called the Skolem theorem holds: for a closed
formula Φ, if Φ′ is its prenex form, then Φ is satisfiable if and only if Φ′ is satisfiable.

Therefore, while we cannot in general use the derived prenex form Φ′ for any logical
reasoning instead of Φ, we can use it for proving satisfiability (or unsatisfiability).

There exists an extremely useful inferencing scheme, using formulas in prenex form,
often written as sets (or lists) of clauses, with clauses written as sets (or lists) of
literals.

Logic based methods — first order predicate calculus 44

Short review

Convert to prenex form the following first order predicate calculus formulas:

1. (∃x P (x)) ∧ (∃x Q(x))

2. ∃x∀y∃z [P (x) ⇒ Q(y, z)]

3. ∃x∀y [P (x, y) ⇒ Q(A, x)]

4. ∀x∃y [P (x, y) ⇒ Q(y, f(y))]

5. ∀x [(P (x) ⇒ Q(x)) ∧ (P (x) ⇒ R(x))]

6. ∀x [(P (x) ∧Q(x)) ∨ (R(x) ∧ S(x))]

Logic based methods — first order predicate calculus 45

Logic based methods — first order predicate calculus 46

Substituting variables in formulas

We shall consider transformations of formulas consisting in replacing variable
occurrences with other expressions (terms). Since the variables in prenex formulas are
implicitly bound with universal quantifiers, replacing variables with other terms means
taking specific cases of the formula.

We will call a substitution a set of mappings indicating terms to be substituted for
specific variables. The term may not contain the variable it is to replace. An example
of a substitution: s = {x 7→ A, y 7→ f(z)}.

Applying a substitution works by syntactically replacing all the occurrences of
a given variable within a formula with its associated term. All replacements are done
simultaneously, so e.g. by applying the substitution s = {x 7→ y, y 7→ A} to the term
f(x, y) the result will be the term f(y, A).

Note that this way it does not matter in which order the variables are substituted, even
though a substitution is a set (unordered).

Logic based methods — first order predicate calculus 47

A composition of substitutions s1 and s2 (written as: s1s2) is called a substitution
obtained by applying the substitution s2 on terms from s1, and appending to the
resulting set all the pairs from s2 with variables not in s1.

Φs1s2 = (Φs1)s2

s1(s2s3) = (s1s2)s3

Logic based methods — first order predicate calculus 48

Unification

Unification is the procedure of finding a substitution of terms to variables in a set of
formulas, to reduce it to a singleton set (or to logically equivalent formulas, see
explanation below).

A unifier of a set of formulas is a substitution reducing it to a singleton set. A set of
formulas is unifiable if there exists a unifier for it.

For example, the set {P (x), P (A)} is unifiable, and its unifier is s = {x 7→ A}.

Likewise, the set {P (x), P (y), P (A)} is unifiable, and its unifier is
s = {x 7→ A, y 7→ A}.

The set {P (A), P (B)} is not unifiable, and neither is {P (A), Q(x)}.

Logic based methods — first order predicate calculus 49

Unification (contd.)

While unification is a general procedure, here we will compute it only on sets of
clauses. Consider the following example clause sets:

Φ = {P ∨Q(x), P ∨Q(A), P ∨Q(y)}

Ψ = {P ∨Q(x), P ∨Q(A), P ∨Q(f(y))}

Ω = {P ∨Q(x), P ∨Q(A) ∨Q(y)}

The set Φ is unifiable, its unifier is: s = {x 7→ A, y 7→ A}, and the unified set is the
singleton set: Φs = {P ∧Q(A)}).

The set Ψ is not unifiable.

The set Ω is a more complex case. By applying a purely syntactic unification, it is
not unifiable, since after applying the substitution the formulas are not the same.
However, by applying a semantic unification, the set is unifiable, since the formulas
after applying the substitution are logically equivalent. We will allow semantic
unification using associativity and commutativity of the alternative.

Logic based methods — first order predicate calculus 50

Most general unifier (mgu)

The most general unifier (mgu) of a unifiable set of formulas is the simplest
(minimal) unifier for that set.

For a unifiable set of formulas there always exists its mgu, and any other unifier for
this set can be obtained by composing the mgu with some additional substitution. The
unification algorithm computes the mgu of a set of formulas.

Logic based methods — first order predicate calculus 51

Short review

For the following set of clauses answer if each set is unifiable.
If so, then write its unifier. Try to give both the mgu, and another unifier, which is not
mgu. If the set is not unifiable, then explain why.
Pay attention to commas, to correctly identify formulas in sets.

