
1

Slide 1

Constraint
Satisfaction and

Scheduling
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Slide 2

Overview
• CSPs defined
• Using standard search for CSPs
• Blindingly obvious improvements

Backtracking search
Forward Checking
Constraint Propagation

• Some example CSP applications
Overview
Waltz Algorithm
Job Shop Scheduling

• Variable ordering
• Value ordering
• Tedious Discussion

2

Slide 3

A Constraint Satisfaction Problem

Inside each circle marked V1 .. V6 we must assign: R, G or B.

No two connected circles may be assigned the same symbol.

Notice that two circles have already been given an assignment.

V3

V6

V2

R

G

V1

V5

V4

Slide 4

Formal Constraint Satisfaction
Problem

A CSP is a triplet { V , D , C }. A CSP has a finite set of variables V = { V1 , V2
.. VN }.
Each variable may be assigned a value from a domain D of values.
Each member of C is a pair. The first member of each pair is a set of variables.
The second element is a set of legal values which that set may take.
Example:
V = { V1 , V2 , V3 , V4 , V5 , V6 }
D = { R , G , B }
C = { (V1,V2) : { (R,G), (R,B), (G,R), (G,B), (B,R) (B,G)},

{ (V1,V3) : { (R,G), (R,B), (G,R), (G,B), (B,R) (B,G)},
:
: }

Obvious point: Usually C isn’t represented explicitly, but by a function.

3

Slide 5

How to solve our CSP?

•How about using a search algorithm?
•Define: a search state has variables 1 … k assigned. Values k+1 … n,
as yet unassigned.

•Start state: All unassigned.
•Goal state: All assigned, and all constraints satisfied.
•Successors of a stated with V1 … Vk assigned and rest unassigned are
all states (with V1 … Vk the same) with Vk+1 assigned a value from D.

•Cost on transitions: 0 is fine. We don’t care. We just want any solution.

V3

V6

V2

R
G

V1

V5

V4

Slide 6

How to solve our CSP?

START =(V1=? V2=? V3=? V4=? V5=? V6=?)
succs(START) =

(V1=R V2=? V3=? V4=? V5=? V6=?)
(V1=G V2=? V3=? V4=? V5=? V6=?)
(V1=B V2=? V3=? V4=? V5=? V6=?)

What search algorithms could we use?
It turns out BFS is not a popular choice. Why not?

V3

V6

V2

R
G

V1

V5

V4

4

Slide 7

DFS for CSPs

What about DFS?

Much more popular. At least it has a chance of finding an easy answer
quickly.

What happens if we do DFS with the order of assignments as B tried
first, then G then R?

This makes DFS look very, very stupid!

Example: http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

V3

V6

V2

R
G

V1

V5

V4

Slide 8

Blindingly obvious improvement –
Consistency Checking: “Backtracking Search”

Don’t ever try successor which causes inconsistency with its neighbors.
– Again, what happens if we do DFS with the order of assignments as B

tried first, then G then R?
– What’s the computational overhead for this?
– Backtracking still looks a little stupid!
– Examples: http://www.cs.cmu.edu/~awm/animations/constraint/9b.html

and http://www.cs.cmu.edu/~awm/animations/constraint/27b.html

V3

V6

V2

R
G

V1

V5

V4

5

Slide 9

Obvious improvement – Forward Checking

At start, for each variable, record the current set of possible legal
values for it.
When you assign a value in the search, update set of legal values
for all variables. Backtrack immediately if you empty a variable’s
constraint set.

– Again, what happens if we do DFS with the order of
assignments as B tried first, then G then R?

– Example: http://www.cs.cmu.edu/~awm/animations/constraint/27f.html

– What’s the computational overhead?

V3

V6

V2

R
G

V1

V5

V4

Slide 10

Constraint Propagation

Forward checking computes the domain of each variable independently at the
start, and then only updates these domains when assignments are made in the
DFS that are directly relevant to the current variable.

