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Chapter 0

Prelude

0.1 Basic concepts

At the beginning we shall explain a number of concepts from set theory,
algebra, topology and mathematical analysis that will appear later on in
these notes. It is assumed that the Reader has had a contact with the
language of formal logic and set theoretical operations, and also got some
basic knowledge of the calculus, algebra and ordinary differential equations
included in the undergraduate teaching curricula at technical universities.
We expect that if a certain notion has not been defined in these notes, the
Reader is able to find it out in the literature.

0.1.1 Set theory

The concept of a set is treated as a primary concept. Suppose that X,Y
denote some universa (sets) with elements x,y,z. A subset R C X x Y will
be called a binary relation. We say that x is in relation R with y, xRy, if
(x,y) € R.

Definition 0.1.1 A relation R C X x Y will be named a function, if
(x,y),(x,z2) ER=y =2z

The function is written down by the formula f : X — Y. The set G =
{(x,y)l(x,y) € f}is referred to as the graph of the function.

Definition 0.1.2 Given a unwersum X, the function
f:XxX—X

will be called a (binary) operation n X.

1
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Definition 0.1.3 A relation R C XxX will be called an equivalence relation,
1f the following conditions hold:

o reflerivity: xRx,
e symmetry: xRy = yRx,
o transitivity: xRy AyRz = xRz.

Every equivalence relation partitions the universum into non-empty and
disjoint equivalence classes defined as

x] ={y € XlyRx}.

This partition is exhaustive, i.e. [J,cx[x] = X, so each element of the uni-
versum belongs to a certain equivalence class. A classification of elements
of a universum consists in the introduction into it of an equivalence relation
and the characterisation of every equivalence class by its specific element
playing the role of a label. Such an element is called a normal form or,
sometimes, a canonical form of elements from this class. Therefore, the
objective of a classification is the determination of equivalence classes and
ascribing to each of them a normal form. To make the classification effec-
tive it is desirable to get a finite number of the equivalence classes. On the
other hand, the classification must not be trivial, for example assigning to
all the universum’s elements a single class. A leitmotif of these notes will be
a classification of three universa: functions, dynamic systems, and control
systems.

0.1.2 Algebra

Definition 0.1.4 Let X denote a universum with a binary operation o. The
system (X, o) s named a group, if there exists in X a neutral element
e, such that xoe = eox = x and every element x € X has the inverse
element x~' € X for which x~ ' ox =xox~ ! =e. If the group operation
18 commutative, xoy = yox, the group 1s called commutative (Abelian).
When the group operation is associative, xo(yoz) = (xoy)oz, the group
15 called associative.

Definition 0.1.5 If in the universum X there are two operations: one o,
with respect to which X s a group and another x, such that they are
distributive: xx(yoz) = (xxy)o(xx*z) and also (yoz)*xx = (y*x)o(zxx),
then X will be named a ring. If there exists in the ring an element 1,
such that 1 xx = x, the ring s called a ring with unity.
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Definition 0.1.6 A universum X is referred to as a linear space over the
set of real numbers R, if the group (X, o) 1s commutative and associative,
and a multiplication 1s defined of elements X by numbers «, 3,1 € R,
having the following properties: (x+3)ox = axo fBx, a(xoy) = axoay,
(aB)ox = x(Pox) and 1x = x. If, instead of R we take a ring with unity
then X 1s called a module over this ring.

Definition 0.1.7 A unwversum X with two operations o, *, such that (X, o)
15 a linear space over R and (X, *) 15 a ring, while the introduced oper-
ations satisfy the conditions (xoy)xz= (x*z)o(y=*z) and xx (yoz) =
(x *y) o (x *xz), we call an algebra.

0.1.3 Topology

The notion of a topological space will be introduced by means of a family
of open sets.

Definition 0.1.8 Let X denote a universum. Its topology X will be de-
fined as a family O of subsets of X, called open sets, with the following
properties:

e the empty set and the whole universum belong to O,
e the meet of two open sets is an open set,
e the union of arbitrary number of open sets is open.

The pair (X,0) will be called a topological space. By a neighbourhood
of a point x € X we understand any open set X containing x.

Definition 0.1.9 Let a function f: X — Y between two topological spaces
be gwen. The function f is named continuous, if the counter-tmage of
any open subset of Y 1s open 1n X. Using the terminology of sequences
this implies that for any sequence {xn} of elements of the space X there
holds

lim f(xn) = f( lim xn> .
n—-+oo n—-+o00

In what follows we shall exploit topological characteristics of some sets. For
this reason we define the following.
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Definition 0.1.10 A closed set 1s the complement of any open set. An inte-
rior int A of a subset A C X 15 defined as the biggest open set contained
in A. A subset A 1s called a boundary set, if its interior s empty. A
subset A s dense 1n X if in every neighbourhood of each point x € X
there are some points from A. A set A 1s nowhere dense if it 1s closed
and boundary. A topological space 1s complete if the limit of every
sequence of elements of this space belongs to this space.

0.1.4 Calculus

A basic tool used in these notes is the differential calculus. A useful scenery
for the introduction of the concept of derivative is a Banach space.

Definition 0.1.11 A topological space X is named a Banach space if it is
a linear space (over R), normed, and complete. The topology of the
Banach space is defined by means of the norm. If || -|| denotes a norm
then a neighbourhood of radius r of a point x in the Banach space takes
the form

{y € Xy — x|l < 7},

while a sphere centred at xo with radius v 1s defined as
B (x0) ={y € Xllly —xoll =1}

Definition 0.1.12 Let f : X — Y be a transformation of Banach spaces.
The Fréchet derivative of the function f at a point x 1s a linear function
Df(x) : X — Y that satisfies the condition

f(x +v) = f(x) + Df(x)v + O(v?),

where the Landau symbol O(e) denotes terms of order > 2. The Gateauz
derivative of the function f is defined as

d of(x)

Df = — f =
(x)v as| . (x + ov) ™

V.

The Gateaux derivative is efficiently computable. Its significance results
from the fact that if the Gateaux derivative exists and is continuous then it
is equal to the Fréchet derivative.
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0.2 Linear control systems

By a linear control system we mean a system described by linear differential
equations
o: x = Ax(t) + Bu(t), (0.1)

where x € R™ — state variable, u € R™ - control variable, and A and B are,
respectively, the dynamics and control matrices of dimensions n x n and
n x m. The spaces R™ and R™ are called, accordingly, a state space and a
control space. For a control system the control problem consists in defining
such a control that guarantees the achievement of a control objective.
Every linear control system can be identified with a pair of matrices,
o = (A, B), so the set of linear control systems ~ = R™ 1M Given a control
function u(t) and an initial state xo, the system’s trajectory can be found
as a solution of the differential equation (0.1). Invoking the method of
variations of constants we get
t
x(t) = exo + J elt8)ABu(s)ds. (0.2)
0

The matrix exponential appearing in the formula (0.2) is defined as a sum

- .
tA (tA)*
e - iZO i! '

A number of methods exist allowing for the computation of the matrix
exponential without resorting to the summation of the infinite series.

of the infinite series

0.2.1 Controllability

A fundamental property of a control system, its raison d’etre, is the possibil-
ity of reaching any point of the state space using a suitably chosen control.
This fundamental property is referred to as controllability. To make this
concept precise we adopt the following definition of controllability

Definition 0.2.1 The system (0.1) is controllable, if for any initial state
xo and any terminal state xq there exists a control u(t) and a control
time T > 0, such that

.
x(T) = e™xo +J e(T=9)ABu(s)ds = x4.
0
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Because xo and x4 are arbitrary, and the matrix e’

property of controllability means that the integral

is invertible, the

-
[= J e SABu(s)ds (0.3)
0

assumes all values from R™. Having defined the concept of controllability
we ask how to check if a linear system is controllable. For linear control
systems an answer to this question appears to be relatively simple and leads
to effective controllability conditions. Given a state x, let us define a control
in the following way

u(t) =BTe A Gy 'x. (0.4)
The matrix -

Gr :J e SABBTe A ds
0

appearing above is known as the Gram matrix of the system (o0.1). It is
easily observed that the control (0.4) is well defined on condition that the
Gram matrix is invertible. Evidently, a substitution of this control to (0.3)
yields I = x. On the basis of these observations one can state the following
necessary and sufficient controllability condition for a linear system.

Theorem 0.2.1 The system (0.1) is controllable if and only if for a certain
T > 0 the Gram matriz Gt = fg e SABBTesA" ds is invertible (det Gt #
0). Furthermore, the control transferring the system from the state xo
to the state xq wn time T takes the form

u(t) = BTe*J‘ATG¥1 (e"Txa —xo0) -

A direct check of conditions stated in Theorem 0.2.1 is not easy, therefore,
in order to decide controllability efficiently we use the following Kalman
criterion.

Theorem 0.2.2 For a system o = (A, B) described by the formula (0.1) we
introduce the Kalman matriz

Q= [B, AB,...,A™ 'B].

The system (0.1) is controllable if and only if the Kalman matriz has
full rank n,
rank Q =n.
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0.2.2 Equivalence
Take two linear systems of the form (0.1) given as

0: x = Ax(t) + Bu(t),

o' & =F&(t) + Gv(t),

where x, & € R™ u,v € R™. These control systems will be referred to as
equivalent if there exists an unambiguous relationship between their tra-
jectories. More precisely, two kinds of equivalence of linear control systems
are distinguished, the S-equivalence and the F-equivalence, defined in the
following way.

Definition 0.2.2 Two linear control systems are S-equivalent, t.e.

0%0/ & u=v and (IP,det P # 0)(& = Px, s.t. PA =FP, PB = G).

Definition 0.2.3 Two linear control system are F-equivalent, i.e.

G%G/ & (IP,det P #0, K, Q, det Q # 0)(& = Px, u = Kx + Qv,
s.t. PA+PKB =FP, PBQ = G).
Both these equivalences are equivalence relation, what means they are re-
flexive, symmetric and transitive. It is easily seen that the S-equivalence
is a specific case of the F-equivalence for K = 0 and Q = I,;. A relation-

ship between controllability and the system equivalence is revealed by the
following

Theorem 0.2.3 Controllability ts an invariant of both these equivalences,
1.e. if 0=f0’ and o is controllable then also o’ is controllable. A for-
tiort, the same concluston s valid for the S-equivalence.

0.2.3 Classification and normal forms
Let a single input linear control system be given
0: x = Ax(t) + bu(t),

where x € R™, u € R, A € R“Z, b € R™. We shall demonstrate that by a
specific choice of the matrix P the system o can be made S-equivalent to
so-called controllability normal form. Since the system o is controllable, it
satisfies the Kalman criterion, so the quadratic matrix

Q= [b,Ab,...,A™ b]
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is invertible. Take P = Q~'. We are looking for a matrix F, such that
PA =FP, ie. AQ = QF. We compute

AQ = [Ab,A%b,...,A"b].
From the Cayley-Hamilton Theorem we deduce
A" = —an gAY —an AV — o —aply,

where a; denote coefficients of the characteristic polynomial of the matrix
A, det(Al,, —A) = 0. Now, using the condition for S-equivalence, AQ = QF,
we get the equation

n—1
AQ = |[Ab A2b ... —Zai/\i
1=0
00 -~ —ap
10 -+  —a
=[b Ab ... AMb] |, . | =aF
0 0 -+ —an_1

The control vector g of the normal form results from the identity Pb = g,
tantamount to b = Qg, so g = (1,0,...,0)" In this way we have proved
S-equivalence of the system o to the the controllability normal form

o' &=FE() + gult), (0:5)
containing the matrix F and the vector g given below
00 -+ —ap 1
10 -+  —a 0
F=1. : y 9= 1.
0 0 --+ —an_ 0

An alternative normal form of the system o, named the controller normal
form, can be derived in the following way. We look for a matrix F and a
vector g that for a certain matrix P fulfil the relationship PA = FP and Pb =
g. Let again Q denote the Kalman matrix. It follows from controllability
that this matrix is invertible, therefore there exists the matrix Q~'. Denote

its rows by v{,...,v], so that

.
g
o= |2
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By definition the matrix Q satisfies the condition

vi
1
-1 V2 1
O 'o=|7"|[b Ab ... A Tb] =14,
v
that results in the equalities
vib=vIAb = =v A" b =0, viA" b =1.

Now we can define the matrix P in the following way

i

b v;A

v;[A'“—1

The product of matrices is equal to
vl 00 0 1
viA 00 1 *
PO = . b Ab ... A" Tb] = )

vTTLA“q T % - % %

where asterisks stand for elements whose knowledge is not important. As
may be seen, the matrix P is invertible, so it may serve as a basis for intro-
ducing S-equivalence. Form the equivalence formula it follows that FP = PA;
invoking again the Cayley-Hamilton Theorem one shows that this condition
is satisfied by the matrix

0 1 0
0 0o .- 0
F= ,
0
—Qqp —Qaq oo —Qnp—q

where, as before, symbols ap, ay,...,an_1 refer to the coefficients of the
characteristic polynomial of the matrix A. The vector g = Pb, so g =
(0,0,...,0,1)T. In conclusion, we have shown how the linear control system

o can be transformed to the controller normal form

o’ & =TFE(t) + gu(t),
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founded on the matrix F and the vector g specified above. The controller
normal form has found an application at the feedback control synthesis, in
particular it allows to prove an important Pole Placement Theorem. Let o
be a linear system (o0.1).

Theorem 0.2.4 Suppose that the system o is controllable. Then, there
exists a feedback u = Kx, such that the matriz A+BK of the system with
feedback has a prescribed spectrum. Equivalently, for any collection A =
A1, A2, ..., An} of complexr numbers satisfying the symmetry condition
AE A=A €A, x— conjugation of complex numbers, it holds that

sp(A + BK) = A.

Obviously, when the spectrum is placed in the left half of the complex
plane, we get an asymptotically stable linear system. Thus the stabilisation
problem of the system o consists in finding a feedback control, such that the
trajectories of the closed-loop system tend asymptotically to zero. A direct
consequence of the Theorem 0.2.4 is then that

Remark 0.2.1 Ewery controllable linear system s stabilisable.