1. {P (x) , P (f(x))}

2. {P (x, y) , P (y, x)}

3. {P (x, y) , P (y, f(x))}

4. {P (x, y) , P (y, f(y))}

5. {P (x, y) , P (y, z) , P (z, A)}

Logic based methods — first order predicate calculus 52

Resolution — the general case

Resolution in the general case: if for two clauses (sets of literals): {Li} and {Mi}
there exist respective subsets of literals: {li} and {mi}, called the collision literals
such, that the set: {li} ∪ {¬mi} is unifiable and s is its mgu, then their resolvent is
the set: [{Li} − {li}]s ∪ [{Mi} − {mi}]s.

There can exist different resolvents for given clauses, by different selection of collision
literals. For example, consider the following clauses:

P [x, f(A)] ∨ P [x, f(y)] ∨Q(y) and ¬P [z, f(A)] ∨ ¬Q(z)

By choosing {li} = {P [x, f(A)]} and {mi} = {¬P [z, f(A)]} we obtain the resolvent:

P [z, f(y)] ∨ ¬Q(z) ∨Q(y)

But by choosing {li} = {P [x, f(A)], P [x, f(y)]} and {mi} = {¬P [z, f(A)]} we
obtain:

Q(A) ∨ ¬Q(z)

Logic based methods — first order predicate calculus 53

Short review

For the following set of clauses, write all possible to obtain resolvents.
For each resolvent, note which clauses it was derived from, and what substitution was
used. If it is not possible to compute a resolution, then give a short explanation.
Pay attention to commas, to correctly identify formulas in sets.

1. {¬P (x) ∨Q(x) , P (A)}

2. {¬P (x) ∨Q(x) , ¬Q(x)}

3. {¬P (x) ∨Q(x) , P (f(x)) , ¬Q(x)}

Logic based methods — first order predicate calculus 54

Resolution as an inference rule

Resolution is a sound inference rule, since a clause obtained from a pair of clauses by
resolution is their logical consequence. It is, however, not complete, i.e. we cannot
derive by resolution just any conclusion ϕ of a given formula ∆, such that ∆ ⊢ ϕ.

For example, for ∆ = {P,Q} we cannot derive by resolution the formula P ∨Q or
P ∧Q, and for ∆ = {∀xR(x)} we cannot derive the formula ∃xR(x).

However, for an unsatisfiable set of clauses, it is always possible with resolution to
derive a null clause (denoted by ✷), representing contradition. So it is possible to use
the resolution in the refutation proof procedure, by negating the thesis and trying to
derive the empty clause. Using this procedure, the validity of any theorem can be
verified. Therefore, resolution is said to be refutation complete.

Consider the above examples. For: ∆ = {P,Q} negating the formula P ∨Q gives the
clauses ¬P and ¬Q and each of them immediately gives the empty clause with the
corresponding clause from ∆. The negation of P ∧Q is the clause ¬P ∨ ¬Q and the
empty clause can be derived in two resolution steps. For ∆ = {∀xR(x)} the negation
of ∃xR(x) is ¬R(y), which unifies with the clause R(x) derived from ∆ and derives
the empty clause in one resolution step.

Logic based methods — first order predicate calculus 55

Theorem proving based on resolution

The basic reasoning scheme based on resolution, when we have a set of axioms ∆ and
want to derive from it the formula ϕ, is the following. We make a union of the sets of
clauses obtained from ∆ and ¬ϕ, and we try to derive falsity (the empty clause) from
it, generating subsequent resolvents from the selected pairs of clauses. At each step we
add the newly obtained resolvent to the main set of clauses, and repeat the procedure.

The main result from the mathematical logic being used here is the following two facts.
If resolution is executed on a set of clauses obtained from an unsatisfiable formula,
with some systematic algorithm of generating resolvents, then we will obtain the empty
clause at some point. And the other way around, if the empty clause can be generated
from a set of clauses obtained from some formula, then this set of clauses, but also the
original formula, are both unsatisfiable. This applies as well to the clauses created by
skolemization, so is a confirmation of the correctness of the whole procedure.

