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Overview
• The inadequacies of “Best First Greedy”

heuristic search.
• Good trick: take account of your cost of getting 

to the current state.
• When should the search stop?
• Admissible heuristics
• A* search is complete
• A* search will always terminate
• A*’s dark secret
• Saving masses of memory with IDA* (Iterative 

Deepening A*)
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Let’s Make “Best first Greedy” Look 
Stupid!

• Best –first greedy is clearly not guaranteed 
to find optimal

• Obvious question:  What can we do to 
avoid the stupid mistake?
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A* - The Basic Idea
• Best-first greedy: When you expand a node n, take each 

successor n' and place it on PriQueue with priority h(n')

• A*: When you expand a node n, take each successor n'
and place it on PriQueue with priority

(Cost of getting to n') + h(n') (1)

Let g(n) = Cost of getting to n (2)

and then define…

f(n) = g(n) + h(n) (3)
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A* Looking Non-Stupid
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When should A* terminate?
Idea:  As soon as it generates a goal state?
Look at this example:
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Correct A* termination rule:
A* Terminates Only When a Goal State Is Popped 
from the Priority Queue
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A* revisiting states
Another question: What if A* revisits a state that was 
already expanded, and discovers a shorter path?
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had been expanded gets 
re-expanded.  How and 
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A* revisiting states
What if A* visits a state that is already on the queue?
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In this example a state that had 
been on the queue and was 
waiting for expansion had its 
priority bumped up.  How and 
why?
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note that this h 
value has changed 
from previous 
page.
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The A* Algorithm

• Priority queue PQ begins empty.
• V (= set of previously visited (state,f,backpointer)-triples) begins empty.
• Put S into PQ and V with priority f(s) = g(s) + h(s)
• Is PQ empty?

Yes? Sadly admit there’s no solution
No? Remove node with lowest f(n) from queue.  Call it n.
If n is a goal, stop and report success.
“expand” n : For each n' in successors(n)….

• Let f’ = g(n') + h(n') = g(n) + cost(n,n') + h(n')
• If n' not seen before, or n' previously expanded with 

f(n')>f’, or n' currently in PQ with f(n')>f’
• Then Place/promote n' on priority queue with priority f’

and update V to include (state=n', f ’, BackPtr=n).
• Else Ignore n'

use sneaky trick 
to compute g(n)

= h(s) because 
g(start) = 0

Reminder: g(n) is cost of 

shortest known path to n
Reminder: h(n) is a heuristic estimate of cost to a goal from n
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Is A* Guaranteed to Find the 
Optimal Path?
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Nope.  And this example shows why not.

h = 7
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Admissible Heuristics

• Write h*(n) = the true minimal cost to goal 
from n.

• A heuristic h is admissible if
h(n) <= h*(n) for all states n.

• An admissible heuristic is guaranteed 
never to overestimate cost to goal.

• An admissible heuristic is optimistic.
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8-Puzzle Example

Which of the following are admissible heuristics?

847
362
51

87
654
321Example 

State
Goal 
State

• h(n) = Number of tiles in wrong 
position in state n

• h(n) = 0
• h(n) = Sum of Manhattan 

distances between each tile and 
its goal location

• h(n) = 1

• h(n) = min (2, h*[n])
• h(n) = h*(n)
• h(n) = max (2, h*[n])
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A* with Admissible Heuristic 
Guarantees Optimal Path

• Simple proof
• Your lecturer will attempt to give it from 

memory.
• He might even get it right.  But don’t hold 

your breath.
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Is A* Guaranteed to 
Terminate?

• There are finitely many acyclic paths in the search 
tree.

• A* only ever considers acyclic paths.
• On each iteration of A* a new acyclic path is 

generated because:
– When a node is added the first time, a new path 

exists.
– When a node is “promoted”, a new path to that 

node exists.  It must be new because it’s shorter.
• So the very most work it could do is to look at every 

acyclic path in the graph.
• So, it terminates.

i.e. is it 
complete?
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Comparing Iterative Deepening with A*
From Russell and Norvig, Page 107, Fig 4.8

For 8-puzzle, average number of 
states expanded over 100 
randomly chosen problems in 
which optimal path is length…

732512A* using “Sum of Manhattan 
distances” as the heuristic

2273913A* search using “number of 
misplaced tiles” as the heuristic

3.6 x 1066,300112Iterative Deepening (see 
previous slides)

…12 steps…8 steps…4 steps
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Comparing Iterative Deepening with A*
From Russell and Norvig, Page 107, Fig 4.8

Average number of states 
expanded over 100 randomly 
chosen problem in which optimal 
path is length…

732512A* using “Sum of Manhattan 
distances” as the heuristic

2273913A* search using “number of 
misplaced tiles” as the heuristic

3.6 x 1066,300112Iterative Deepening (see 
previous slides)

…12 steps…8 steps…4 steps

Andrew’s editorial comments

1. At first sight might look like even “number of misplaced 

tiles” is a great heuristic. But probably h(state)=0 would 

also do much much better than ID, so the difference is 

mainly to do with ID’s big problem of expanding the same 

state many times, not the use of a heuristic.

2. Judging solely by “number of states expanded” does not 

account for overhead of maintaining hash tables and 

priority queue for A*, though it’s pretty clear here that this 

won’t dramatically change the results.