0.3 Brunovsky Theorem

We have shown that a single input linear control system is S-equivalent to
the controller normal form (F, g). The explicit equations of this normal form
look as follows

£1=¢&,

£)=&3

én71 :Evn

En=—aoé1 —a1éy— - —an_1&n +u

Let us apply to this system the feedback u = k"&+v, with kT = (ao, a7, ...,
an_1). This results in the system

£1=§&,
£) =83
évTL*] — &n
én =V
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It turns out that this kind of the normal form can be established for every
controllable linear system. The corresponding normal form is called the
Brunovsky canonical form. We let o denote a system described by (o0.1),
with n-dimensional state space and m control inputs, with the control ma-
trix B of rank m. Define for the system o a string of numbers

po = rank B
p1 = rank [B AB] — rank B

pn_1 =rank [BAB... A" 'B] —rank [BAB... A" ?B]
By definition, the numbers p; have two properties:
Ppo=mz=p1=p22-2pn-1 20
and

n—1
D_pi=m
i=0

One can prove that these numbers are feedback invariants, i.e. systems F-
equivalent have identical numbers p;. Moreover, the numbers p; constitute
a complete system of feedback invariants, what means that

S o' & pi(o) = pi(0’).

It has been demonstrated that instead of n-invariants p; it suffices to take
m-invariants k1, K2, ..., Ky defined in the following way

ki = #olok =1, i=1,2,...,m.

The symbol # denotes the number of elements. The numbers k; bear the
name of controllability indices of the system o; they have the following
properties:

WV

K1 = K2 “ 2 Km 21

and

Similarly as p;, also k; form a complete system of feedback invariants. In
this context the following result is of fundamental significance.
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Theorem 0.3.1 (Brunovsky) Suppose that a controllable system o = (A, B)
with rankB = m has controllability indices kq,k2,...,Km. Then, the
system o 1s F-equivalent to the system o' = (F,G) in the Brunousky
canonical form with the dynamics matrizc

-O IK171
e 0
0 IKz—]
F= ° [0 0 } °
0 IKm71
0 0 o ]
L dnxn

and the control matrix

0
0
0 0
K]X]
0
0
0 0
G =
K2><]
0
0
0 0
KmXTd nxm

It turns out that a system in the Brunovsky canonical form has the structure
of m strings of integration, of length «1, k2, ..., km, presented schematically
in Figure 1. Observe that the subset B C X of the space £ = R MmN of Jin-
ear control systems that satisfy the conditions stated in the Theorem 0.3.1
includes "almost all” linear systems. More precisely, the systems that do
not fulfil these conditions are defined by a number of polynomial equations
of the form det = 0, thus they constitute so-called algebraic set, composed
of the roots of polynomials depending on the entries of matrices A and B.
The algebraic set is closed and boundary (does not contain any open sub-
set). Therefore, its complement that consists of the systems satisfying the
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Vi E J‘ E;K1 | —_ J‘ E 5,1
Vzi f &t Ko f I f EEK]+]

EK1+"'+Km,1+1

Figure 1: System in the Brunovsky canonical form

Brunovsky conditions is open and dense in £. This being so, the Brunovsky
Theorem 0.3.1 establishes that the set of "almost all” or "typical” linear
control systems can be partitioned into a finite number of classes of systems
F-equivalent to a corresponding Brunovsky canonical form. The number of
these classes is determined by the number of partitions of the integer n into
a sum of m integer components > 1, ordered decreasingly. The number
N of these equivalence classes is small for n and m small, but it grows up
quickly as n and m increase. Setting n = km+7, r < m, we get an estimate
p(r) < N < p(n— m), where p(r) denotes the number of partitions of the
integer T, i.e. the number of representations of r in the form of the sum of
positive integers. There exists a table of values of p(r) for r < 200, partially
displayed below:

r (1123456 |7 [8]9]|10]... 200
p(r) | 1123 (5|7 |11 1522|3042 ... 3972999029388

The theorem on Brunovsky canonical forms belongs to the deepest and the
most beautiful results of linear control theory.

0.4 Basic ideas of this course

The course’s objective is to make the student acquainted with selected
mathematical concepts and methods applied in the modern automation and
robotics. The guideline of the course relies on a classification of three kinds
of mathematical objects: functions, dynamic systems, and control systems.
An unrivalled example of such a classification is the Brunovsky Theorem
presented in the previous subsection. Following this guideline we shall fo-
cus on three so-called pillars of nonlinear analysis, that are
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e Inverse Function Theorem,

e Theorem on the Existence and Uniqueness of Solution of a System of
Differential Equations,

e Frobenius Theorem on Distributions.

0.5 Proofs

0.5.1 Pole Placement Theorem

The proof of Theorem 0.2.4 exemplifies an application of normal forms of
linear systems. We shall restrict the proof to single input systems (A, b), of
the form x = Ax(t) + bu(t).

Proof: As we have already demonstrated in subsection 0.2.3, controllability
of a liner system implies the existence of the controller normal form ¢ =
F&(t) + gu(t), such that

0 1 o ... 0 0
0 0 1 0 0
F= y 9= )
—aqp —a; —az ... —Qnp-—1 1
where the numbers {ap, ai,..., an_1} denote the coefficients of the charac-

teristic polynomial of the matrix A. We recall that the transformation of
the system to the controller normal form relies on a matrix

T
Vn

P= VT-I;A )
vTTLA“_]

T

+, comes from the last row of the inverse Kalman matrix

in which the row v
Q~', such that

PA=FP, Pb=g.

As the matrices A and F are related by the similarity, their characteristic
polynomials, characteristic equations, and spectra are identical. Let A =
{A1,A2, ..., An} stand for eigenvalues of the closed loop system. Using them
we define a polynomial

oy (A) = A=A A=A2) ... A=An) = A"y A™ -y A+yo. (0.6)
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For the controller normal form with feedback f = (fo, f1,...,fn_1) we con-
sider a matrix
F+ gf,

whose characteristic polynomial is equal to (0.6). Then, we have

0 1 0 0 8
0 0 1T ... 0
F+9f: . . + | (f07f17"'7fn—])
. . 0
—ap —a; —az —Qn—1 1
0 1 0 0
0 0 1 0
fo — Qo ﬁ — 1 fz —az ... fn_1 — An-—1
0 1 0o ... 0
0 0 1 0
~Yo —Y1 —Y2 -+ —Yn-

Observe that above a; denote the coefficients of the characteristic polyno-
mial of the matrix A, while y; are coefficients of the characteristic polyno-
mial of the matrix of the closed loop system. The feedback for the controller
normal form can be defined as f; = a; —yi. With this choice of the feed-
back the controller normal form has a prescribed characteristic polynomial
oy (A). Now we return to the original system. Suppose that there exists a
feedback k = (ko, k1,...,kn_1) under which there holds

P(A + bk) = (F + gf)P.

For the reason that PA = FP, it must be Pbk = gfP, but as Pb = g, the
above identity will be satisfied provided that

k = fP.
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Taking advantage of the form of the matrix P we obtain

2
vaA T 1
k:(f())f]“':fn—]) : :vn(fn—]An_ ++f01n)
\JTTLA‘“*1

=V} ((an—1 = ¥Yn-1)A™ "+ 4 (ao — fo)In)
=vi(an_1A™ T+t aoly —(Yn1 AMT - 4 yoln))
7AT’L

= VA" +yn A o yoln) = vy (A).

The last identities result from the Cayley-Hamilton Theorem. The sym-
bol «(A) denotes the characteristic polynomial (0.6) determined by the
prescribed spectrum, and computed for the matrix A. The formula

k= —vIlocy (A)

defining the feedback placing the poles in the system (A, b) is referred to as
the Ackermann’s formula. |

0.6 Problems and exercises

Exercise 0.1 Show that similar matrices have the same characteristic poly-
nomials.

Exercise 0.2 Check controllability of the linear control system

1 00 1
x=10 0 1|x+|1|w
1 00 0
Compute et?.

Exercise 0.3 Check controllability and stability of the linear system

=[o el

Using the Ackermann’s formula find a feedback placing the poles {—1,—3}.



Chapter 0. Prelude 17

Exercise 0.4 Check controllability and stability of a model of the inverted
pendulum («, 8 <0, 3,y > 0)

o o o o
o O O =
m O R O
o = o o
oo =<2 o

Find a feedback placing the poles {—1,—1,—2,—2}.

Exercise 0.5 Enumerate possible controllability indices for linear control sys-
tems of dimensions (n, m) = (3,2), (5,2) and (7, 2).

0.7 Bibliographical remarks

A detailed explanation of basic concepts of set theory, algebra, topology,
and mathematical analysis can be found, for instance, in preliminary chap-
ters of the monographs [AMRS3, Sas99]. A geometric approach to linear
control systems is presented in the book [Won79]. Classic theory of linear
control systems is the subject of the textbooks like [F2ai98]. Controllability
of linear systems in the way similar to ours is exposed in subsection 4.1 of
the monograph [Lév09]. The Brunovsky canonical forms have been intro-
duced in the paper [Bru68]; they are also discussed in the mentioned book
[Won79]. Complementary information on the action of the feedback group
on linear systems are included in the paper[T'ch83]. The Cayley-Hamilton
Theorem is a basic result of linear algebra, and can be found in the book
[Ber05]; from the same source one can also learn on basic properties of the
matrix exponential. The Ackermann’s formula is dealt with in [Fai98]. The
term ”pillars of nonlinear analysis” comes from the monograph [AMRS3].
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Chapter 1

Functions

1.1 Classes of functions

We shall assume that the notion of the vector space, the definition of the
function, the concept of continuity, and the concept of differentiability of
functions is known to the Reader. Our interest will be focused on functions
(maps, transformations) between real vector spaces

f:R" — R™, y="~f(x). (1.1)
This notation means that the components of a vector y are given as

y1 =fr(x1,...,%xn)

Y2 =fa(x1,...,%n)

ym:fm(xh---xxn)

By default, both these vector spaces R™ and R™ will be equipped with the
Euclidean inner product (£,m) = &£'n. The following classes of functions
will be distinguished:

e CO(R™,R™) — the class of continuous functions,

e CK(R™,R™) - the class of functions continuously differentiable up to
order Xk,

e C®(R™,R™) — the class of smooth functions,

e C®(R™, R™) — the class of analytic functions.

19
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In accordance with this classification, the function f € C*(R™,R™), if at
any point its partial derivatives
oPfi(x)

1Al i
0x;' 0x5% ... 0xX

are continuous, where Z?:] ij=p,forallp<kandali=12...,m
By a smooth function we understand a function of the class C* for every
k. An analytic function is a smooth function whose every component has
a convergent Taylor series. At the point 0 € R™ this means convergence of
the series

fi(x) = fi(0) + Dfi(0)x + %szi(O)(x,x) +...+ %Dkfi(O)(x,x. CaX) e,

where the symbol D stands for the differentiation. The derivative of a
function f: R™ — R™ will be computed in the following way. For a vector
veR"

of
Df(x)v = i\(X:of(x +ov) = (X)v
do 0x

The matrix Df(x) is called the Jacobian matrix of the function f at the point
x. By definition, the classes of functions distinguished above are related as
follows

C® cc®cckccl

Occasionally, further on we shall use more general functions than contin-
uous, such as the piece-wise continuous or piece-wise constant functions.
They will be introduced in due time. Given an analytic function, it follows
from the definition of analyticity that the values of such a function in the
neighbourhood of a point, e.g. zero, are determined by derivatives of this
function at the point. A collection of these derivatives is named the jet of
the function. The jet of order k at zero has then the form

%:(0) = (f(0), Df;(0), D*£;(0), ..., D*f;(0)).

If, for every component of an analytic function defined on R™, the jet
j°f;1(0) = 0 then f(x) is identically equal to O on the whole space R™. In or-
der to better explain the difference between smooth and analytic functions,
let’s consider the function

0 for x<O0
f(X) = 1 )
e x for x>0

whose plot has been portrayed in Figure (1.1). It is easily checkable that this
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Af(X)

'
X
Figure 1.1: Smooth, non-analytic function

function is smooth and its infinite jet at zero vanishes j*°f(0) = 0. On the
other hand, in any neighbourhood of 0 the function f(x) does not vanish.
Apparently, the function f(x) is an example of a smooth function that is
not analytic. An obvious example of a function that has a finite order of
smoothness (it is of the class C', but not C?) is the function

0 for x<0
f(x) =

x2 for x>0

1.2 Algebraic structures in the set of functions

Consider a pair of continuous functions f1,f, € C°(R™,R™). They can be
added and multiplied by real numbers « € R

(f1 +f2)(x) = f1(x) +f2(x), (of1)(x) = ofy(x).

It follows that continuous functions C°(R™, R™) form a linear space over the
set real numbers R. Under assumption that m = 1, the continuous functions
can also be multiplied by each other

(f1f2)(x) = f1(x)f2(x).

A linear space with a multiplication (a product) is called an algebra, so we
say that the space C°(R™, R) is an algebra. If we focus solely on the operation
of multiplication, we shall call the class C°(R™, R) a ring. Obviously, smooth
functions C*°(R™, R) along with the function multiplication also form a ring.
Now, let us choose a smooth function f € C*°(R™,R™) and a function a €
C*(R™, R). The product

(af)(x) = a(x)f(x)
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is a smooth function. This means that C>°(R™, R™) is a module over the ring
of functions C*°(R™,R). Moreover, for two functions f{,f, € C*(R™,R™)
one can define another product as

[f1, f21(x) = Df2(x)f1(x) — Df1(x)f2(x)

that is called the Lie bracket. The linear space C*°(R™,R™) together with
the Lie bracket is referred to as a Lie algebra. This being so, C*°(R™, R™)
is a Lie algebra over real numbers R and simultaneously a module over the
ring of smooth functions C*°(R™,R). We shall come back to the notion of
the Lie bracket in the section devoted to vector fields.

As another example of the Lie algebra we can take the space of smooth
functions C*®(R?™, R) with the operation of the Poisson bracket. Suppose
that x = (q,p). Then, the Poisson bracket is defined as

of (x)>T of2(x) (af] (x)>T df2(x)

R I e

The Poisson bracket plays an important role in Hamiltonian mechanics.

As the last example of an algebraic structure in the set of functions let’s
look at the smooth functions of a single variable C*°(R,R). This class is
an algebra that is additionally closed with respect to differentiation, i.e. if
f € C®(R,R) then f € C®(R,R). This kind of algebra is called a differential
algebra; the differential algebra of functions of time appears in the analysis
of differentially flat control systems.

1.3 Inverse Function Theorem

For a pair of continuous functions fi,f, € C°(R™,R™) one can define an
operation called a composition of functions

(f1 o f2)(x) = f1(f2(x)),

that consists in computing the function f; for a value of the function f5.
We introduce the following definition.