Logic based methods — first order predicate calculus 56

Theorem proving: an example

We know that:

1. Whoever can read is literate. (∀x)[R(x) ⇒ L(x)]
2. Dolphins are not literate. (∀x)[D(x) ⇒ ¬L(x)]
3. Some dolphins are intelligent. (∃x)[D(x) ∧ I(x)]

We need to prove the statement:

4. Some who are intelligent cannot read. (∃x)[I(x) ∧ ¬R(x)]

After converting the statements to the prenex CNF form we obtain the clauses:

C1: ¬R(u) ∨ L(u) from the first axiom
C2: ¬D(v) ∨ ¬L(v) from the second axiom
C3a: D(A) from the third axiom, p.1
C3b: I(A) from the third axiom, p.2
NT: ¬I(w) ∨R(w) from the negation of the theorem

From the subsequent resolution steps we obtain:

C5: R(A) resolvent of clauses C3b and NT
C6: L(A) resolvent of clauses C5 and C1
C7: ¬D(A) resolvent of clauses C6 and C2
C8: ✷ resolvent of clauses C7 and C3a

C3a C2 C1 C3b NT
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

w=A

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊

u=A

❉
❉
❉
❉❉

v=A

✂
✂
✂
✂✂

C5
✂
✂
✂
✂✂

C6
✂
✂
✂
✂✂

C7
✂
✂
✂
✂✂

C8=✷

Logic based methods — first order predicate calculus 57

Logic based methods — first order predicate calculus 58

Theorem proving: an example from mathematics

Let us consider the following example from mathematics.2 We would like to prove that
the intersection of two sets is contained in either one of them. We start from writing
the axioms which are necessary for this reasoning. In this case they are the definitions
of the set intersection and inclusion.

∀x∀s∀t (x ∈ s ∧ x ∈ t) ⇔ x ∈ s ∩ t

∀s∀t (∀x x ∈ s ⇒ x ∈ t) ⇔ s ⊆ t

Theorem to be proved:
∀s∀t s ∩ t ⊆ s

2This example is borrowed from the book “Logical Foundations of Artificial Intelligence” by Genesereth and Nilsson.

Logic based methods — first order predicate calculus 59

After converting the formulas to prenex CNF sets of clauses:

1. {x 6∈ s, x 6∈ t, x ∈ s ∩ t} from the definition of intersection
2. {x 6∈ s ∩ t, x ∈ s} from the definition of intersection
3. {x 6∈ s ∩ t, x ∈ t} from the definition of intersection
4. {F (s, t) ∈ s, s ⊆ t} from the definition of inclusion
5. {F (s, t) 6∈ t, s ⊆ t} from the definition of inclusion
6. {A ∩B 6⊆ A} from the negation of the theorem

Let us note the Skolem functions in clauses 4 and 5, and Skolem constants in clause 6.
Below is the proof sequence leading quite directly to the empty clause.

7. {F (A ∩B,A) ∈ A ∩B} from clauses 4. and 6.
8. {F (A ∩B,A) 6∈ A} from clauses 5. and 6.
9. {F (A ∩B,A) ∈ A} from clauses 2. and 7.

10. {} from clauses 8. and 9.

This is it. Theorem proved. But somehow, it is hard to feel the satisfaction which
typically accompanies completing a real mathematical proof. Furthermore, in case one
wanted to review the proof, or verify it, one has to do some nontrivial extra work,
although in this particular case it is still relatively simple.

Logic based methods — first order predicate calculus 60

Short review

For the following axiom sets ∆ and theorems ϕ, try proving ∆ ⊢ ϕ using resolution
refutation.

1. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = Likes(Dick,Ed)

2. ∆ = {∀x(Likes(x,Dick) ⇒ Likes(Dick, x)),¬Likes(wife(Ed),Dick)}
ϕ = Likes(Dick,wife(Ed))

3. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = (Likes(Dick,Ed) ∨ Likes(Dick,wife(Ed))

4. ∆ = {∀x(Likes(x,Wine) ⇒ Likes(Dick, x)), Likes(Ed,Wine)}
ϕ = (Likes(Dick,Ed) ∧ Likes(Dick,wife(Ed))

Logic based methods — first order predicate calculus 61

Logic based methods — first order predicate calculus 62

Knowledge engineering

The presented formalism of first order predicate logic, along with resolution as
a method of theorem proving, constitute a technique for building intelligent agents
capable of solving problems presented to them. The construction of such an agent,
however, requires an efficient design of a representation, which can be formulated as
the following process termed knowledge engineering:

problem identification
Define the scope of questions which the agent would have to be able to answer, the
type of facts, which she will be able to use, etc. For example, in relation to the
wumpus world, we must declare whether the agent should be able to plan activities,
or, for example, only create the representation of the state of the world identified by
previous actions.

knowledge acquisition
The developer of the agent software (knowledge engineer) may not understand all
the nuances of the described world, and must cooperate with experts to obtain all
the necessary knowledge.