Constraint Propagation carries this further. When you delete a value from your
domain, check all variables connected to you. If any of them change, delete all
inconsistent values connected to them, etc…

In the above example it is useless

Web Example: http://www.cs.cmu.edu/~awm/animations/constraint/27p.html

V3

V6

V2

R
G

V1

V5

V4

6

Slide 11

Constraint Propagation being non-useless

• In this example, constraint propagation solves the problem
without search … Not always that lucky!

• Constraint propagation can be done as a preprocessing
step. (Cheap).

• Or it can be maintained dynamically during the search.
Expensive: when you backtrack, you must undo some of
your additional constraints.

V3

V6

V2

R
G

V1

V5

V4 Extra Arc

Slide 12

Graph-coloring-specific Constraint
Propagation

In the case of Graph Coloring, CP looks simple:
after we’ve made a search step (instantiated a
node with a color), propagate the color at that
node.

PropagateColorAtNode(node,color)
1. remove color from all of “available lists” of our

uninstantiated neighbors.
2. If any of these neighbors gets the empty set, it’s time to

backtrack.
3. Foreach n in these neighbors: if n previously had two or

more available colors but now has only one color c, run
PropagateColorAtNode(n,c)

7

Slide 13

Graph-coloring-specific Constraint
Propagation

In the case of Graph Coloring, CP looks simple:
after we’ve made a search step (instantiated a
node with a color), propagate the color at that
node.

PropagateColorAtNode(node,color)
1. remove color from all of “available lists” of our

uninstantiated neighbors.
2. If any of these neighbors gets the empty set, it’s time to

backtrack.
3. Foreach n in these neighbors: if n previously had two or

more available colors but now has only one color c, run
PropagateColorAtNode(n,c)

But for General CSP problems, constraint

propagation can do much more than only

propagating when a node gets a unique

value…

Slide 14

A New CSP (where fancier
propagation is possible)

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

V9V8V7

This column
must sum to 6

V6

V3

This column
must sum to 6

V5

V2

This column
must sum to 6

V4

V1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

8

Slide 15

Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation

Specification: Takes a set of availability-lists
for each and every node and uses all the
constraints to filter out impossible values that
are currently in availability lists

Details on next slide

Slide 16

Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation
Ai denotes the current set of possible values for
variable i. This is call-by-reference. Some of the Ai
sets may be changed by this call (they’ll have one
or more elements removed)

We’ll keep iterating until we do a
full iteration in which none of the
availability lists change. The
“finished” flag is just to record
whether a change took place.

9

Slide 17

Propagate(A1, A2 ,… An)
finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

General Constraint Propagation
NewAi is going to be filled up
with the possible values for
variable Vi taking into account
the effects of constraint C

After we’ve finished all the
iterations of the foreach
loop, NewAi contains the
full set of possible values of
variable Vi taking into
account the effects of
constraint C.

Slide 18

General Constraint Propagation
Propagate(A1, A2 ,… An)

finished = FALSE
while not finished

finished = TRUE
foreach constraint C

Assume C concerns variables V1, V2 ,… Vk

Set NewAV1 = {} , NewAV2 = {} , … NewAVk = {}
Foreach assignment (V1=x1, V2=x2, … Vk=xk) in C

If x1 in AV1 and x2 in AV2 and … xk in AVk

Add x1 to NewAV1 , x2 to NewAV2 ,… xk to NewAVk

for i = 1 , 2 … k
AVi := AVi intersection NewAVi

If AVi was made smaller by that intersection
finished = FALSE

If AVi is empty, we’re toast. Break out with “Backtrack” signal.

If this test is satisfied that means that there’s at least one
value q such that we originally thought q was an
available value for Vi but we now know q is impossible.