Definition 1.3.1 The function 1 1s an inverse function of the function f;,
of
(f1 0 f2)(x) = x.
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The inverse function of f will be denoted by f~'. Elementary examples of
functions and their inverses are e*, and Inx, tanx and arctanx, sinx and
arcsinx, etc. For differentiable functions f; and f, there is the following
rule of the differentiation of a composed function (the chain rule)

D(fy o f2)(x) = Dfy (f2(x))Df2(x).

The question of existence of the inverse function is answered by the follow-
ing Inverse Function Theorem, regarded as one of the pillars of nonlinear
analysis.

Theorem 1.3.1 (Inverse Function Theorem) Choose a function f € CX(R™,R™)
for a certain k > 1, and let f(xo) =yo. Assume that

rank Df(xp) = n.

Then, wn a neighbourhood U of the point yo, there ezists the inverse
function ' (y), also of the class CK.

It results from the definition of the inverse function fof ' (x) = x and from
the chain rule that
Df(f ' (x))Df ' (x) = I,
S0
Df ' (x) = (DF(F ' (x)) .

A function f € CK¥(R™, R™) that has the inverse function of the class C* will
be called a diffeomorphism. In the case when f~! exists only locally, the
diffeomorphism is named local. The Inverse Function Theorem provides us
with a sufficient condition for a local diffeomorphism. We want to admit
that there is no necessary and sufficient condition for a function to be a dif-
feomorphism and each particular case needs to be approached individually.

1.4 Implicit Function Theorem

One of the most significant consequences of the Inverse Function Theorem
is the Implicit Function Theorem stated below.

Theorem 1.4.1 (Implicit Function Theorem) Let a function f € CX(R™ x R™,
R™), w = f(x,y), be given for a certain k > 1, such that f(xo,yo) = wo.
Suppose that

af(x();yO)

190
ran ay m
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Then, there exists a function y = g(x,w) of the class C*, defined in a
neighbourhood of (xo,wo) and satisfying

f(x, g(x,w)) =w.

A proof of this theorem will be provided in Appendix. In order to determine
derivatives of the function g we shall reason in the following way. Since
f(x, g(x,w)) = w then, by differentiation of both sides of this identity with
respect to x, we get

of(x, g(x,w)) | f(x, g(x,w)) 9g(x, w)

=0
ox dy ox '

therefore

dglx,w)  [f(x,glx,w))\ " df(x, g(x,w))
ox ( dy ) ox '

In a similar way we find

Aglx,w) [ f(x,glx, w))\
M“(ay) ‘

1.5 Computation of the inverse function

In various problems of automation and robotics, as e.g. in the inverse kine-
matics problem of manipulators, we need to compute the inverse function.
Suppose that a function f € CK(R™, R™) fulfils the conditions of the Inverse
Function Theorem, i.e. at any point rank Df(x) = n. Given a terminal point
Yyq € R™ we want to determine a point xq € R™, such that f(xq) =yq. Gen-
erally this problem is solved numerically. Two algorithms of computing the
inverse function will be described below.

1.5.1 Newton Algorithm

According to this algorithm we start from choosing an initial point xo € R™.
If our choice is accurate, i.e. f(xp) = yq, we finish. Otherwise, we perform
a "deformation” of the point xo to a differentiable curve x(0) parametrised
by 0 € R, such that x(0) = xg. The error of reaching the terminal point
along this curve amounts to
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Now, we want to pick the curve x(0) in such a way that when 6 — +oo the
error e(0) decreases along the curve x(0) exponentially. To this objective
we require that the error satisfies a differential equation

e'(0) = —ye(0),

where v > 0 denotes a convergence rate. Suppose that the required curve
x(0) exists. Having differentiated the error we obtain

e’(8) = Df(x(0))x'(8) = —ye(8).

Due to the invertibility of the matrix Df(x) the above equation means that
the curve x(0) should solve the differential equation

x'(8) = —y (DF(x(8))) "' (f(x(8)) —ya),

often attributed to Wazewski-Davidenko, with the initial condition x(0) =
Xo. Then, the value of the inverse function xq = f~'(yq) is obtained as the
limit
xq = lim x(0).
0—+00

This algorithm is known as the Newton Algorithm. It follows that in order
to compute the inverse function using the Newton Algorithm one needs to
solve numerically a certain differential equation, and then pass to the limit of
its solution. For computational purposes this algorithm is often presented in
a discrete form, e.g. by invoking the Euler scheme, leading to the difference
equation

xke1 = xk =y (Dflc)) ™ (fla)) —ya), k=0,1,...

1.5.2 Steepest Descent Algorithm

Alternatively to the Newton Algorithm one may exploit the following Steep-
est Descent Algorithm. We begin with guessing a solution x, similarly
as in the former algorithm. If this is not successful, we define a function
e(x) = f(x) —yq. The core idea of this algorithm consists in generating
a motion of the point x € R™ along a curve x(0), in the direction of the
quickest decrease of the error

E() = yeT(x)e(x) = Slle(a)l
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Obviously, this direction is —grad E(x), therefore the curve x(6) needs
to obey the equation

x'(0) = —ygrad E(x(0)), vy >0.
By definition, the gradient of a function satisfies
(grad E(x),v) = DE(x)v,

so, consequently
grad E(x) = (De(x))Te(x).

Eventually, using the definition of e(x), the curve of the steepest descent
should solve the differential equation

x'(0) = —y(Df(x(6))) T (f(x(8)) —ya), x(0) = xo.

Analogously to the Newton Algorithm, the inverse function xq = f~'(yq)
is computed as the limit

xq = lim x(0)
00—+

of the trajectory of this differential equation. The discrete version of the
Steepest descent Algorithm takes the form

X1 = x — YD) (Fxk) —ya), k=0,1,...

where v can be interpreted as the step length of the algorithm. A rational
way of choosing y relies on the minimisation of the function

E(xy+1) = E(xk — v grad E(xx)).
A necessary condition for the minimum is

dE
(Z{;“) — (DE(x — ygrad E(x))) " grad E (i)
= —grad’ E(xy41)grad E(xy) = 0.

It can be seen that with this choice of the coefficient v the direction of
motion in the step k + 1 is perpendicular to the motion direction in the
step k.
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1.6 Proofs

1.6.1 Implicit Function Theorem

Proof: The Implicit Function Theorem can be deduced from the Inverse
Function Theorem in the following way. Given the function f(x,y) we in-
troduce a function F: R™ x R™ — R™ x R™ defined as

Fix,y) = (x,f(x, 1)) = (x,w).

The function F is of the class C¥. Its derivative at the point (xo, o),

I 0
DF(XO:UO) = lﬁf(x];yo) af(Xo,yo)] ’
0x Jy

has rank n + m due to the assumption rank W = m. Therefore, we

can apply to the function F the Inverse Function Theorem that guarantees
the existence of the function G(x,w) = (G (x,w), G2(x,w)), such that

F(G(x,w)) = (G1(x, W), f(G1(x, W), G2(x,w))) = (x, wW).
The above identity yields
Gi(x,w)=x and f(x,Ga(x,w)) =w,

so the function g(x,w) = G, (x, w). [ |

1.7 Problems and exercises

Exercise 1.1 Prove that the functions given below are local diffeomorphisms
in a neighbourhood of the point O:

a) @:R3 — R3,
@(x) = (x3,%x2,x1 —sinxy)T,

b) ¢ :R* — RY,
@(x) = (x1,X2,—Xx3 8N X7 + X4 COSX] — X2, X3 COSX] + X4 5inx7)7,

c) :R> — R,
@(x) = (x1,8in%2, cos x sinx3, x4, x5 +x3 —xJ°) 7.

Are these diffeomorphisms global?
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y1" X

Figure 1.2: Mechanism of the manipulator from exercise 1.5

Exercise 1.2 Show that the following system of equations

X1Yy1 —x2y2 =0
X2Y1 +Xx1y2 =2

defines a function y = g(x). Compute the derivative Dg(x) at the point
X1 =%x2=Yy; =y =1

Exercise 1.3 Given the forward kinematics of the robotic manipulator of the
type of double pendulum:

y7 = ly cosxq + 1 cos(x1 + x2)
y2 = lysinxg + Ly sin(x1 + x2)

show that outside singular configurations there exists a solution of the in-
verse kinematics problem.

Exercise 1.4 Using the Implicit Function Theorem examine conditions under
which the eigenvalues of a matrix A, xn are functions of the coefficients of
its characteristic equation.

Exercise 1.5 Examine the existence of the forward and inverse kinematics of
the mechanism presented in Figure 1.2, described by the equations

2

(a1 —y1 +Licosx1)? + (y2 — lisinxg)? = 1§
(a2 +y1 +lacosx2)? + (y2 — Lasinxz)? =13
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1.8 Bibliographical remarks

Complementary information on functions can be found in the monograph
[GGT74]. Theorem on the inverse and the implicit functions in Banach spaces
have been presented in [AMRS83]. An exhaustive exposition of the Newton
methods is contained in the book [Deu04]; their application to the motion
planning of mobile robots is described in [T'chl17, DS03]. The Wazewski-
Davidenko equation comes from the papers [Waz47] and [Dav53].
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Chapter 2

Linear functions. Equivalence of
functions

2.1 Linear functions

A specific class of functions is the class of linear functions. We shall accept
the following definition.

Definition 2.1.1 A function f: R™ — R™ 1s called linear if for every pair
of points x1,x2 € R" and every pair of numbers «1,xy € R there holds

florxy + oax2) = axf(x7) + aaf(x2).

Assume that in R™ and R™ we have chosen bases denoted, respectively
by {e1,€2,...,en} and {f1,f2,...,fm}. Let y = f(x), x = > 1*; xje; and
y =Y ;" Bjfj. Then, by linearity

Yy = f(X) =T <Z O(i€i> = Z oqf(ei).
i=1 i=1

Let the function f transform the basis vectors in the following way

m
f(ei) = Z O—jifj-
j=1

Combining the above calculations we arrive at the identity
n
Bj = Z aji
i=1

30
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or, for vectors ot = (&1, ®2,...,0tn)" and B = (B1,B2,..-,Bm) ",
B =Aax.

The matrix A = [ay;] with m rows and n columns represents the linear
function f with respect to the chosen bases. If these bases have been fixed,
one can identify linear functions with their matrices. Obviously, the linear
functions are analytic.

2.2 Matrices and their norms

In diverse applications we need to compute a norm of the matrix. Recall
that the norm in R™ is a function that assumes values greater than or equal
to zero,

Il R™ — Ry,

that satisfies the following conditions (« € R, x1,x € R™)
Xl =0 &= x=0, |loxll = lodlIxll, [x71 +x2ll < Ixqll + [x2ll.

The last condition is known as the triangle inequality. A well known norm
of a vector (in fact this is a family of norms) is the p-norm defined as

n 1/p
Ixllp = <Z |Xip> , p=1
i=1

Specifically, we distinguish the following p-norms:
e for p =1, l-norm of a vector x, [[xlly =} " [xil,

o for p =2, 2-norm of a vector x, [Ix|l, = (3., xiz)]/2

?
e for p = 0o, co-norm of a vector x, [[x|lcc = max; [xil

For the reason that x|, = (x,x)'/%2 = (x"x)'/2, 2-norm is identical with
the Euclidean norm. It can be shown that the p-norms mentioned above
fulfil the inequalities ||x||7 = [Ixl2 = ... = ||x|lso-

Now, let us pay our attention to matrix norms. Let A = [ai;] denote a
matrix of dimension m x n; the set of such matrices will be symbolised as
Mat(m,n). A matrix norm should satisfy three axioms analogous to that
for the vector norm, i.e. for x € R and two matrices A1, A> € Mat(m,n) we
have

Al=0<= A =0, [lxAll=lcllIAll, [[A7+ Azl < A1+ [IA2]].
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Basically, these axioms define the matrix norm, however, for the matrices
that can be multiplied by each other, e.g. for A;,A; € Mat(n,n), we
define an additional property of primary importance, referred to as the ring

property,
A1 A2l < [IA1IHIAZI.

Having the axioms of the matrix norm we ask, how to define a concrete
matrix norm. There are two approaches to this question. First, by listing
the entries of the matrix one after another, one can identify a matrix A €
Mat(m,n) with a vector A € R™™ containing mn components, and then
can use a certain p-vector norm. In this context we shall distinguish the

2-norm
1/2

A=Y o | = (x(AAT) "%,
i

named the Frobenius matrix norm. The matrix norms "inherited” from
a vector usually do not have the ring property, however the Frobenius norm
does. Second, one can regard the matrix as a kind of operator acting between
vector spaces, and interpret the matrix norm as a " measure of amplification”
assigned to this operator. The norms devised in the latter way are called
operator matrix norms. The operator norm is defined as the biggest ratio of
the "amplitude” of the image of a point x to the "amplitude” of this point
itself (the original). Formally speaking, this means that

|AX|[rm
IAl] = sup ————,
xz0 |Ixllrn

where we have marked that the original vector and its image may come from
different spaces. Due to the property Hm“” = IIAﬁII, the operator matrix
norm can also be expressed as

IAll = sup [[Av]l.

lIvi=1

By selecting various p-norms in R™ and R™ one can introduce infinitely
many matrix norms. Below we shall restrict only to three of them, defined
under assumption that the norms of the original and of the image are the
same and have the form of either 1 or 2 or co vector norm. The correspond-
ing matrix norms produced in this way will be symbolised by ||All1, ||All2
and ||Allo. The following result is true
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Theorem 2.2.1 The operator matriz norms are given in as follows:

IAllh = max; ) ™ layl,

51/2
AL, =X 2,

[Allo = max; 3% 4 |aij,
where Ay stands for the biggest eigenvalue of a symmetric matriz M.

In the face of the multitude of matrix norms, a paramount role is played by
the concept of the equivalence of norms.

Definition 2.2.1 Two matriz norms ||Allc and ||Ally are equivalent if there
exist numbers o, 3 > 0, such that

«l[Alle < lAlla < BlIAlb.

It turns out that the equivalence of norms is an equivalence relation. If two
matrix norms are equivalent then the convergence of a sequence of matrices
with respect to one of these norms implies the convergence with respect to
the other norm.

For invertible square matrix A there holds 1 = [J[AA > < [|Al[A7 T, =
X(A). The number x(A) is called the condition number of the matrix A.

2.3 LR-equivalence
In this section we shall introduce a concept of equivalence of functions.

Definition 2.3.1 Two smooth functions f1,f, € C*°(R™, R™) are LR-equiva-
lent (left-right), f1 =g 2, 1f there exist diffeomorphisms ¢ : R — R™
and P : R™ — R™, such that

Yofy =frod.