Logic based methods — knowledge engineering 63

definition of the representation dictionary
The concepts and objects of the problem domain must be described with logical
formulas. It is necessary to define a vocabulary of predicates and terms, i.e. term
functions and constants. This stage may prove crucial for the ability to effectively
solve problems, e.g. in the wumpus world, would pits better be represented as
objects, or properties of locations.

encoding general knowledge
Encode axioms containing general knowledge about the problem domain, the rules
governing this world, existing heuristics, etc.

encoding specific knowledge
The statement of a specific problem to be solved by the agent, including the facts
about all specific objects, as well as the question to answer, or, more generally, the
theorem to prove.

submit queries to the reasoning device
Run the theorem proving procedure on the knowledge base constructed.

Logic based methods — knowledge engineering 64

debug the knowledge base
Unfortunately, as is also the case with normal programs, rarely designed system will
immediately work properly. There may occur such problems as the lack of some key
axioms, or axioms imprecisely stated, that permit proving too strong assertions.

Logic based methods — knowledge engineering 65

Logic based methods — knowledge engineering 66

Dealing with equality

One very special relation occurring in logical formulas is the equality (identity) of
terms.

Example:
∆ = {=(wife(Ed),Meg),Owns(wife(Ed), alfa-8c)}.
Does it mean that Meg owns an Alfa 8c Competizione?
Can we prove it using resolution?
Owns(Meg, alfa-8c)?

Unfortunately not. The resolution proof procedure does not treat the equality predicate
in any special way, and will not take advantage of the term equality information it has.
For the resolution proof in the above example to succeed, we would have to formulate
an appropriate equality axiom:

∀x, y, z [Owns(x, y) ∧ =(x, z) ⇒ Owns(z, y)]

Logic based methods — auxiliary algorithms 67

Using the above axiom, connecting Owns with equality, we can prove that Meg owns
the Alfa, as well as any other facts and equalities of the owners. However, to likewise
extend the reasoning to the equality of the objects owned, an additional axiom has to
be introduced:

∀x, y, z [Owns(x, y) ∧ =(y, z) ⇒ Owns(x, z)]

Worse yet, for the system to properly handle all the facts of the term identities with
respect to all relations, similar axioms would have to be written for all the predicate
symbols. Unfortunately, in the first order predicate language it is not possible to
express this in one general formula, like:

∀P, y, z[P (y) ∧ =(y, z) ⇒ P (z)]

An alternative solution would be to incorporate the processing of term equality in the
theorem proving process. Several solutions exist: a formula reduction rule with respect
to term equality, called demodulation, a generalized resolution rule called
paramodulation, and an extended unification procedure which handles equalities.

Logic based methods — auxiliary algorithms 68

Answer extraction from the proof tree

Consider a simple example, we know:

1. Where is John, there is Fido. (∀x)[At(John, x) ⇒ At(Fido, x)]
2. John is at school. At(John, School)

The question we need to answer is:

3. Where is Fido? (∃x)[At(Fido, x)]

The logical version of the original question is ¬At(Fido, x), and the proof is generated
easily:

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL

Unfortunately, it does not provide an answer to the original question.

Logic based methods — auxiliary algorithms 69

Answer extraction from the proof tree (contd.)

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL ⇒

¬At(John,x)∨At(Fido,x) ¬At(Fido,y)∨At(Fido,y)
PPPPPPPPPPPPPPP

✄
✄
✄
✄
✄

At(John,School) ¬At(John,x)∨At(Fido,x)

❜
❜
❜

❜
❜
❜
❜
❜

✧
✧

✧
✧

✧
✧

✧
✧

At(Fido,School)

• The basic procedure converts the refutation proof to a direct proof of the theorem.
• If the theorem contains alternatives (which become conjunctions after negation)

then the resulting formula may be complex and hard to interpret.
• If the theorem contains a universal quantifier then after negation it contains Skolem

functions or constants, which are carried to the result formula, but can be
converted to a universally quantified variable.

Logic based methods — auxiliary algorithms 70

Resolution speedup strategies

In proving theorems using the resolution refutation procedure, we aim to generate the
empty clause, indicating a contradiction. To be sure that the empty clause obtains,
assuming that this is at all possible, we need to generate the resolvents in some
systematic way, for example, using the breadth-first search. But with larger databases,
this can lead to generating a large number of conclusions, of which most may not have
anything to do with the theorem being proved.

It would be useful to have some speedup strategies, which would cut off this search
and prevent generating at least some resolvents. These strategies can be complete,
i.e. such that will always find a solutions (contradiction) if at all possible, or
incomplete i.e. giving no such a guarantee (but typically much more effective).