If AVi is empty we’ve proved that there are no solutions for the
availability-lists that we originally entered the function with

10

Slide 19

Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column
must sum to 6

123

123

This column
must sum to 6

123

123

This column
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

Slide 20

Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column
must sum to 6

123

123

This column
must sum to 6

123

123

This column
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

(V1,V2,V3) must be one of
(1,2,3)
(1,3,2)
(2,1,3)
(2,2,2)
(2,3,1)
(3,1,2)
(3,2,1)

11

Slide 21

Propagate on Semi-magic Square

• The semi magic square
• Each variable can have value 1, 2 or 3

This row must
sum to 6

123123123

This column
must sum to 6

123

123

This column
must sum to 6

123

123

This column
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

(V1,V2,V3) must be one of
(1,2,3)
(1,3,2)
(2,1,3)
(2,2,2)
(2,3,1)
(3,1,2)
(3,2,1)

• NewALV1 = { 1 }
• NewALV2 = { 2 , 3 }
• NewALV3 = { 2 , 3 }

Slide 22

After doing first row constraint…

This row must
sum to 6

123123123

This column
must sum to 6

123

23

This column
must sum to 6

123

23

This column
must sum to 6

123

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

12

Slide 23

After doing all row constraints and
column constraints…

This row must
sum to 6

12312323

This column
must sum to 6

123

23

This column
must sum to 6

123

23

This column
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

Slide 24

And after doing diagonal
constraint…

This row must
sum to 6

2312323

This column
must sum to 6

123

23

This column
must sum to 6

23

23

This column
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

CP has now iterated through all constraints once.
But does it make further progress when it tries
iterating through them again?

13

Slide 25

And after doing another round of
constraints…

This row must
sum to 6

231223

This column
must sum to 6

12

23

This column
must sum to 6

23

23

This column
must sum to 6

23

1

This diagonal
must sum to 6

This row must
sum to 6

This row must
sum to 6

YES! And this showed a case of a
constraint applying even when none of
the variables involved was down to a
unique value.

So.. any more changes on

the next iteration?

Slide 26

CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

Details on next slide

14

Slide 27

CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

Specification: Find out if there’s
any combination of values in the
combination of the given
availability lists that satisifes all
constraints.

At this point the A-primes are a copy
of the original availability lists except
A’i has committed to value x.

This call may prune away
some values in some of
the copied availability lists

Assuming that we terminate deep in the recursion if we find a
solution, the CPSeach function only terminates normally if no
solution is found.

Slide 28

CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

What’s the top-level call?

Call with that Ai = complete set of possible values for Vi .

15

Slide 29

CSP Search with Constraint Propagation

CPSearch(A1, A2 ,… An)
Let i = lowest index such that Ai has more than one value
foreach available value x in Ai

foreach k in 1, 2.. n
Define A’k := Ak

A’i := { x }
Call Propagate(A’1, A’2 ,… A’n)
If no “Backtrack” signal

If A’1, A’2 ,… A’n are all unique we’re done!
Recursively Call CPSearch(A’1, A’2 ,… A’n)

What’s the top-level call?

Call with that Ai = complete set of possible values for Vi .

Slide 30

Semi-magic Square
CPSearch Tree

123123123
123
123

123
123

123
123

231223
12
23

23
23

23
1

122312
23
12

12
12

12
3

123123123
123
123

123
123

123
2

213
1
3

3
2

2
1

312
1
2

2
3

3
1

16

Slide 31

Semi-magic Square
CPSearch Tree

123123123
123
123

123
123

123
123

231223
12
23

23
23

23
1

122312
23
12

12
12

12
3

123123123
123
123

123
123

123
2

213
1
3

3
2

2
1

312
1
2

2
3

3
1

In fact, we never

even consider these

because we stop at

first success

Slide 32

Some real CSPs
• Graph coloring is a real, and useful, CSP. Applied to

problems with many hundreds of thousands of nodes.
Not very AI-esque.

• VLSI or PCB board layout.
• Selecting a move in the game of “minesweeper”.

211
100
100
100

Which squares have a bomb? Squares with numbers don’t. Other squares
might. Numbers tell how many of the eight adjacent squares have bombs. We
want to find out if a given square can possibly have a bomb….