In case when the diffeomorphisms & and \ are defined locally, in some
neighbourhoods of the points xo and yo = f(xo), the equivalence is called
local, f1 =1 r f2. We recall that a local diffeomorphism comes from the
Inverse Function Theorem.

LR equivalence is tantamount to commutativity of a diagram of functions
displayed in Figure 2.1.
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R" 1 R™

oo Lo

R™ fa R™

Figure 2.1: Diagram of LR equivalence

2.4 Submersions and immersions

In this section we shall deal with two classes of functions whose Jacobian
matrix has full rank.

Definition 2.4.1 Let f € C*®°(R™,R™), and let m < n. If at any point x € R™
there holds rank Df(x) = m then the function f is named a submersion.
In the case of m > n and when for every x € R™ rank Df(x) = n, the
function f 1s called an tmmersion. A function f that s stmultaneously a
submersion and an immersion s referred to as a local diffeomorphism.

Submersions and immersions have non-degenerate linear parts in their Tay-
lor series. T'wo following theorems establish a normal form of the submersion
and the immersion.

Theorem 2.4.1 (On Submersions) Suppose that m < n and f: R™ — R™ 1s

a submersion. Then

f =g,

LLR

where g(x) = (x1,X2,...,Xm)’ = Asx, Ag= [Im 0} .

Theorem 2.4.2 (On Immersions) Let m > n and f : R™ — R™ be an immer-
sion. Then

f =g,

LLR

where g(x) = (X],XZ; . ,Xn,O)T = Aixy Ai = |:I(;1:| .

Observe that, if f is a submersion then locally it is defined completely by
its linear term in the Taylor series

f(x) = f(0) + Df(0)x + %sz(O)(x, X)+...

A similar situation takes place for an immersion. In this sense it can be said
that submersions and immersions are 1-determined.
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An exciting property of immersions is their genericity. Consider a set
of smooth functions C*°(R™,R™). This set can be endowed with a cer-
tain topology that allows us to distinguish subsets of C*°(R™, R™) that are
open, closed, dense, etc. Let Imm(R™,R™) Cc C*(R™,R™) denote the set of
immersions. Then the following statement is true.

Theorem 2.4.3 (Whitney) If m > 2n then the set of immersions Imm(R™,
R™) is open and dense in C*°(R™,R™),

This statement means that for m > 2n every immersion has a neighbour-
hood consisting solely of immersions, and that in an arbitrarily neighbour-
hood of a smooth function in C*(R™,R™) one can find an immersion. We
say that almost every smooth function is an immersion.

2.5 Proofs

2.5.1 Theorem on Submersions

Proof: The proof relies on the construction of a local coordinate changes ¢
and 1 defining the LR equivalence, that satisfy the Inverse Function Theo-
rem. The derivative Df(x) can be written down as a block matrix

ofy(x) ofi(x)  9fy(x) ofq(x)
0xq T OXm OXmi1 te OXn
Df(x) = | Do =Y o
Ofm(x) Ofm(x) Ofm(x) Ofm(x)
0xq e OxXm OXmy1 e Oxn
where x™ = (x1,...,xm) and x™ ™ = (Xmi1,.--,%Xn). Without any
of(0)

loss of generality we may assume that rank ;% = m (otherwise it is
enough to re-order the coordinates x). Now, let us define a function ¢(x) =
(f(X), Xm41,---,Xn) . From this definition it follows that ¢ is smooth and
that ¢(0) = 0. Furthermore, the rank of the Jacobian matrix

af(0)  9f(0)
Dd)(()) — a)(()ln ?anm
n—m

is equal to m, so, by the Inverse Function Theorem, in a certain neigh-
bourhood of the point 0 € R™ the function ¢ is a diffeomorphism. Since
g(x) = x™, we get g o d(x) = f(x), concluding the proof (we take a trivial
b(y) =vy). u
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2.5.2 Theorem on Immersions

Proof: Similarly as in the previous proof we shall use the Inverse Function
Theorem. The Jacobian matrix of the function f can be represented in the

block form
of™(x)

ox
where f* and f™~ ™ stand for the first n and the remaining m — n com-
ponents of the function f. Assume that rank afgio) = n. Let us take
y = (y™,y™ ™) and define the following change of coordinates VP(y) =
(f*(y™),y™ ™ 4+ ™" (y™)). The function 1 is smooth and vanishes at

zero, P(0) = 0. Its Jacobian matrix

o™ (0) 0
Dl])(O) = [ ai‘:n I ] )
m—n

where the asterisk denotes a matrix whose form is meaningless. Now, since
rank D\(0) = n, by the Inverse Function Theorem, in a certain neighbour-
hood 0 € R™ 1 is a diffeomorphism. Finally, taking g(x) = (x,0) we have
Pog(x) =w(x,0) = (f*(x),0+ f™ " (x)) = f(x), what finishes the proof
(now d(x) =x). |

2.6 Problems and exercises

Exercise 2.1 For a rotation matrix R € SO(3) compute the norms [|R||>
and |[R||fr. Find the norm ||R||; for the matrix R = Rot(Z, ).

Exercise 2.2 Prove that any operator matrix norm has the ring property
IABI < [IAI[IIBI].

Exercise 2.3 Show that IIAH% =tr(AAT), Anxn.

Exercise 2.4 For a matrix A« prove the inequality
1
V4D

Hint: Use the inequality (3} i, Iail)2 <nd g lail?

Al < Al < VllAllF.

Exercise 2.5 Show that the condition number of the matrix A is equal to

1/2 _
X(A) = (;\A—AT) , where A and A denote the biggest and the smallest

1 BAAT
eigenvalue.
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Exercise 2.6 For the matrix A = [} 9] compute the norms [|All;, |All2, [IAllf

and ||Alls, and the condition number x(A).

Exercise 2.7 Consider a system of linear equations Ax = b, A, xn, with the
right hand side perturbed in such a way that AX = b + €. Prove that the

relative solution error 6x = ”"“;‘T” satisfies the estimates

ob < dx < x(A)dD,

where b = H, and x(A) — is the condition number.

Exercise 2.8 Using the Theorems on Submersions and Immersions establish
normal forms of the following functions:

a) f(x) =x —|—x%, x = (x1,%2)7 € R?, f(x) € R,
b) f(x) = (sinx,cosx)T, x € R, f(x) € R?,
c) f(x) = (x,tanx)T, x € R, f(x) € R?,

d) f(X) = (X1 +X%7X2)T1 X = (X]7X2)T € Rzz f(X) € RZ'

2.7 Bibliographical remarks

A comprehensive treatment of matrices can be found in the monograph
[Ber05]. The exposition of the equivalence of functions, submersions, im-
mersions as well as the Whitney Theorem is based on the classical book
[GGT74]. Theorems on submersions and immersions in Banach spaces have
been presented in the monograph [AMRS3]. To a reader interested in sin-
gularity theory of functions we recommend the books [GG74, Mar82].
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Chapter 3

Morse functions. The Fixed Point
Theorem

3.1 Ciritical points and values

Definition 3.1.1 Let f € C*(R™,R™). A point xo € R™ 1s called a critical
point of the function f if

rank Df(xg) < min{m, n}.

A point that is not critical (so rank Df(xp) = min{m,n}) will be named
a regular point of the function f.

It is easily seen that for m =1 (i.e., for a function f € C*°(R™, R)), critical
points are the points at which the derivative Df(xo) = 0. Given a function
f, the set of its critical points will be denoted as

C¢ = {x € R™|rank Df(x) < min{m, n}}.

The image f(C¢) of this set by f is referred to as the set of critical values
of the function f. By definition, the set of critical points Cs is closed in
R™. Example critical points and critical values of a function are presented
in Figure 3.1.

It is easily to show that for smooth, but not analytic functions, the set of
critical points can be "big”, i.e. it can include an open set. A good example
is provided by the function from Figure 3.2. The set Cs coincides in this
case with the negative half axis of the real numbers. Contrary to smooth
and non-analytic functions, the set of critical points of an analytic function
is "small” in the sense that it does not contain any open set (has empty

38
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Figure 3.1: Critical points and values
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Figure 3.2: A "big” set of critical points C¢

interior), i.e. is a boundary set. Differently to the set of critical points,
the set of critical values of smooth functions is always small in the sense
specified by the following

Theorem 3.1.1 (Sard) For any smooth function f € C*°(R™,R™) the set of
critical values f(Cs) has measure zero in R™.

This theorem asserts that the set of critical values can be covered by a count-
able number of open sets (balls) whose total volume is arbitrarily small.
Obviously, in case of m > n, the image f(R™) of the whole space R™ has
measure zero, so, a fortiori, the measure of the set f(C¢) is also zero.

3.2 Morse functions, Morse Theorem

It follows from the previous chapter that submersions and immersions do
not have critical points whatsoever. Being locally equivalent to their linear
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approximations (the linear portions of their Taylor series) these functions
are not tremendously interesting. We feel intuitively that functions that
have critical points may be much more interesting. Indeed, this is the case,
and the simplest class of functions possessing critical points are the Morse
functions.

Definition 3.2.1 A smooth function f € C*°(R™,R) s called a Morse func-
tion if all its critical points are non-degenerate, t.e.

Df(x) = 0 = rank D*f(x) = n,

where D*f(x) = [gifé’;” denotes the matriz of the second order deriwva-

tiwves of the function f (the Hesse matriz).

In order to better understand the concept of a Morse function f, let us define
a function F = Df : R™ — R™. Since f is the Morse function, at each its
critical point Df(x) = O there holds rank D(Df)(x) = n. Invoking the Inverse
Function Theorem we conclude that Df is a local diffeomorphism. This
being so, if at a point Df(xp) = O then in some neighbourhood of the point
xo it must be Df(x) # 0, as otherwise Df wouldn't have an inverse function.
This observation yields that around a critical point of a Morse function there
are no other critical points. We say that the Morse function has isolated
critical points. This property allows us to immediately exclude from the
class of Morse functions the function displayed in Figure 1.1, because, as we
have observed, its critical points occupy an open subset of the real numbers
R. Relying on this we may expect that a Morse function f : R — R will
have a countable set of extrema. Take as an example the Morse function
f(x) = sinx.

The normal forms of the Morse function are characterised by the follow-
ing

Theorem 3.2.1 (Morse) Suppose that f € C®(R™,R) s a Morse function,
and let f(0) = 0, Df(0) = 0, as well as rank D*f(0) = n. Then, in
a certain neighbourhood of 0, it 1s true that

f =g,

LLR

where ¢g(x) = —x%—x%—‘ . ~—x§+xf,+] +---4+xZ. The integer p denotes

the number of negative eigenvalues of the matriz D*f(0), and is named
the indez of the critical point 0.
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The following functions exemplify the concept of the Morse function:

o f(x) = x3 +x% +x3: The critical point (0,0) has index p = 0, so
by virtue of the Morse Theorem f=1r g, g(x) = x% + x%. Further-
more, the LLR-equivalence is determined by the local diffeomorphism
(a substitution of variables) ¢(x) = (x1v/x1 + 1, x2),

o f(x) =x%+x1x2 —x3: In this case the index of the critical point (0,0)
is equal to p = 1, and the Morse Theorem provides the normal form
g(x) = —X% —i—x%. We get f(x) = g o ¢p(x), where b(x) = (?xz,m +
1
ZXZ).

3.3 Hadamard’s Lemma

The following result can be employed in the proof of the Morse Theorem; it
proves also useful outside the context of this theorem.

Theorem 3.3.1 (Hadamard) Let f € C*(R™,R). Then, there exist smooth
functions g1, 92,..., gn, such that

f(x) =(0) + ) gi(x)xi,
i—1

where gi(x) = (1) ag(;f]dt.

One can notice that, having applied this result again, to each function g;(x),

we obtain
n

gi(x) = gi(0) + D hi(x)xixj,
=1

where g;(0) = agi?)

In conclusion, we have arrived at the following expression

. 2
as well as hyj(x) = (]) 695:") ds = jé (1) aaigaz)tdtds.

f(x) = £(0) + DF(0)x + Y hyj(x)xix;.
i,j=1

Following this kind of argument we come up to a sort of Taylor series of the
function f.
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3.4 Classification of function: Summary

Within the class of functions we have realised our programme of classifi-
cation of functions and their description by normal forms for three classes
of functions: submersions, immersions, and Morse functions. A range of
these classifications can be assessed after introducing into the set of smooth
functions a certain topology, called the Whitney topology. This is just the
topology to which the Whitney Theorem, stated in the previous chapter,
refers.

3.5 The Fixed Point Theorem

In this section we shall present one of the most significant theorems of
matematics, the Fixed Point Theorem, sometimes referred to as the " carthorse
of nonlinear analysis”. This name underlines that many fundamental results
in analysis can be derived just from this theorem. For the sake of generality
we shall formulate this theorem in the framework of Banach spaces. We
recall that a space is a Banach space provided that it is a linear, normed,
and complete space.

Theorem 3.5.1 (Fixed Point Theorem) Let X be a Banach space, equipped
with a norm || -||. Assume that on this space a function

T:X— X
has been defined, obeying the condition
IT(x2) = TOa Il < pllx2 — x4l
Where 0 < p < 1. Then, the function T has a fized point x*, such that
T(x*) = x*.

The fized point 1s unique, and can be found as the limit x* = limxy of
the sequence
X0, X1 = T(X0), .y X141 =T(xk), ...

whose witial element xo 1s an arbitrary point of the space X.

A fundamental assumption made in this theorem is that the function T
"shrinks” the distance between points in its domain (such a function is called
a contraction). In applications, a useful part is played by a consequence of
the Fixed Point Theorem stated as the following.
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Theorem 3.5.2 Suppose that S C X is a closed subset of a Banach space
on which the function T:S — S shrinks. Then, T has a unique fized
point in S.

3.6 Proofs

3.6.1 Hadamard’s Lemma
Proof: From the definition of the integral there results immediately that

:
J df(tx) = f(tx)|) = f(x) — £(0).
0

Exploiting this observation we get

! T & 0f(tx) =
f(x) = f(0) —i—J df (tx) = f(0) —i—J xidt = f(0) + Z gi(x)x4,
0 045 Oxi 3
1 of(tx) .
gi(x) = J, X dt, that finishes the proof. |
3.6.2 Fixed Point Theorem
Proof: Take a sequence xg, x1 = T(x0),--., Xkr1 = T(xk).... The shrinking
property implies that
X1 —xkll = ITOac) — Tlxe—1)ll < pllxk —xx—1ll,

therefore
i1 — xaill < plixie — xie1ll < P21 — xk2ll < -+ < pMlixy — xoll.