Logic based methods — auxiliary algorithms 71

Speedup strategies:

• single literal preference (by itself incomplete, but complete if used as a preference)

• set of support: allow only resolution steps using one clause from a certain set,
initially equal to the negated theorem clauses (complete)

• input resolution permits only resolution steps using an original input clause
(complete only in some cases, e.g. for Horn clause databases)

• linear resolution (incomplete)

• repetition and subsumption reduction (complete)

Logic based methods — auxiliary algorithms 72

Undecidability of predicate calculus

The predicate calculus seems well suited to expressing facts and reasoning in artificial
intelligence systems. However, we need to be aware of some of its fundamental
limitations, which constrain its practical applications.

Church’s theorem (1936, of the undecidability of predicate calculus): there does not
exist a decision procedure, which could test the validity of any predicate calculus
formula. We say that the predicate calculus is undecidable.

This property significantly restricts what can be inferred in the predicate calculus.
However, for a number of classes of formulas, there does exist a decision procedure.
Furthermore, the predicate calculus has the property of semidecidability, which
means that there exists a procedure which can determine, in a finite number of steps,
that a formula is unsatisfiable, if it is so. However, for satisfiable formulas such
procedure may not terminate.

Logic based methods — undecidability and incompleteness 73

Incompleteness in predicate calculus

One could think, that the undecidability of predicate calculus can be circumvented by
taking advantage of its semidecidability. Attempting to derive a formula ϕ from an
axiom set ∆, we start two simultaneous proof procedures: ∆ ⊢ ϕ and ∆ ⊢ ¬ϕ. By
semidecidability, we could expect that at least one of these proofs should terminate.
Unfortunately, this is not so.

Gödel’s theorem (1931, of incompleteness): in predicate calculus one can formulate
incomplete theories: theories with (closed) formulas, which cannot be proved true or
false. What’s more, such theories are quite simple and common, e.g. the theory of
natural numbers is one such theory.

A theory T is called decidable if there exists an algorithm that for any closed formula
ϕ can test whether ϕ ∈ T , or ϕ 6∈ T . Incomplete theories are obviously undecidable.

The effect of the Gödel’s theorem is, that if, after some number of steps of a proof
∆ ⊢ ϕ (and, perhaps a simultaneous proof ∆ ⊢ ¬ϕ), there is still no derivation, then
we still cannot be certain whether the proof will eventually terminate (or at least one
of them will), or that we have an incomplete theory.

Logic based methods — undecidability and incompleteness 74

Representing changes

The predicate calculus works well as a representation language for static domains, i.e.
such where nothing ever changes, and whatever is true, stays so forever. Unfortunately,
the real world is not like this.

For example, if the formula: At(John, School) correctly describes the current state of
the morning of some weekday, then, unfortunately, we must accept that John will go
home eventually. If the axioms correctly describe the effects of agents’ actions, then
the system might be able to derive a new fact: At(John,Home). Unfortunately, the
fact database will then contain a contradiction, which for a logical system is a disaster.
A proof system containing a false formula among its axioms can prove any theorem!

Exercise: assume the axiom set ∆ contains, among others, two clauses: P and ¬P .
Give a proof of an arbitrary formula Q. Hint: prove first that P ∨ ¬P ∨Q is
a tautology (sentence always true) for any P and Q. This can be accomplished
constructing a proof: |= (P ∨ ¬P ∨Q), this is, proving the thesis with an empty set of
axioms. Next add such a tautology to the ∆ set and proceed to prove Q.

Logic based methods — representing changes 75

Temporal logics

To solve the problem of representation of the changes, a number of special logic
theories, called temporal logics were created. Ordinary facts expressed in these logics
occur at specific points in time. However, the time, its properties, and special inference
rules concerning its passage, are built into the theory (instead of being represented
explicitly, along with other properties of the world).

One of the main issues, which these theories treat differently, is the representation of
the time itself. Time can be discrete or continuous, may be given in the form of points
or intervals, may be bounded or unbounded, etc. Moreover, time can be a linear
concept or can have branches. Usually it should be structured, although there exist
circular representations of time.

For each of these temporal logics, to be able to effectively reason about formulas
created, which represent the phenomena that an intelligent agent faces, there must
exist a proof procedure. The construction of such a procedure may be based on
projections of the given theory to first-order predicate logic.

Logic based methods — representing changes 76

The situation calculus

An alternative to temporal logics is a direct recording of time moments in the
representation language. An example of such an approach is the situation calculus:
At(Agent, [1, 1], S0) ∧ At(Agent, [1, 2], S1) ∧ S1 = Result(Forward, S0)

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S
0

Forward

S
1

Logic based methods — situation calculus 77

Logic based methods — situation calculus 78

The situation calculus (contd.)