17

Slide 33

“Minesweeper” CSP

V5V6V7V8

V4211
V3100
V2100
V1100

V = { V1 , V2 , V3 , V4 , V5 , V6 , V7 , V8 }, D = { B (bomb) , S (space) }

C = { (V1, V2) : { (B,S) , (S,B) }, (V1, V2, V3,) : { (B,S,S) , (S,B,S) , (S,S,B)},…}

V1

V2

V3

V4

V5

V6

V7

V8

Slide 34

The Waltz algorithm
One of the earliest examples of a computation posed as a CSP.
The Waltz algorithm is for interpreting line drawings of solid polyhedra.

Look at all intersections.

What kind of intersection could this be? A
concave intersection of three faces? Or
an external convex intersection?

Adjacent intersections impose constraints on each other. Use CSP to
find a unique set of labelings. Important step to “understanding” the
image.

18

Slide 35

Waltz Alg. on simple scenes
Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small movements of the

eye.
Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of arrow denoting
“solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

Slide 36

18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above
manners.
The junctions must be labeled so that lines are labeled consistently at both
ends.
Can you formulate that as a CSP? FUN FACT: Constraint Propagation always
works perfectly.

19

Slide 37

Slide 38

Waltz Examples

20

Slide 39

Scheduling
A very big, important use of CSP methods.

• Used in many industries. Makes many multi-million dollar decisions.
• Used extensively for space mission planning.
• Military uses.

People really care about improving scheduling algorithms!

Problems with phenomenally huge state spaces. But for which
solutions are needed very quickly.

Many kinds of scheduling problems e.g.:
Job shop: Discrete time; weird ordering of operations possible; set
of separate jobs.
Batch shop: Discrete or continuous time; restricted operation of
ordering; grouping is important.
Manufacturing cell: Discrete, automated version of open job shop.

Slide 40

Job Shop scheduling
At a job-shop you make various products. Each product is a “job” to be done.
E.G.

Job1 = Make a polished-thing-with-a-hole
Job2 = Paint and drill a hole in a widget

Each job requires several operations. E.G.
Operations for Job1: Polish, Drill
Operations for Job2: Paint, Drill

Each operation needs several resources. E.G.
Polishing needs the Polishing machine
Polishing needs Pat (a Polishing expert)
Drilling needs the Drill
Drilling needs Pat (also a Drilling expert)

Or Drilling can be done by Chris
Some operations need to be done in a particular order (e.g. Paint after you’ve
Drilled)

21

Slide 41

Job Shop Formalized
A Job Shop problem is a pair (J , RES)
J is a set of jobs J = {j1 , j2 , … jn}
RES is a set of resources RES = {R1 .. Rm}

Each job jI is specified by:
• a set of operations OI = {OI

1 OI
2 … OI

n(I) }
• and must be carried out between release-date rdI and due-date ddI.
• and a partial order of operations: (OI

i before OI
j), (OI

i’ before OI
j’), etc…

Each operation OI
i has a variable start time stIi and a fixed duration duI

i and
requires a set of resources. e.g.: OI

i requires { RI
i1 , RI

i2 … }.

Each resource can be accomplished by one of several possible physical
resources, e.g. RI

i1 might be accomplished by any one of {rI
ij1 , rI

ij2 , …}. Each
of the rI

ijks are a member of RES.

Slide 42

Job Shop Example
j1 = polished-hole-thing = { O1

1 , O1
2 }

j2 = painted-hole-widget = { O2
1 , O2

2 }
RES = { Pat,Chris,Drill,Paint,Drill,Polisher }
O1

1 = polish-thing: need resources…
{ R1

11 = Pat , R1
12 = Polisher }

O1
2 = drill-thing: need resources…

{ R1
21 = (r1

211=Pat or r1
212=Chris), R1

22 = Drill }
O2

1 = paint-widget: need resources…
{ R2

11 = Paint }
O2

2 = drill-widget : need resources…
{ R2

21 = (r2
211=Pat or r2

212=Chris), R2
22 = Drill }

Precedence constraints : O2
2 before O2

1. All operations take one time unit duI
i

= 1 forall i,I. Both jobs have release-date rdI = 0 and due-date ddI = 1.