Now, let m = k+r. We want to demonstrate that the sequence xg, x1,...1s
a Cauchy sequence, what means that its sufficiently far elements differ from
each other as little, as we wish. Indeed, we have a number of inequalities

IXm — Xkl = [[Xm = Xm—1 +Xm—1 —Xm—2 4+ -+ + X1 — Xkl
<xm — Xm—1ll+ IXm—1 —Xm—2 + - + X141 — x|
<™ Mixy —xoll + o™ 2lx1 —xoll + - - - + p¥llx1 — ol

k

P
T—p

= p*llxq—xoll(T+p+-+p™ % 1) < p¥llx1—xoll(T4+p+---) = lx1—xoll.
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From the last inequality it follows that for any € > 0 we can find an integer
N, such that for k > N we get |[x;, — xk|| < €, i.e. the sequence xo, x1,...1s
Cauchy. Because in a complete space each Cauchy sequence has a limit, we
conclude that the limit x* = limxy ;1 = lim T(x) = T(x*) exists. In order
to show that the limit point x* is unique, suppose that there are two different
fixed points x* # % that fulfil the condition x* = T(x*) and T(X) = X. We
compute
Ix* = %[ =[T(x" = %)l < plix™ — R,

that implies that
(1T—=p)lx* =% < 0.

But we have p < 1, so it must be x* = X. In this way the theorem has been
proved. |

3.7 Problems and exercises

Exercise 3.1 Check the existence and (non)degeneracy of critical points of
the following functions:

a) f(x) =x3, x €R,

b) f(x) = X‘;’ —3x%x2, x = (x1,%x2)" € R?,
c) f(x) :x%, x = (x1,%x2)" € R?,

d) f(x) =x1x2, x = (x1,%2)" € R?,

2

e) f(x) =x?cosxy +sin” x2, x = (x1,x2)T € R2.

Exercise 3.2 Without invoking the Morse Theorem show that the function
f(x) = x2 +x1%2 + x3 is LR-equivalent to the function g(x) = x? +x3.

Exercise 3.3 Similarly as in the problem 3.2 show that the function f(x) =
x1x2 + x5 is LR-equivalent to g(x) = x3 + x3.

Exercise 3.4 Making use of the Morse Theorem find normal forms of the
following functions, in a neighbourhood of the point O:

a) f(x) = x? cosxy + sin? x2,

b) f(x) =cosx; —2x1x, +cosxy — 2,
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c) f(x) =xjsinxy + x2 sinxy,
d) f(x) = x5 cosx3 + x2x3 + X3,
e) f(x) =sinxysinx; — x%,

f) f(x) =x1x2 + x2X3 — X1X3.

3.8 Bibliographical remarks

The concepts of critical points, critical values, and Morse functions come
from the monograph [GG74]. The Sard Theorem is can be found in [GG74],
and also in [AMRS83]. The Morse Theorem, together with a proof, has been
reported in [GG74]. As a "vehicle” in this proof the Hadamard’s Lemma
has been used. The Fixed Point Theorem comes from Banach [Ban22].
A proof of the Inverse Function Theorem based on the Fixed Point Theorem
is provided in [AMRS3].
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Chapter 4

Time dependent dynamic systems

4.1 Differential equations. Theorem on Existence and Unique-
ness of Solution

In this section we shall study systems of ordinary differential equations, of
the form

x =1f(x,t), xe€R™ f:R"xR-—R"™ x(0)=xo. (4.1)

By default, the variable t will be interpreted as time. A solution or a tra-
jectory or an integral curve of the system (2.1) is a time function x(t), such
that, at any time instant t,

=f(x(t),t) and x(0)=xo.

We say that x(t) satisfies the system (4.1). Obviously, if x(t) satisfies the
system of equations then

t

x(t) =x0 + J f(x(1), T)dT.

0

A fundamental question of the analysis of the system (4.1) is the question
of existence of the solution x(t), as well as of its uniqueness. The relevant
theorem, referred to as the Theorem on Existence and Uniqueness, similarly
to the Inverse Function Theorem, creates one of the pillars of nonlinear
analysis. This theorem assumes the following form.

Theorem 4.1.1 (On Existence and Uniqueness) Suppose that the function f(x,t)
15 continuous with respect to t, bounded for the initial condition, ||f(xo,t)|] <

46
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M, and satisfies the Lipschitz condition with respect to x, i.e.
If(x2,t) — f0x1, Yl < Llixa =x1ll, L>0,

for the pownts x1,x, belonging to a certain ball centred at xo of radius r,
X1,X2 € B(xp,7). Then, the system (4.1) has a solution x(t) defined on
a time wnterval [0, o], starting at t = 0 from the initial condition xo.
Furthermore, this solution is unique.

The uniqueness of the solution x(t) for t € [0, o] means that, if there exists
another solution X(t) defined for t € [0, &] then both these solutions coincide
on the common part of their intervals of definiteness, i.e. for t € [0, «]N [0, &]
there holds x(t) = x(t).

A consequence of the Theorem on Existence and Uniqueness is that the
solution x(t) is defined locally in time, on an interval [0, «] that depends on
the initial condition xo. In case when x(t) exists for all time instants t € R
and all initial conditions xp € R™, the system (4.1) will be called a time
dependent (nonautonomous) dynamic system.

4.2 Bellman-Gronwall Lemma, dependence on initial condi-
tions

An important role in the analysis of systems (4.1) is played by the Bellman-
Gronwall Lemma that can be stated in the following form.

Lemma 4.2.1 (Bellman-Gronwall) Suppose that two functions ¢(t),b(t) >0
fulfil the inequality

t
bl < aJ b(s)P(s)ds +b, for a,b>0,
0
Then, 1t 1s true that
d(t) < bealowls)ds,

As an example application of this lemma we shall demonstrate that the
solution of a system of differential equations depends continuously on the
initial condition. Let xo(t) denote such a solution initialised at xp. Choose
another initial condition xg 41, where ||n|| < €, and let the solution starting
from x+n be denoted as x. (t). We ask the following question: assuming that
the initial conditions are close to each other (e is small), are the solutions
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xo(t) and x.(t) close as well? To answer this question, we compute

e (8) = xo(8)]| = xO+n+j f(xe(T),T)dr—xO—J flxo(t), T)dt
0 0
< e+J 1f(xe (1), ) — Fl(xo (1), Tlldr < e+LJ e (1) — xo ().
0 0

To the last expression we apply the lemma 4.2.1. Having substituted ¢(t) =
Ixe(t) —=xo(t)ll, w(t) =1, a =1L, and b = €, we get

t
Ixe(t) —xo ()] < celfods — getl

It follows that for any finite t one can always find such an e that the solu-
tion x.(t) will be arbitrarily close to xo(t). This is exactly meant by the
continuous dependence of the solution of the initial condition.

4.3 Time dependent linear systems

A specific class of system (4.1) is constituted by linear systems of the form
% = Alt)x(t), (4-2)

where A(t) is a matrix of dimension n x n, depending on time. Invoking
the Theorem on Existence and Uniqueness we discover that the premises
of this theorem now reduce to a requirement that the matrix function A(t)
be continuous and bounded. If this is true, the solution exists for every
t and every initial condition xo, therefore the system (4.2) is an example
of a time dependent dynamic system. In the context of dynamic systems
more often than ”a solution” we shall use ”the state trajectory” or just "the
trajectory”, while the initial condition will be called an initial state of the
system. Let x(s) be the trajectory of the system (4.2) for a certain s < t.
Then, one can show that

x(t) = D(t, s)x(s).

The matrix ®(t, s) is named the fundamental matrix (the transition matrix)
of the system, and solves the equation
0D(t,s)
ot
As a matter of fact we have
. 0D(t,s)
x = ——""x(s) =
ot

=A(t)D(t,s), on condition that ®(s,s) = 1I,.
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Furthermore, for three time instants u < s < t the following identity holds
x(t) = D(t,s)x(s) = O(t,s)D(s,u)x(u),
resulting in the so called semigroup property of the fundamental matrix
DO(t,s)D(s,u) = D(t,u).
If one sets u =t then
D(t,s)D(s,t) = D(t,t) =1y,

what means that the fundamental matrix is invertible, and ®~'(t,s) =
®(s,t). In this way we have discovered three important properties of the
fundamental matrix

(D(t7t) :ITU d)i](t;s) :(D(S7t)7 (D(t,S)(D(S,LL) :(D(t:u)

4.4 Peano-Baker Formula

If the matrix A(t) does not depend on time, we get a liner dynamic system

x = Ax(t). (4-3)

A feature of this system is that its fundamental matrix can be computed

explicitly, namely,
O(t,s) = et=9IA,

where the matrix exponential function is defined as the sum of the series
eth = > (tf})l. Several methods are known of efficiently computing the
matrix exponential, e.g. based on the Cayley-Hamilton theorem. Observe
that not only for the system (4.3) the computation of the fundamental ma-
trix is tantamount to the computation of an exponential function; the same
is true also for a 1-dimensional time dependent system. Namely, for

x =a(t)x(t), x,a,xo €R,

the trajectory is x(t) = efo @(Wduy This being so, can one expect that
perhaps in general ®(t,s) = e/s A(Wdu? The answer is negative. In general
case the fundamental matrix is expressed by so called Peano-Baker formula
that assumes the form of an infinite series

t t o1

A(GI)J A(oz)doydoy + -

S

D(t,s) = In—i-J

S

A(O‘])d(ﬁ +J

S

t o1 Ok—1
—I—J A(O‘])J A(Gz)...J A(ox)doxdoyx_1...doy +---

S S S



Chapter 4. Time dependent dynamic systems 50

A necessity of resorting to this formula is a consequence of non-commutati-
vity of the matrix multiplication. If, for any, t1, t, the matrices A(t;) and
A(t2) commute, i.e. their commutator

A(t1),A(t2)] = A(t1)A(t2) — A(t2)A(tq) =0,

then the Peano-Baker Formula yields @(t,s) = els Alwdu,

4.5 Wazewski Inequality

Consider a time dependent linear system. Its asymptotic behaviour is char-
acterised by the following

Theorem 4.5.1 (Wazewski) For the system x = A(t)x(t) with initial state xo,
let A(t) = %(A(t)—l—AT(t)). Then, the norm of the state trajectory fulfils
the following Wazewsk: Inequality

ty “Xx
elo A ()8 o || < [Ix(t)]] < efoMale)ds x|,

where, for a symmetric matriz M, A\ and Ay denote, respectively, the
smallest and the biggest eigenvalue.

The Wazewski Inequality finds applications in the study of asymptotic sta-
bility of linear time dependent dynamic systems.

4.6 Proofs

4.6.1 Theorem on Existence and Uniqueness

Proof: We shall present a proof of this theorem, based on the Fixed Point
Theorem. Let for a certain o > 0 C9 [0, of denote the space of continuous
functions defined on the interval [0, «], with values in R™. To simplify
notation a continuous function belonging to C2[0, «] will be denoted by x.
The space C2 [0, o] appears to be a Banach space, with the norm

lIxllo = sup [Ix(t)l],
o<t
where ||x(t)]| is the Euclidean norm in R™. We pick a continuous function
x € C9[0,0d, and let z(t) = xo + [ f(x(1),T)dr. From the premises of
the theorem 4.1.1 it follows that z € C%[0, «l, as we can assume that the
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constant function x( belong to this space. Now, we take the ball B(xo, ),
and define a subset S C C9 [0, o] as

S = {x € CR0, ol lIx — xolloo < T} -

Consider a function
P:C20,a] — C2I0, o],

such that .

(PO)(1) = xo + JO flx(), T)dr.

We shall show that P is a contraction on the set S. To this objective, for
two functions x71,x2 € C9 [0, af we compute

t

Jt f(x2 (1), T)dT — J f(x1(71),T)dT
0 0

IP(x2) — P(x1)llc = sup
o<t

t t

< sup J If(x2(7),T) — f(x1 (), T)lldT <L sup J Ix2(T) —x1 (T)lldr,
o<t Jo o<t Jo

where the last step uses the Lipschitz property. But we have ||x2(t) —

x1 (D)l < supocica llx2(T) —x1 ()| = X2 — X1llo- Continuing in this way

we arrive at the conclusion that

t

IP(x2) ~ Pl e sup | de= Laxz — 1
o<t Jo

We see that, if only p = Lo < 1 then P is shrinking. Next, we need to check

if P takes values in the set S, soif P: S — S. Let’s choose a function x € S.

From the assumptions we deduce

t
< sup J IF(x(1), 7)lld

o<t Jo

Jt f(x(1), T)dT
0

IP(x) —xollooc = sup
ot

t
— sup J 1 (x(1), 7) — £(x0, T) + Fxo, ) lId

o<t JO
t t
< sup (J L|X(T)—Xo||dT+J IIf(xO,T)IdT>
o<t<a \Jo 0

t t
< Lr sup J dt+ M sup J dt=(Lr+ M)«

o<t<aJo 0<t<aJo

Finally, we get that P takes its values in the set S, on condition that (Lr +
M)x < 1, what means that « should be sufficiently small o < ﬁ Having
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chosen « = min {%, ﬁ} we can guarantee that P is a contraction on S.
This being so, the theorem 3.5.2 implies that the function P has a fixed
point, such that P(x*) = x*, therefore, for any t € [0, «,

t

x*(t) =xo + Jo f(x*(1),7)dt,

i.e.
X" = f(x*(t),t), x*(0) = xo.

The theorem has been demonstrated. |

4.6.2 Peano-Baker Formula

Below we sketch a scheme of deriving the Peano-Baker Formula. We look
for a fundamental matrix ®(t,s) that fulfils the identity
0D(t,s)

3t = A(t)D(t,s), with the initial condition ®(s,s) = I,.

By integrating this identity from s to t we get

ot
O(t,s)=In+ | Alo1)D(0oq,s)do;.

Js

Analogously, we compute

.
®(oy,s)=In+| A02)P(02,s)doy,

S

which, after the substitution to the previous expression, results in

t t (o8]

A(U])J Al02)® (02, s)dodor,

S

DO(t,s) =1, +J A(oq)doq —i—J

S S

etc.