The situation calculus uses the concepts of: situations, actions, and fluents:

situations: a situation is the initial state s0, and for any situation s and action a
a situation is also Result(a, s); situations correspond to sequences of actions, and
are thus different from states, i.e. an agent may be in some state through different
situations,

fluents: functions and relations which can vary from one situation to the next are
called fluents; by convention their last argument is the situation argument,

possibility axioms: describe preconditions of actions, e.g. for action Shoot:
Have(Agent,Arrow, s) ⇒ Poss(Shoot, s)

Logic based methods — situation calculus 79

successor-state axioms: describe for each fluent what happens depending on the
action taken, e.g. for action Grab the axiom should assert, that after properly
executing the action the agent will end up holding whatever she grabbed; but we
must also remember about situations when the fluent was unaffected by some
action:

Poss(a, s) ⇒
(Holding(Agent, g, Result(a, s)) ⇔

a = Grab(g) ∨ (Holding(Agent, g, s) ∧ a 6= Release(g))).

unique action axioms: because of the presence of the action inequality clauses on
the successor-state axioms, we must enable to agent to effectively derive such facts,
by adding the unique action axioms; for each pair of action symbols Ai and Aj we
must state the (seemingly obvious) axiom Ai 6= Aj; also, for actions with
parameters we must also state:

Ai(x1, ..., xn) = Aj(y1, ..., yn) ⇔ x1 = y1 ∧ ... ∧ xn = yn

Logic based methods — situation calculus 80

Example: monkey and bananas — the axioms

• general knowledge of the world and operators (partial and simplified):

A1: ∀p∀p1∀s [At(box, p, s) ⇒ At(box, p, goto(p1, s))]

A2: ∀p∀p1∀s [At(bananas, p, s) ⇒ At(bananas, p, goto(p1, s))]

A3: ∀p∀s [At(monkey, p, goto(p, s))]

A4: ∀p∀p1∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ At(box, p1,move(box, p, p1, s))]

A5: ∀p∀p1∀p2∀s [At(bananas, p, s) ⇒ At(bananas, p,move(box, p1, p2, s))]

A6: ∀p∀p1∀s [At(monkey, p, s) ⇒ At(monkey, p1,move(box, p, p1, s))]

A7: ∀s [Under(box,bananas, s) ⇒ Under(box,bananas, climb(box, s))]

A8: ∀p∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ On(monkey,box, climb(box, s))]

A9: ∀s [Under(box,bananas, s) ∧ On(monkey,box, s) ⇒ Havebananas(grab(bananas, s))]

A10: ∀p∀s [At(box, p, s) ∧ At(bananas, p, s) ⇒ Under(box,bananas, s)]

• specific case data:

A11: [At(monkey, P1, S0) ∧ At(box, P2, S0) ∧ At(bananas, P3, S0)]

• theorem to prove:

∃s(Havebananas(s))

2The solution to the monkey and bananas problem presented here is based on an example in book „Artificial Intelligence”
by Philip C. Jackson Jr.