22

Slide 43

Job-shop: the Variables and
Constraints

Variables
• The operation state times stIi
• The resources RI

ij (usually these are obvious from the definition of
OI

i. Only need to be assigned values when there are alternative
physical resources available, e.g. Pat or Chris for operating the drill).

Constraints:
• Precedence constraints. (Some OI

is must be before some other
OI

js).
• Capacity constraints. There must never be a pair of operations with

overlapping periods of operation that use the same resources.

Non-challenging question. Can you schedule our Job-shop?

Slide 44

A slightly bigger example

4 jobs. Each 3 units long. All jobs have release date 0 and due date
15. All operations use only one resource each.

beforebeforeO1
1 R1 O1

2 R2 O1
3 R3

beforeO2
1 R1 O2

2 R2

beforebeforeO3
1 R3 O3

2 R1 O3
3 R2

beforeO4
1 R4 O4

2 R2
Example from [Sadeh and Fox, 96]: Norman M. Sadeh and Mark S. Fox, Variable and
Value Ordering Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem,
Artificial Intelligence Journal, Number Vol 86, No1, pages 1-41, 1996. Available from
citeseer.nj.nec.com/sadeh96variable.html

23

Slide 45

Further CSP techniques
Let’s look at some other important CSP methods. Keep the
job-shop example in mind.
Here’s another graph-coloring example (you’re now
allowed R, G, B and Y)

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B

Slide 46

General purpose Variable Ordering Heuristics
1. Most constrained variable.
2. Most constraining variable.

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B

24

Slide 47

General purpose Value Ordering Heuristics

V3

V6

V2

R
G

V1

V5

V4

V7 Y
B

A good general purpose one is “least-
constrained-value”. Choose the value which
causes the smallest reduction in number of
available values for neighboring variables

Slide 48

General purpose CSP algorithm
(From Sadeh+Fox)
1. If all values have been successfully assigned then stop, else go

on to 2.
2. Apply the consistency enforcing procedure (e.g. forward-checking

if feeling computationally mean, or constraint propagation if
extravagant. There are other possibilities, too.)

3. If a deadend is detected then backtrack (simplest case: DFS-type
backtrack. Other options can be tried, too). Else go on to step 4.

4. Select the next variable to be assigned (using your variable
ordering heuristic).

5. Select a promising value (using your value ordering heuristic).
6. Create a new search state. Cache the info you need for

backtracking. And go back to 1.

25

Slide 49

Job-shop example. Consistency
enforcement

Sadeh claims that generally forward-checking is
better, computationally, than full constraint
propagation. But it can be supplemented with a
Job-shop specific TRICK.

The precedence constraints (i.e. the available
times for the operations to start due to the ordering
of operations) can be computed exactly, given a
partial schedule, very efficiently.

Slide 50

Reactive CSP solutions
• Say you have built a large schedule.
• Disaster! Halfway through execution, one of the

resources breaks down. We have to reschedule!
• Bad to have to wait 15 minutes for the scheduler to

make a new suggestion.

Important area of research: efficient
schedule repair algorithms.

• Question: If you expect that resources may
sometimes break, what could a scheduling program
do to take that into account?

• Unrelated Question: Why has none of this lecture
used A*?

26

Slide 51

Other approaches. And What You
Should Know

Other Approaches:
Hill-climbing, Tabu-search, Simulated annealing, Genetic
Algorithms. (to be discussed later)

What you should know:
How to formalize problems as CSPs
Backtracking Search, Forward Checking, Constraint Propagation
The Waltz algorithm
You should understand and appreciate the way job-shop scheduling
is formalized. It is an excellent representative example of how
important well-studied constraint satisfaction problems are
represented.
Understand examples of Variable ordering and Value ordering
heuristics

In those cases where your lecturer or these handouts are too incomprehensible,
consult Chap 5 of the Russell handout. Winston’s “Artificial Intelligence” book has
good discussion of constraint satisfaction and Waltz algorithm.