4.6.3 Wazewski Inequality

Proof: Suppose that x(t) denotes the trajectory of the linear time-depen-
dent system. We take the square of the norm [[x(t)||> = x"(t)x(t), and
differentiate it with respect to time

d||x§)||2 =% T (t)x(t) + x " ()x(t)
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To the last term on the right hand side we apply the Rayleigh-Ritz’s in-
equality, that yields

AR (DI < xTR)A(D)x(E) < Xz (B)Ix(D)I.
In particular, from the right hand side of this inequality, we obtain

2
dmﬁi”':gziAfU|xunF.

The integration of this inequality side-wise results in

rmmmzzmmuw Zri(Ms
0

IIx(s)I12 Ixoll2 =" Jo

that directly implies
HX(t)HZ < ||X0H2e2f(t) Ax(s)ds

The above expression is equivalent to the right hand side part of the Wazew-
ski Inequality. The left hand side part can be proved in the same way. H

4.7 Problems and exercises

Exercise 4.1 Using the Fixed Point Theorem derive a sufficient condition for
convergence of the following algorithm of solving a system of linear equations
x = Ax. Algorithm:

Xk+1 = Axy,

xo — starting point.

Exercise 4.2 Show that the fundamental matrix ®(t,s) of the linear system
x = A(t)x satisfies the equality

0D (s, t)

_ T T
o = AT (s, 1),

Exercise 4.3 Check that for a constant matrix A(t) = A the Peano-Baker
Formula produces the matrix exponential et = ®(t,0).

Exercise 4.4 Check that the matrix M(t) = fo (s)BT(s)®T(t,s)ds
obeys the Lyapunov differential equatlon

M =B(t)B' (t) + A(t)M(t) + M(t)AT(1).
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Exercise 4.5 Prove the Bellmann-Gronwall Lemma. Hint: Notice that
(1)
afod(s)(s)ds+b

Exercise 4.6 Relying on the Wazewski Inequality verify the asymptotic sta-
bility of the following linear systems:

a)
{k = —tx
Y —y )
b)
. 2
{x =—x+ i
y=-y
c)
{X = —2x+2ysint
=2y ’
d)

X = —t>x+ycost
Uy =—t?y —xcost

4.8 Bibliographical remarks

Basic as well as more advanced knowledge on dynamic systems can be gained
from the books [Har64, Arn78]. The proof of the Theorem on Existence and
Uniqueness presented in this chapter relies on the monograph [Sas99], also
the Bellman-Gronwall Lemma, and the Peano-Baker Formula can be found
therein. The Wazewski Inequality comes from the paper [Waz48]. The
Rayleigh-Ritz inequality (although without quoting its name) appears in
chapter 8.4 of the monograph [Ber05].
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Chapter 5

Stability

We shall consider time-dependent dynamic systems, of the form
x =f(x(t),t), x(to) =xo, (5-1)

where f : R™ x R — R™ is a smooth function (C*) with respect to the
variable x. Observe that from the smoothness, there follows easily the local
Lipschitz property. For a proof, it suffices to invoke a vector form of the
Hadamard’s Lemma 3.3.1, namely, to notice that

:
f(x2,t) — f(x1,1) —J df(sxa + (1 —s)xq,t)ds

0
:
of(sx2 + (1 —s)x1,t
= | D i —xy)as = Glxiyxa, D — x)
0 0x
where G(x1,%2,t) = (]) af(sxﬁéts)x"t) ds. Having computed the norm we

get
If(x2, 1) — fx1, O <G Oxr, x2, ][l (x2 — x7)]].

Now, since the norm ||G(x1,x2, t)|| is a continuous function of its arguments,
it is bounded over the compact set B(xg, 1) x [0, o, i.e. [|G(x1,%x2,1)] < L,
implying the Lipschitz property of f(x,t). In this way we have established
the local existence of the trajectory x(t) of the system (5.1). In what follows
we shall assume more, namely that x(t) exists for every time instant t, so
that (5.1) is a time dependent smooth dynamic system.

5.1 Stability, uniform stability, asymptotic stability
For a dynamic system we define the equilibrium point.

56
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Definition 5.1.1 The point xo € R™ 1is called the equilibrium point of the
system (5.1), if for every t € R

f(Xo, t) =0.

Obviously, a linear dynamic system x = A(t)x(t) has the equilibrium point
xo = 0. Nevertheless, not every system has such a point, for example the
system x = x + t has none.

Suppose that xo = 0 denotes an equilibrium point of the system (5.1).
The behaviour of the system’s trajectory in a neighbourhood of the equi-
librium point is characterised by a property named stability. For time-
dependent dynamic systems there exist several concepts of stability of the
equilibrium point. They will be presented below. The symbol ty denotes
the initial time instant.

Definition 5.1.2 The equilibrium point xo = 0 of a time-dependent dy-
namic system 1s:

stable (S) if
(Vto, €)(In = n(to, €))(Vt > to)([[x(to)ll < = IIx(t)[] <€),

e unstable (U) if it 1s not stable

(Fto, €)(¥n =n(to, €))(3t = to)(Ix(to)ll <m and [[x(t)]| = €),

e uniformly stable (US) if it 1s stable, and n does not depend on to,
i.e. n=n(e),

e asymptotically stable (AS) if it 1s stable, and there exists a number
c = c(tp), such that for ||x(to)|| < c the trajectory x(t) — xo,

e uniformly asymptotically stable (UAS) if it 1s asymptotically sta-
ble, and there exists a number c, independent of to, such that for
[Ix(to)ll < ¢ the trajectory x(t) approaches xo in asymptotically in
the uniform way, t.e. there holds that

(vn > 0)(3T =TM))(Vt = to + TM) (XD <),

e globally uniformly asymptotically stable (GUAS) if it is UAS and
c = +o0.
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Figure 5.1: Stability and asymptotic stability

The idea of the stability and asymptotic stability is presented in Figure 5.1.
For a very simple dynamic system the stability can be deduced directly on
the basis of its definition. The following example may serve as an illustration

x€R, t>-1.

The system’s trajectory takes the form x(t) = %ﬂj:t"), and the point
xo = O represents an equilibrium. Now, for the reason that |[x(t)| < |x(to)],
it is enough to pick n = €, to discover that the equilibrium point is stable.
This point is also asymptotically stable, but it uniformly, because for a given

1) the requirement that |x(to +T)| = %;:Tw < 1 leads to the conclusion

T > W}w —1—1t9 = T(n, to), that means that T depends on the
initial time instant tg.

5.2 Class K and K, functions

Except for some trivial cases, usually the stability of an equilibrium point
cannot be decided directly from the definition. Instead, we need some in-
direct methods. In their statement we shall use so called (comparison)
functions of class K, defined in the following way

Definition 5.2.1 A continuous function « : [0,a] — Ry, a > 0, is called
a class K function if o 1s strictly increasing and «(0) = 0. A function
x 15 a class Ky function if a = +oo and when r — +o0, the function
a(r) — +oo.
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An example of a class K function, that is not a class K, function is x(r) =
arctanr. In contrast, the function «(r) =™, n > 1, is simultaneously the
class K as well as the class K., function.

5.3 Lyapunov Function Theorem

Exploiting the functions of class K one can state the following sufficient
conditions of stability.

Theorem 5.3.1 (Lyapunov Function Theorem) Let a dynamic system (5.1) be
gwen, with an equilibrium point xo = 0. Suppose that in a region
D C R™ containing xo there exists a C' function V : D x R — R.
Compute the derwwative of V along the trajectory of the dynamic system,

.
V(x,t) = avé:’t) + (avéz’t)) f(x, ).

Then f
e there ezist class K functions «1, oy, such that
ar (IIxl) < Vi, t) < ca(lIxll)  and  V(x, 1) <0
then the point xo s uniformly stable,

e there ezist class K functions «q, oz and «3, such that
o (Ixl) < Vi, t) < callixll)  and  V(x,t) < —az(|xl)
then the point xo s uniformly asymptotically stable,

e the condition from the previous item holds for three class Ky, func-
tions o1, «y and «3, and D = R™ then the point xo s globally
uniformly asymptotically stable.

The function V is called a Lyapunov function, and a stable equilibrium
point is often named Lyapunov stable. For an illustration of the Lyapunov
Function Theorem consider a time-dependent dynamic system

x=—(1+t%)x*, xeR

It is easily seen that the point xp = 0 is an equilibrium point of this system.
We choose V(x,t) = Ix2. Clearly, for aq(r) = az(r) = 72 it holds that
o1 (X)) < V(x,t) < oa(x]). The derivative V(x,t) = 1(1 + t2)x* < —x*,
so for az3(r) = * we have V(x,t) < —a3(|x|). Since all the functions «;
are class Ky, functions and D = R, Theorem 5.3.1 yields the global uniform
asymptotic stability of the point xo.
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5.4 Barbalat’s Lemma

In the study of stability of time-dependent systems, besides the Lyapunov
Function Theorem, one often uses another result called the Barbalat’s Lemma.
In order to introduce this lemma, we shall first try to answer the following
questions concerning the real functions:

e Suppose that a smooth function f(t) has a limit at t — +o0. Is it true
that f(t) — 07

e Now, let f(t) — 0. Does it result in the existence of a limit of function
f(t) at t —» +00?

An answer to both these questions is negative, what can be learnt from the
following counter examples: f(t) = e tsine?t and f(t) = sinlnt. Appar-
ently, in order to answer in positive we need to make an additional assump-
tion about the function f(t). It is included in the following

Theorem 5.4.1 (Barbalat) Let a function f € C?(R,R) be given. If this func-
tion has a limit for t — 4+oo0 and the second order derivative of f is
bounded, |[f(t)| < M, then f(t) — 0.

The Barbalat's Lemma is often applied to a Lyapunov function in order to
either prove the asymptotic stability of a system or to get extra information
on the convergence of the system’s trajectory. For illustration we shall
examine the dynamic system

{7’q =—x1 +x28int

X2 = —x7sint

The point 0 € R? is an equilibrium point of this system. We choose a func-
tion V(x,t) = x% + x% and compute V(x, t) = 2x1%7 + 2x2%2 = —Zx% From
the Lyapunov Function Theorem we deduce that the equilibrium point is
stable (notice that the function x% is not a class K function of the norm |[x[]).
Could we show more than that? To this objective let's observe that along
the trajectory x(t) of the system the function W(t) = x%(t) +x3(t) > 0,
while the function W(t) = —Zx%(t) < 0, what means that W(t) is de-
creasing (non-increasing) and lower-bounded. This yields the existence
of a limit of W(t) at t — +o0o. Compute the second order derivative
W(t) = —4x%5q = 4X% — 4dxyxzsint < 4x% + 4|x1l|x2|. Since the func-
tion W(t) is non-increasing, W(t) < W(0), it follows that the trajectory
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x(t) = (x1(t),x2(t)) is bounded, ans so is W(t). Finally, from the Bar-
balat’s Lemma we deduce that W(t) = —x%(t) — 0, i.e. x1(t) — 0. In this
way we have demonstrated that, besides the (Lyapunov) stability, one of
coordinates of the system converges asymptotically to 0.

5.5 Convergence estimation

In the course of analysis of the system’s stability based on the Lyapunov
Function Theorem, it may happen that the derivative of the Lyapunov func-
tion along the trajectory is dependent on the function itself. This situation is
very advantageous due to a possibility of estimating the speed of convergence
of the trajectory to the equilibrium point. In order to better explain this
kind of reasoning we shall consider the system x = —(1+1t%)x3. This system
has the equilibrium point 0 € R. Take the function V(x,t) = V(x) = 3x?
and let W(t) = V(x(t)). It is easily seen that W(t) < —x*(t) = —4W2(t).
By integration of this inequality sidewise we obtain W(t) < ﬁ, that

1/2

implies that [x(t)| < | —2— . As we can see, the system’s trajectory
W+4t

approaches 0 with a guaranteed speed of order t—'/2. Notice that this es-

timate is useful, but perhaps not very accurate, as actually the trajectory

_ 1 : ; -3/2
x(t) NoasTenTe tends to zero quicker, namely as the function t .

5.6 Problems and exercises

Exercise 5.1 Check stability of the following systems:

a) |

)= =1
b)

)= l).
c)
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x1\ |1 2sint X1
(Xz) - |: 0 —(t+ 1):| <Xz) '

Exercise 5.2 Show that the equilibrium point (0,0)7 of the system

d)

X1 =—x1+x2 4 (x§ +x3) sint
X2 = —x1 —x2 + (x3 +x3) cost

is exponentially stable, and define its stability region. Hint: Use V(x) =
2.2
X7 +X5.

Exercise 5.3 Examine stability of the point (0,0)" of the system

{m =h(t) — g(t)x}
%1 = —h(t) — g(t)x3

where g(t), h(t) are smooth and upper-bounded, moreover g(t) > k > 0.
Hint: Take V(x) = x% + x%.

Exercise 5.4 Let V(x) denote a smooth potential function. Show that the

gradient system
ov
w= VN by
0x

has no closed orbits.

Exercise 5.5 Let H(x,y), x,y € R™ denote a smooth Hamilton’s function.
Prove that the Hamiltonian system

oH(x,y)

dy
oH(x,y)

0x

does not have any asymptotically stable equilibrium point.

5.7 Bibliographical remarks

The exposition of stability theory presented in this chapter relies on the
monograph [Kha00]. Also, the chapter 5 of the book [Sas99] is devoted
to stability. The concept of the Hamiltonian system and other mechanical
analytic concepts can be found in [Arn78].
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Chapter 6

Time-independent dynamic systems

In this chapter we shall be dealing with systems of ordinary differential
equations, of the form

x =f(x(t)), x(0)=xo, (6.1)

where f € C*(R™,R™). Notice that the right hand side of the system
(6.1) does not depend on time, therefore the conditions of the Theorem
on Existence and Uniqueness reduce to the Lipschitz condition that for the
smooth function f(x) is satisfied automatically.

6.1 System’s flow

In consequence of what has been said above, the system (6.1) has a solution

M = o(tx), x(0)=x TP e, x)

defined on a time interval containing the initial time instant. If @(x,t) is
defined for every initial state x € R™ and every time t € R then (6.1) will
be called a time-independent (autonomous) dynamic system, or, simply, a
dynamic system. With reference to a dynamic system the function ¢(x,t)
is named the system’s flow. The flow depends smoothly on time as well as
on the state. It determines a state of the system at time t if its state at
time O has been x. In order to distinguish from each other the variables x
and t we often use the notation @(x,t) = @¢(x). The system’s flow has the
following properties:

e ©o(x) = x (identity property),

64
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® Pt 0 @s(x) = @Qi4s(x) = @s4t(x) = @5 0 @¢(x) (semigroup property).