Logic based methods — situation calculus 81

Example: monkey and bananas — the clauses

A1: {¬At(box, p, s1),At(box, p, goto(p1, s1))}

A2: {¬At(bananas, q, s2),At(bananas, q, goto(q1, s2))}

A3: {At(monkey, r, goto(r, s3))}

A4: {¬At(box, u, s4),¬At(monkey, u, s4),At(box, u1,move(box, u, u1, s4))}

A5: {¬At(bananas, t, s5),At(bananas, t,move(box, t2, t3, s5))}

A6: {¬At(monkey, v1, s6),At(monkey, v2,move(box, v1, v2, s6))}

A7: {¬Under(box,bananas, s7),Under(box,bananas, climb(box, s7))}

A8: {¬At(monkey, w, s8),¬At(box, w, s8),On(monkey,box, climb(box, s8))}

A9: {¬Under(box,bananas, s9),¬On(monkey,bananas, s9),

Havebananas(grab(bananas, s9))}

A10: {¬At(box, p, s10),¬At(bananas, p, s10),Under(box,bananas, s10)}

A11a: {At(monkey, P1, S0)}

A11b: {At(box, P2, S0)}

A11c: {At(bananas, P3, S0)}

NT: {¬Havebananas(z)}

Logic based methods — situation calculus 82

Example: monkey and bananas — the proof

C1(A1,A11b) {At(box, P2, goto(p1, S0))}

C2(C1,A4) {¬At(bananas, P2, goto(p1, S0)),

At(box, u1,move(box, P2, u1, goto(p1, S0)))}

C3(C2,A3) {At(box, u1,move(box, P2, u1, goto(P2, S0)))}

C4(C3,A10) {¬At(bananas, u1,move(box, P2, u1, goto(P2, S0))),

Under(box,bananas,move(box, P2, u1, goto(P2, S0)))}

C5(A2,A11c) {At(bananas, P3, goto(q1, S0))}

C6(C5,A5) {At(bananas, P3,move(box, t2, t3, goto(q1, S0)))}

C7(C6,C4) {Under(box,bananas,move(box, P2, P3, goto(P2, S0)))}

C8(C7,A7) {Under(box,bananas, climb(box,move(box, P2, P3, goto(P2, S0))))}

C9(A3,A6) {At(monkey, v2,move(box, r, v2, goto(r, r1)))}

C10(C9,A8) {At(box, v2,move(box, r, v2, goto(r, r1))),

On(monkey,box, climb(box,move(box, r, r2, goto(r, r1))))}

C11(C10,C3) {On(monkey,box, climb(box,move(box, P2, u1, goto(P2, S0))))}

C12(C8,A9) {¬On(monkey,box, climb(box,move(box, P2, P3, goto(P2, S0)))),

Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C13(C11,C12) {Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C14(C13,NT) {}

Logic based methods — situation calculus 83

Example: monkey and bananas — the resolution tree

C8

C7

C3

C10

A6

A8

A1

NT

C9

A9

A7

A2
A4

A3C2

C1

A5C5

C6

C4

C12

C13

C11

A3

A11b

A11c

A10

C14=[]

Logic based methods — situation calculus 84

The frame problem

As we could see in the wumpus and the monkey and bananas examples, a correct
logical description of a problem requires explicitly stating the axioms for the effects of
actions on the environment, as well as other effect (like rain). It is also necessary to
write the axioms to conclude the lack of change:

∀a, x, s Holding(x, s) ∧ (a 6= Release) ⇒ Holding(x,Result(a, s))
∀a, x, s ¬Holding(x, s) ∧ (a 6= Grab) ⇒ ¬Holding(x,Result(a, s))

Unfortunately, in a world more complex than the wumpus world, there will be many
fluents, and the description must represent their changes, as well as invariants, both as
direct and indirect consequences of the actions.

These axioms, called the frame axioms, are hard to state in a general way, and they
significantly complicate the representation.

Of course, during the course of work, the agent must state and answer many
questions, and prove theorems. The multiplicity of axioms causes a rapid expansion of
her database, which slows down further reasoning, and can result in a total paralysis.

Logic based methods — situation calculus 85

Short review

1. Write a situation calculus based representation for the wumpus world, as described
at the beginning of this document.

Logic based methods — situation calculus 86

Problems with the lack of information

The logic-based methods presented so far assumed that all information necessary to
carry out logical reasoning is available to the agent. Unfortunately, this is not
a realistic assumption.

One problem is that of incomplete information. Agent may not have full information
about the problem, allowing him to draw categorical conclusions. She may, however,
have partial information, such as:

• “typical” facts,
• “possible” facts,
• “probable” facts,
• exceptions to the generally valid facts.

Having such information is often crucial for making the right decisions. Unfortunately,
the classical predicate logic cannot make any use of them.

Another problem is the uncertainty of information. An agent may have data from
a variety of not fully reliable sources. In the absence of certain information, those
unreliable data should be used. She should reason using the best available data, and
estimate the reliability of any conclusions obtained this way. Again, classical logic does
not provide such tools.

Logic based methods — incomplete and uncertain information 87

Common sense reasoning

Consider what information a human knows for sure, making decisions in everyday life.
Getting up in the morning, her intention is to go to work. But what if there is
a large-scale failure of public transportation? She should, in fact, get up much earlier,
and first check whether the buses are running. The day before, she bought products to
make breakfast. But can she be sure that her breakfast salad is still in the refrigerator,
or if it did not spoil, or perhaps if someone has not sneaked to steal it, etc?

Conclusion: a logically reasoning agent needs 100% certain information to conduct her
actions, and sooner or later she will be paralyzed by the perfect correctness of her
inference system. In the real world she will never be able to undertake any action, until
she has complete and correct information about the surrounding world.

However, in the world full of incomplete and uncertain information, guesses, defaults
and exceptions, people are doing quite well. How do they do it?
We have to accept the fact that people use a way of reasoning different from the fully
rigorous mathematical logic. We call this mechanism the common sense reasoning.