Indeed there are 
only a couple 
hundred thousand 
states for the entire 
eight puzzle
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A* : The Dark Side

• A* can use lots of memory.  
In principle:

O(number of states)
• For really big search 

spaces, A* will run out of 
memory.  



10

Slide 19

IDA* : Memory Bounded Search
• Iterative deepening A*. Actually, pretty different from A*. Assume 

costs integer.
1. Do loop-avoiding DFS, not expanding any node with 

f(n) > 0.  Did we find a goal?  If so, stop.
2. Do loop-avoiding DFS, not expanding any node with 

f(n) > 1.  Did we find a goal?  If so, stop.
3. Do loop-avoiding DFS, not expanding any node with 

f(n) > 2.  Did we find a goal?  If so, stop.
4. Do loop-avoiding DFS, not expanding any node with 

f(n) > 3.  Did we find a goal?  If so, stop.
…keep doing this, increasing the f(n) threshold by 1 each 
time, until we stop.

• This is
Complete
Guaranteed to find optimal
More costly than A* in general.
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What You Should Know
• Thoroughly understand A*.
• Be able to trace simple examples of A* execution.
• Understand “admissibility” of heuristics.  Proof of 

completeness, guaranteed optimality of path.
• Be able to criticize best first search.

References:
Nils Nilsson. Problem Solving Methods in Artificial Intelligence.  
McGraw Hill (1971) E&S-BK 501-5353 N71p.
Judea Pearl.  Heuristics: Intelligent Search Strategies for Computer 
Problem Solving.  Addison Wesley (1984) E&S-BK 501-535 P35h.
Chapters 3 & 4 of Stuart Russell and Peter Norvig.  Artificial 
Intelligence: A Modern Approach.  
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Proof: A* with Admissible Heuristic Guarantees Optimal Path

• Suppose it finds a suboptimal path, ending in goal state G1
where f(G1) > f* where f* = h* (start) = cost of optimal path.

• There must exist a node n which is
Unexpanded
The path from start to n (stored in the BackPointers(n) 
values) is the start of a true optimal path

• f(n) >= f(G1) (else search wouldn’t have ended)
• Also f(n) = g(n) + h(n) 

= g*(n) + h(n)
<= g*(n) + h*(n)
= f*

So f* >= f(n) >= f(G1)

Why must such a node 
exist? Consider any 
optimal path 
s,n1,n2…goal.  If all along 
it were expanded, the goal 
would’ve been reached 
along the shortest path.

By the 
admissibility 
assumption

because it’s on 
optimal path

contradicting 
top of slide

Because n is on 
the optimal path
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Exercise Part 1
In the following maze the successors of a cell include any cell directly to the 
east, south, west or north of the current cell except that no transition may pass 
through the central barrier.  for example successors(m) = { d , n , g }.

gtrqp
nmkhsf
edc

ba

The search problem is to find a path from s to g.  We are going to examine the 
order in which cells are expanded by various search algorithms. for example, 
one possible expansion order that breadth first search might use is:

s h f k p c q a r b t d g

There are other possible orders depending on which of two equal-distance-
from-start states happen to be expanded first.  For example s f h p k c q r a t b
g is another possible answer. continued->
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Exercise Part 1 continued

gtrqp
nmkhsf
edc

ba

Assume you run depth-first-search until it expands the goal node.  Assume 
that you always try to expand East first, then South, then West, then North.  
Assume your version of depth first search avoids loops: it never expands a 
state on the current path.  What is the order of state expansion?
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Exercise Part 2

gtrqp
nmkhsf
edc

ba

Next, you decide to use a Manhattan Distance Metric heuristic function

h(state) = shortest number of steps from state to g if there were no barriers

So, for example, h(k) = 2, h(s) = 4, h(g) = 0

Assume you now use best-first greedy search using heuristic h (a version that 
never re-explores the same state twice).  Again, give all the states expanded, in 
the order they are expanded, until the algorithm expands the goal node.

Finally, assume you use A* search with heuristic h, and run it until it terminates 
using the conventional A* termination rule.  Again, give all the states expanded, 
in the order they are expanded.  (Note that depending on the method that A* 
uses to break ties, more than one correct answer is possible).



13

Slide 25

Another Example Question
Consider the use of the A* algorithm on a search graph with cycles, 
and assume that this graph does not have negative-length edges.  
Suppose you are explaining this algorithm to Pat, who is not familiar 
with AI.  After your elaborated explanation of how A* handles cycles, 
Pat is convinced that A* does a lot of unnecessary work to guarantee 
that it works properly (i.e. finds the optimal solution) in graphs 
containing cycles.  Pat suggests the following modification to improve 
the efficiency of the algorithm:

Since the graph has cycles, you may detect new cycles from time to time 
when expanding a node.  For example, if you expand nodes A, B, and C 
shown on figure (a) on the next slide, then after expanding C and noticing 
that A is also a successor of C, you will detect the cycle A-B-C-A.  Every 
time you notice a cycle, you may remove the last edge of this cycle from 
the search graph.  For example, after expanding C, you can remove the 
edge C-A  (see figure (b) on next slide).  Then, if A* visits node C again in 
the process of further search, it will not need to traverse this useless edge 
the second time. continued next slide
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more Another Example Question
Does this modified version of A* always find the optimal path to a 
solution?  Why or why not?

Start

C

B

A …

…

…

Start

C

B

A …

…

…
(a) Detecting a Cycle (b) Removing the detected cycle