Using the above properties, for s = —t, we get @ o @_¢(x) = @t_t(x) =
@o(t) = x, what yields (¢¢)~' = @_¢. Consequently, {@¢/t € R} is a (1-
parameter) family of diffeomorphisms of the state space R™.

Geometrically, the function f(x) appearing on the right hand side of
the system (6.1) can be interpreted as a vector field that to every point
x € R™ assigns a direction of motion at this point, such that at any point
the system’s trajectory must be tangent to the vector defined by the vector
field. This being so, it follows that the integration of a differential equation is
tantamount to inscribing into the state space curves tangent to the directions
defined by a vector field.

Having fixed in the flow the state x and let t change we arrive to the
concept of orbit of the dynamic system.

Definition 6.1.1 The set
0(x) ={et(x)It € R}
15 called the orbit of the system, passing through the point x.
Interestingly, there exist only three types of orbits of a dynamic system.
e O ={x} equilibrium point (Vt € R)(@+¢(x) = x),
o O ={xeRY(3t>0)(pe(x) =x)}=S" closed orbit,
e O =R open orbit.

Above, the symbol = denotes an isomorphism; it can be read out as ”looks
like”. S! stands for the unit circle. All three types of orbits can be discovered
in the phase portrait of the mathematical pendulum ¢ = —sin q presented
in Figure 6.1. Finally, let us notice that by the Theorem of Existence and
Uniqueness the condition (3t > 0)(¢¢(x) = x) indeed defines a closed orbit.
The minimum T > 0, such that @1 = x is called the period of the closed

orbit. Obviously, @i 1(x) = @t o @7(x) = @¢(x).

6.2 Equivalence of dynamic systems

Similarly as for functions now we shall introduce a concept of equivalence
of dynamic systems. Suppose that two dynamic systems are given, of the
form

o: x="f(x(t)) and o': &§=F(&t)), x,&eR™,
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Figure 6.1: Orbits of mathematical pendulum

with flows equal to, respectively, @+(x) and ®¢(¢). Then, two equivalences
can be defined:

Definition 6.2.1 e Topological equivalence

GT%E o' < (3 homeomorphism & = P(x)) (P o @ (x) = D o P(x)).

e Dafferential equivalence
GD%E o' & (3 diffeomorphism & = P(x)) (P o @¢(x) = Ot o P(x)).

The concept of diffeomorphism has been introduced in chapter 2. Differently
to the diffeomorphism that needs to be continuously differentiable, and have
a continuous inverse, the homeomorphism needs to be continuous, invertible,
and have a continuous inverse. If the function { is defined only locally,
we speak of a local equivalence (topological, differentiable), in short LTE
and LDE. The essential meaning of the equivalence of dynamic systems is
revealed in Figure 6.2.

6.3 Theorem on Differential Equivalence

As follows form the definition, checking both types of equivalences of dy-
namic systems requires that the systems’ flows are known, i.e. that the
systems’ differential equations have been solved. In most cases this is not
possible, so it would be advantageous to have a test of the equivalence that
does not involves the flows. It turns out that such a test exists for the
Differential Equivalence. In this context the following results is true.
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Figure 6.2: Equivalence of dynamic systems

Theorem 6.3.1 (On Differential Equivalence)

o= o' & (3 diffeomorphism & =P (x)) (D (x)f(x) = F((x)).

6.4 Straightening Out Theorem

For a dynamic system (6.1) the point x, at which f(xo) = 0, will be named a
singular point or an equilibrium point of this system. In case when f(xg) #
0 the point x( is referred to as a regular point. The next Theorem on
Straightening Out (a vector field) characterises the behaviour of a dynamic
system in a neighbourhood of the regular point.

Theorem 6.4.1 (Straightening Out Theorem) Let f(0) # 0. Then

= o'/,
LDE

o

for o' such that the vector field F(§) =e; = (1,0,...,0)T € R™. In other
words, the system o’ assumes the form

£1=1
£ =0
énzo

whale its flow
O (&) = &+ tey.

The name and the meaning of this theorem is explained in Figure 6.3. The
Straightening Out Theorem implies that, similarly as for functions, the be-
haviour of dynamic systems around regular (non-singular) points is not very
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Figure 6.3: Straightening out a vector field

exciting. In a search for more interesting behaviours below we shall focus
our attention on the equilibrium (singular) points.

6.5 Equilibrium points

Assume that xp € R™ denotes an equilibrium point of the system (6.1). We
take the Taylor series of the vector field f(x) in a neighbourhood of this
equilibrium point

f(x) = f(xo) + Df(x0)(x —xg) + 0o(x) = Df(xo)(x — x0) + O(xz).

The matrix A = Df(xo) is called the matrix of the linear approximation of
the system at the point xo. Further on we shall distinguish two kinds of the
equilibrium points.

Definition 6.5.1 An equilibrium point xo 1s called a hyperbolic, if ergen-
values of the matriz A have non-zero real parts. The point xg 1S named
resonant, if etgenvalues A\ of the matriz A obey the following dependen-
ctes: Ay = Z]. myjAj for certain integers my; > 0, such that Z]. mi; > 2.
The equilibrium point xo s referred to as non-resonant if it 1s not res-
onant.

For illustration of the concept of resonant point, let us look at a simple
oscillator described as

X] = WX2

Xz = —WwX1
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It is easily checked that its orbits satisfy the identity X% + X% = C. The
equilibrium point xo = 0 is resonant because the matrix A = [fw ‘5’] of
the linear approximation of the oscillator has eigenvalues +iw, therefore
A1+ A2 = 0. It yields 2A1 + A2 = Aq, as required by the definition of the
resonant point. An association with the oscillator explains the origin of the
name "resonant”. Notice that the resonance condition can also hold, when
the eigenvalues are real, and sum up to 0. This means that an equilibrium
point can simultaneously be resonant and hyperbolic, as in the system x; =

X2, X2 = 0X1.

6.6 Linearisation of dynamic systems

The behaviour of dynamic system in a neighbourhood of a non-resonant
equilibrium point is described by the following

Theorem 6.6.1 (Poincaré-Siegel-Sternberg) Let xo = 0 denote a non-resonant
equilibrium point of the dynamic systems o :x = f(x(t)). Then

where o’: & = A& and A = Df(0).

This theorem asserts that around a non-resonant point the dynamic system
behaves as its linear approximation at this point. For the hyperbolic point
an analogous result is true for the topological equivalence, as stated in

Theorem 6.6.2 (Hartman-Grobman) Suppose that xo = 0 is a hyperbolic equi-
librium pownt of the dynamic system o :x = f(x(t)). Then

= o'/,
LTE

o

where o’: & = A& and A = Df(0).

6.7 Equivalence of linear systems

In this section we shall consider linear dynamic systems. Let two such
systems be given,

o: x=Ax(t) and o': &=F&(t), x,&e€R™, A,F matrices.
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The Differential Equivalence of linear systems means that

GD%E o/ &= (3 P - non-singular matrix) (PA = FP).
It is not hard to observe that the eigenvalues of the matrices A and F are
invariants of this equivalence, therefore the equivalent linear systems have
matrices with the same eigenvalues. This property means that the cor-
responding equivalence classes must be very “small”, and that there are
infinitely many of them; for example two equivalent (identical) diagonal
matrices A and F will no longer be equivalent after an arbitrary small per-
turbation of any of them. For this reason the Differential Equivalence is not
a very useful tool for classification of linear systems. If, instead, we use the
Topological Equivalence then the following result can be proved.

Theorem 6.7.1 (Kuiper) Assume that the linear system
0: x=Ax(t)

has a hyperbolic equilibrium point xo = 0. Then,

~g/, k=0,1,...
GTEGk, 1y » T,
where .
&1 =—&1(1)
it
ol Ex Ex(t) (6.2)

ék+1 = EJ<+1 (t)

én = Eyn(t)

The integer invariant k denotes the number of eigenvalues of the matrix A
with negative real parts. In the case of planar systems (n = 2), one deduces
from (6.2) that there exist three kinds of hyperbolic equilibrium points: the
sink points, the source points, and the saddle points. All of them are shown
in Figure 6.4

6.8 Classification of dynamic systems: a summary

We have shown that the Differential Equivalence is an efficient tool for de-
scribing the behaviour of a dynamic system around the regular points or
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a)  Ax2 b) X2 ) 4x2
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Figure 6.4: Hyperbolic equilibrium points in the plane: a) sink, b) source,
c) saddle

the non-resonant singular points. Complementarily, the Topological Equiv-
alence allows to identify the dynamic system with its linear approximation
at a hyperbolic equilibrium point. Additional advantages of the Topological
Equivalence become visible after combining Theorems 6.6.2 and 6.7.1. In
this way we arrive at the following finite classification of dynamic systems.

Theorem 6.8.1 In a neighbourhood of a hyperbolic equilibrium point a dy-
namaic system 1s locally topologically equivalent to one from among
(n+1) normal forms described by the formula (6.2).

Theorem 6.6.2 also yields that on the basis of the linear approximation
at an equilibrium point one can reason about the local stability of this
point. This is the essence of so called First Method of Lyapunov of checking
stability. In particular, an equilibrium point of the system o is locally
asymptotically stable if the corresponding normal form is o},, and unstable
for the remaining normal forms.

6.9 Proofs

6.9.1 Theorem on Differential Equivalence

Proof: We recall that flows of the dynamic systems o and o’ satisfy the
equations
q0:0 W)~ Fou).
e Necessary condition: Suppose that o @¢(x) = @ o P(x). Since the
diffeomorphism 1 is differentiable, we compute the time-derivative of
both sides and obtain

(hl)odcft(x) _ Dll)((Pt(X))(kp({t(m =D (@t (x))f(@t(x))

=f(@i(x)) and
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and also 40 x)
I _ Foy ()

Having substituted t = 0, we deduce from the above identities that

e Sufficient condition: We assume that Dy (x)f(x) = F({(x)). Because
x is arbitrary, we replace x by the flow ¢@¢(x) that leads to the formula

DY (@¢(x))f(@e(x)) = F(W(@¢(x)). Now, observe that the left hand
dpopi(x)

side of this identity equals - therefore
dp o @ (x)
——— = =F .
- (P(@i(x))
On the other hand, from definition of the system’s flow of ¢’ it follows
that 40, 0 ()
oP(x
— o =F@ob().

We have concluded that the functions P o @¢(x)) and @ o (x) satisfy
the same differential equation, of the form

do
— = X((t

5 = X(a(b)),
with the same initial condition ®q o P(x) = P(x) and P o @o(x) =
UP(x). Finally, from the Theorem on Existence and Uniqueness these
solutions coincide,

P o @i(x) =Dy oP(x).

6.9.2 Straightening Out Theorem

Proof: Instead of the diffeomorphism & = 1(x), such that Dy (x)f(x) =
F((x)) we shall device the inverse diffeomorphism x = (&) satisfying the
condition Da(&)F(&) = f(x(&)). Having assumed f(0) # 0, perhaps by re-
ordering coordinates, we can get f1(0) £ 0. Under this assumption, using
the flow of the system o, we define

(X(E,) = Qg (O; EvZ; R Evn)i
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By the properties of the flow we have that « is smooth and «(0) = 0. The
derivative

0 0
Dax(e) = [ag’jaﬂ (&)
_ |:a(p€,1 (O:E»Z:---:E»n) a(qu (07521"'7&‘&)
0&7 T 0&n

Now, for & =0 we get
Da(0) = [f(0), ez, ..., enl,

where e; denotes the i-th basis vector in R™. Due to the fact that f;(0) # 0,
the matrix Do (0) has rank n, so, by virtue of the Inverse Function Theorem,
in a neighbourhood of 0 the function « is a diffeomorphism. In order to check
the equivalence condition, we compute

Da(e)F(E) = Daeley = “eel@itentnd _oqq),

that finishes the proof. |

6.10 Problems and exercises

Exercise 6.1 Show that the dynamic system

X =—Ay +xy
g:?\x—i—%(xz—yz)

?

X,y € R, A > 0, is Hamiltonian. Define its Hamilton’s function and draw a
phase portrait.

Exercise 6.2 Demonstrate that the dynamic system
x = XZ _ y3
Yy =2x (xz — y) ,
X,y € R, has the first integral.

Exercise 6.3 Find the first integral of the dynamic system

X=y
y=x—2x '

X,y € R, and draw its phase portrait.
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Exercise 6.4 Find the first integral and draw a phase portrait of the Lotka-
Volterra’s system

x = ax — bxy
Yy =—cy+ bxy
x,y €R, a,b,c >0.

Exercise 6.5 Examine stability of the point (0,0)" of the system

x = —y+x (x* +y?) sin /x2 + y2
y=x+y (x* +y?)sin/x2 +y?

%,y € R. Hint: Introduce the polar coordinates.
X = TCOS
y=rsine

6.11 Bibliographic remarks

Among most recommended texts on dynamic systems there are two mono-
graphs by Arnold, [Arn78, Arn83]. The concepts of equivalence of dynamic
systems as well the classification theorems included in this chapter come
from [Arn83]; they are also the subject of chapter 3 of the book [Lév09].
Topological equivalence of linear systems is dealt with in [Kui75]. The
Reader interested in invariant manifolds and bifurcation theory may like
the chapter 7 of the monograph [Sas99].
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Chapter 7

Frobenius Theorem

7.1 Vector fields, big adjoint operator

In this chapter we shall be busy with a pair of dynamic systems
x =X(x(t)) and y=Y(y(t)), x,yeR",

defined by smooth vector fields X,Y € C*®(R™,R™), with flows ¢(x) and
@ (y). By definition, these flows obey the identities

de¢(x) dD(y)
dt dt

Consider the following action of the vector field X on the vector field Y.
Beginning from an initial state x we follow for the time t the trajectory
of the vector field X, up to the point @¢(x). Next, at the point @¢(x) we
take the vector field Y and move it for the time t along the trajectory of
the vector field X, but in the opposite direction. The vector at the point x
obtained in this way defines the big adjoint operator

AdX Y(x) = Do—t(@¢(x))Y(@t(x)) = (DoY) (@¢(x)).

The definition of the operator AdY Y(x) is illustrated in Figure 7.1. Observe
that for a fixed point x and varying t Ad¥ Y(x) becomes a curve in the space
R™. The derivative of this curve determines the Lie bracket of vector fields
X and Y,

= X(@¢(x)) and = Y(D¢(y)).

d

X, YI(x) =adx Y(x) = —

AdY Y(x).
dt o X (x)

We propose to use the name "the big adjoint operator” in order to distin-
guish Ad from "the small adjoint operator” ad that has been defined above.
The following properties of the operator Ad can be derived:

75
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Figure 7.1: Definition of operator Ady Y(x)

o AdS Y(x) = Y(x),
o AdY"® Y(x) = Ad§ Adg Y(x),
o L AdLY(x) = AdKIX, YI(x).