Common sense reasoning allows humans to reach more conclusions than would be
possible with the strict mathematical logic. However, some of these conclusions may
later turn out to be incorrect when (some of) the previously made assumptions turn
out to be false.

Logic based methods — incomplete and uncertain information 88

Nonmonotonic logics

Part of the blame for the problems of inference using classical logic bears its property
known as monotonicity. In classical logic, the more we know, the more we can
deduce using inferencing.

Humans use a different model of inference, much more flexible, utilizing typical facts,
default facts, possible facts, and even lack of information. This kind of reasoning
seems not to have the monotonicity property.

For example, lacking good information about a situation a human is likely to make
assumptions and derive some conclusions. After having acquired more complete
information, she might not be able to conduct the same reasoning and work out the
same solutions.3

Hence, different models of inference, designed to overcome these problems, and
following a more flexible reasoning model similar to that of humans, are collectively
called nonmonotonic logics.

3The solution produced earlier, in the absence of information, turns out to be wrong now, but perhaps it was better
than the lack of any action. But not necessarily.

Logic based methods — nonmonotonic logics 89

Nonmonotonic logics — example

Minsky’s challenge: to design a system, which would permit to correctly describe
a well-known fact, that the birds can fly.

∀x[bird(x) → canfly(x)]

In order to accommodate the exceptions, e.g. ostriches, the preceding formula must be
modified per case.

∀x[bird(x) ∧ ¬ostrich(x) → canfly(x)]

But there are more exceptions: birds bathed in spilled crude oil, wingless birds, sick
birds, dead birds, painted birds, abstract birds, . . .

An idea: we introduce a modal operator M:

∀x[bird(x) ∧ M canfly(x) → canfly(x)]

Now the exceptions can be introduced modularly:

∀x[ostrich(x) → ¬canfly(x)]

Logic based methods — nonmonotonic logics 90

For the following set of facts:

∆ = {bird(Tweety),bird(Sam),ostrich(Sam)}

we can deduce: ¬canfly(Sam)
so it should not be possible to derive:

M canfly(Sam) nor canfly(Sam)

However, using the normal proof procedure we cannot prove the Tweety’s ability to fly:

M canfly(Tweety),canfly(Tweety)

In order to do this, a proof procedure is needed, capable of effective (and automatic)
proving theorems in predicate logic extended with the modal operator M, consistent
with the following inference rule:

Not(⊢ ¬p)

M p

Logic based methods — nonmonotonic logics 91

Nonmonotonic logics — what proof procedure?

Leaving aside the restrictions resulting from the reference to the proof procedure in the
above definition, such a procedure may be neither effective computationally, nor
decidable nor even semidecidable, as are the proof procedures for the predicate logic.

The premise of the above inference rule contains the statement, that some formula is
impossible to prove. To start, this may not be possible to determine at all. And to find
a positive confirmation of this fact, it will certainly be necessary to carry out global
inferencing over the entire database. For how else we could say that something can not
be proved.

In contrast, proofs in first-order predicate calculus are local in nature. If, for example,
we are lucky to choose the appropriate premises, we can obtain the proof in several
steps, even if the data base contains thousands of facts.

Logic based methods — nonmonotonic logics 92

Problems with logic-based methods

The approach to knowledge representation based on first-order logic at one time
created much excitement and hope for building powerful and universal systems of
artificial intelligence. There are, however, important considerations which significantly
limit the practical applications of this approach:

• combinatorial explosion of the proof procedure; while there exist speedup
strategies, they do not help much; at the same time it is hard to incorporate in the
proof procedure any heuristic information available

• undecidability and the Gödel’s incompleteness of the predicate calculus

• reasoning about changes — situation calculus, temporal logics

◦ reasoning about change exhibits the frame problem — besides determining
what has changed, is is essential to keep track of what has not

• reasoning with incomplete and uncertain information, truly challenging for the
formal approaches, but seems crucial for the human reasoning

◦ taking into account uncertain information leads to nonmonotonic reasoning,
a property of the human reasoning, while the traditional (mathematical) logic is
strictly monotonic

Logic based methods — problems 93

Applications of the logic-based methods

The above problems with logic-based methods significantly burden their application as
a platform for implementing intelligent agents. Nevertheless, the first order predicate
language itself is commonly used in artificial intelligence for representing facts.

Still, in some specific applications it is possible to use this methodology, and the above
problems are not critical. Some of these applications are:

• computer program synthesis and verification, software engineering

• design and verification of computing hardware, including the VLSI design

• theorem proving in mathematics; which help seek proofs for any postulated
theorems, for which efforts failed to find a proof in the traditional way

Logic based methods — applications 94