Notice that the last formula implies that if two vector fields X and Y com-
mute, i.e. their Lie bracket [X,Y](x) = 0 then Ad} Y(x) = Ad% Y(x) = Y(x).

7.2 Lie bracket

One can show that the definition of the Lie bracket introduced in the previ-
ous section coincides with a more classic definition, stated using coordinates,

namely
X, YI(x) = DY(x)X(x) — DX(x)Y(x).

The following properties of the Lie bracket are consequences of the defini-
tion:

e [X, X](x) = 0 - irreflexivity,

[Y, Xl(x) = —[X, Y](x) — antisymmetry,

[IX, Y], Z](x) + [IY, Z], X](x) + [[Z, X], Y](x) = O — Jacobi identity.

for two numbers o, 3 € R [aX + BY, Z](x) = «[X, Z](x) + BIY, Z] -
bilinearity.
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It is easily observed that the Lie bracket assigns to a pair of vector fields
another vector field, so it may be regarded as a sort of product of vector
fields, resembling the cross product of vectors in R3. In this context the
Jacobi identity results in the non-associativity of the Lie bracket (similarly
to the non-associativity of the cross product). This is because

As has been mentioned in subsection 1.2, smooth vector fields V(R™) form
a linear space over R and, together with the Lie bracket, constitute a Lie al-
gebra. Moreover, the vector fields also form a module over the smooth func-
tions C*°(R™, R), therefore, for any f,g € C*(R™, R) the bracket [fX, gY] €
V(R™). The computation of this bracket yields

[fX, gYI(x) = f(x)g(x)[X, YI(x) + f(x)Lxg(x) Y(x) — g(x)Ly f(x)X(x),
where the symbol Lxf denotes the Lie derivative of the function f with
respect to the vector field X defined as Lxf(x) = df(x)X(x).

7.3 Lie bracket theorems

Additional properties of the Lie bracket will be specified in the following
two theorems.

Theorem 7.3.1 (On Commutation) Vector fields commute if and only if the
composition of thewr flows 1s commutative, t.e.

X, YI(x) =0 <= @t 0 Os(x) = s 0 @(x).

Theorem 7.3.2 Suppose that @ : R™ — R™ defines the Differential Equiv-
alence of dynamic systems determined by the vector fields X;1,Y7 and
X2,Y2, so that

Do (x)X7(x) =Y1(@(x)) and De(x)X2(x) = Y2(@(x)).

Then, the Lie brackets of differentially equivalent vector fields are also
differentially equivalent,

Do (x)[X7,X2](x) = [Y7, Y2](@(x)).
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7.4 Simultaneous Straightening Out Theorem

A generalisation of the Straightening Out Theorem proved in section 6 is
the Simultaneous Straightening Out Theorem that will be presented below.
This theorem finds a direct application in the proof of the fundamental
Frobenius Theorem.

Theorem 7.4.1 (Simultaneous Straightening Out) Given a collection of k > 1
vector fields X1,X2,...,Xx € V®(R"™). We assume that these vector
fields are independent at the pownt 0 € R™, i.e. rank[X;(0),X2(0),...,
Xk(0)] = k, and that in a neighbourhood of zero they commute with
each other, [Xi,X;] =0, i,j = 1,2,...,k. This being so, there erists a
local diffeomorphism & = (x), such that

Dll)(X)Xl(X) :ei(ll)(X)) = €4, i:],z,...,k,

where e; € R™ denotes the i-th unit vector field. In other words, the
diffeomorphism  allows to straighten out all the k vector fields stmul-
taneously, establishing the equivalences

X1 = e1, X2 = ey,..., Xx = ex.
LDE LDE LDE

7.5 Distribution and integral manifold
Given the module V*°(R™) of vector fields over C*°(R™, R), its submodule

D= span {X],Xz,...,Xk}
C(R™R)

generated by a collection of vector fields X; € V*°(R™), independent at
any point x € R™, is called a (vector field) distribution. By definition,
at any point x, the distribution D defines a k-dimensional linear subspace
D(x) C R™. Thus, we can speak of a field of subspaces

x — D(x).

For k = 1, the distribution D = spancegn g){X1} generates in R™ straight
lines corresponding to the single vector field X;. The Theorem on Existence
and Uniqueness provides condition under which there exists a curve that
at every point is tangent to D(x). This is just the integral curve of the
vector field X;. For a k-dimensional distribution a natural generalisation
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of the integral curve is the concept of the integral manifold defined as a k-
dimensional submanifold of R™ that at any point is tangent to the subspace
D(x). Contrary to the one-dimensional distributions for which the condition
of existence of the integral curve are easily satisfied, in the case of k > 2 the
integral manifold rarely exists. In the sequel, to avoid technical complica-
tions, by an (n—p)-dimensional smooth manifold (a submanifold of R™) we
shall understand the subset of R™ defined by p independent equations, so

MD :{X € Rn|f] (X) = 07 fZ(X) = O:' . '1fp(x) = 0}1

where the functions f; are smooth. The independence of functions means
that rank [df] (x), dfg(x),...,dfg(x)] (x) = p, i.e. their differentials need
to be independent for every x € M. A distribution that has an integral
manifold is referred to as integrable.

7.6 Frobenius Theorem

A necessary and sufficient condition for the existence of an integral manifold
is provided by the Frobenius Theorem. It is sometimes called the third
pillar of nonlinear analysis. Bellow we shall restrict to the formulation of
the sufficient condition.

Theorem 7.6.1 (Frobenius) Let D = spance(gn g){X1,X2,..., Xy} denote a k-
dimensional distribution defined in a neighbourhood of 0 € R™, so
rank(X7(0),X2(0),...,Xk(0)] = k. We assume that this distribution is
nwvolutive, 1.e. X,Y € D = [X,Y] € D. Then, wn a certain local coordi-
nate system
D= span {ej,ez,...,ex)
C>(R™,R)

Equivalently, there exist vector fields Y1,Y2,..., Yk generating the dis-
tribution, D = spance(gn g){Y1,Y2,..., Y}, and a local diffeomorphism
P(x) = (P1(x),P2(x),...,Pn(x)) stratghtening out these vector fields si-
multaneously. Through any point in a neighbourhood of 0 € R™ there
passes an integral manifold of the distribution D, of dimension k, de-
termaned by the last n —k components of the diffeomorphism U,

Mp = {x € RM 41 (x) = 0, Pr42(x) =0,...,dn(x) =0}
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7.7 Proofs

7.7.1 Theorem on commutation

Proof: e Suppose that @ o Ds(x) = s o @(x). By the differentiation
of both sides with respect to s we get

d ddg(x d
& 0000 = Do (0,00 2 = L0, (x) = V(@001 )
After a substitution of s = 0 and taking ¢_(x) instead of x the above

expression converts into
Do (@—t(x))Y(9_t(x)) = Ad ' Y(x) = Y(x),
implying that
d

vy -
ar|,_, A Y = X Vi) =o.

e Now, let [X,Y](x) = 0. In consequence, d% AdS Y(x) =0, ie.

AdX Y(x) = Do_t(@+(x))Y(pt(x)) = Y(x).
After replacing x by ¢@_¢(x) and then changing —t to t one obtains

Do (x)Y(x) = Y(@(x)).

Having substituted x for the low ®4(x) of the vector field Y, we ar-
rive at
D (@s(x))Y(Q5s(x)) = Y(oe(Ds(x))),

that in turns yields

%@t o Dy(x) = V(@1 0 D(x))).

However, by definition of the flow on the vector field Y, it follows that

d

:0s° Pi(x) =Y(Ds 0 @(x)).

The last two identities indicate that @ o @s(x) and O o @(x) satisfy
the same differential equation with the same initial condition ¢ o
D (x)|ls=0 = @t(x) = D 0 @¢(x)|s—0o, therefore, by the Theorem on
Existence and Uniqueness it must be

Pt o (DS(X) =050 (Pt(x);

what should be demonstrated.
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7.7.2 Simultaneous Straightening Out Theorem

Proof: For a proof we shall design a diffeomorphism x = «(§), such that
Da(&)e; = Xi(«(&)) for i = 1,2,...,k. Our computations will be accom-
plished in a neighbourhood of 0 € R™. Without any loss of generality we may
assume that the rank condition rank[X;(0), X2(0),..., Xk (0)] = k means in-
dependence of the first k rows of the matrix [X;(0),X5(0),..., X (0)]. We
propose to use the following function

(&) = @1, 0926, 00 Qe (0,0,..., &g, .., En).

By definition the function o« is smooth and such that o(0) = 0. Let’s
compute its derivative

d
DO((‘E) = E@]Eq ((P2£2 ©---0 (Pkf,k(o;o; ceey ((_,k+],- LR Evﬂ)):

D@ig, (2,00 @re, (0,0, &ks1,y--05 En))

d

7(@2&2(@353 ©-+-0 (pkik(O,O:---;Evk—l—h---;an)):---:
dés

D(p15.1 O(PZrEzo"'o(Pkak(o:o;w-;akﬂ;---;En)ekﬂy---:

D(P1£1 °© P2z, o"’o(pkik(oaoa""Ekar])""EvTL)en .

An analysis of this expression allows us to conclude that

d
a, O (@26, 0 0@k, (0,0,..., &1, &n)) = Xy (x(E)),

and

Doig, (025,00 @ie, (0,0, &ki1,--0, En))

d
— (@26, (@385 00 @K, (0,0,...,&kr1,.--,En))

dé&s
=Do1e, (@1-&, (x(8))X2(@1¢, ((E))) = Ady ™ Xa((E)),

and similarly for further components. But, by virtue of the assumption the
vector fields commute, so [X;, X2](x) = 0, yielding

Ady &' Xa(a(E)) = Xa((E)),
etc. In this way we have shown that

Da(&) = [Xy(ee(&)), X2 (et(E)), ..., Xic(x(E)), %, -+, #],
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where asterisks stand for the entries that we do not have to know. At the
point O we have

DO((O) = [X1 (0),X2(O), s 7Xk(0)1 €k+1,)-- '7en] .

Because rank Dx(0) = n, « is a local diffeomorphism around 0. Further-
more, for every i=1,2,...,k, it follows that

therefore the vector fields X, X5, ..., Xx have been straightened out simul-
taneously. |

7.7.3 Frobenius Theorem

Proof: Suppose that the upper k x k sub-matrix of the matrix

P(X)]
Q(x)

has rank k in a neighbourhood of 0 € R™. By definition, having multiplied
both sides of this identity by the matrix P~'(x), we obtain new generators
Y1,Y2,..., Yy of the distribution D, of the form

Yi(x) = <e*l> )

where e; € R* is the i-th unit vector and * symbolises the remaining n — k
components of the vector field. We shall show that these new generators
commute. To this objective we need to compute their Lie bracket

X1 (), X2 (), -, X (x)] = [

[Yi, Y;1(x) = DY;(x)Yi(x) — DYi(x)Yj(x)
_ 0 €i - 0 €\ 0
Tk * * /) \x)
But, by the involutivity of the distribution D, the bracket [Y;, Y;] € D, what

means that
0
Y5, Y31 Z ot (x = <) ,

i.e. all the coefficient functions o(x) = 0 as well as [Yi, Yjl(x) = 0. We see
that he new generators commute. Invoking the Simultaneous Straightening
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Out Theorem we establish the existence of a local diffeomorphism P (x) =
(b1 (x),h2(x),- ., Yn(x))T, such that

What remains is to prove the existence of an integral manifold. Let
13
Xi(x) =) yi;(x)Y;(x)
j=1

express the vector field X; in terms of new generators. By multiplying both
sides by D\(x), and then exploiting the form of vector fields Y;, we obtain

y K
D (x)Xi (x) = ZYU‘ (x)D(x)Yj(x) = Z%j(x)ej - <(>;> ’
j=1 =

where O refers to the last n — k coordinates. Since

[ Dby (x)Xi(x) |

B lek(X.)Xi(X)
PYOIX ) = by x|

| D (x)Xi ()

it follows that
DUy 1 (x)Xi(x) =0, ..., Ddn(x)Xi(x) = 0.
Concluding, the distribution D appears to be tangent to the manifold
Mp = {x € R*41(x) =0,...,dn(x) =0}

being its integral manifold. The theorem has been proved. |

7.8 Problems and exercises

Exercise 7.1 Derive the formula for the Lie bracket of vector fields

X,Y]l(x) = d Ad% Y(x) = DY(x)X(x) — DX(x)Y(x).
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Exercise 7.2 Prove the theorem 7.3.2. Hint: Show that the right hand side

is equal to the left hand side, and observe that DY; o D¢ = D(Y; o

Exercise 7.3 Show that for every function f € C*°(R™, R), there holds

Lix,vif = Lx(Lyf) — Ly(Lxf).

®).

Exercise 7.4 Making use of the property [fX, gY] = fg[X, Y]+ fLxgY —gLyfX

show that the distribution D = spancegn g){X7(x),X2(x), ..., Xk (x)} is
involutive if and only if [X;, X;] € D fori,j =1,2,...,k
Exercise 7.5 Check involutivity of the distributions:
a)
= span
C*(R™,R)
b)
COS X3
Dy = span s1nX3 ,
C®(R™,R)
¢)
COS X3 0 —sin x3 COS X3
sinx3 0 COS X3 sinx3
Dy = span 1 =11, 0 , 0
C=RMR) 0 1 0 0
1 0 0 0

7.9 Bibliographical remarks

The concepts of vector fields, Lie brackets, distributions as well the Frobe-
nius Theorem, etc. belong to the field of differential geometry. Necessary
basics the Reader can find in diverse monographs concerned with geometric
control theory, such as [[si94, NvdS90, Blo03, Sas99, Lév09]. An advanced
exposition of differential geometry is contained in the books [AMRS83, Spi79].
The "dynamic” concept of the Lie bracket presented in this chapter has been
borrowed from the monograph [AMRS83]; in the context of control the ad-
joint operators have appeared in the paper [Kre85]. The Straightening Out
Theorem is a classic result of theory of dynamic systems [Arn83, AMRS3].

A generalisation of the Frobenius Theorem can be found in [Sus83].
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Chapter 8

Control systems

A control system is represented by a system of ordinary differential equations
dependent on a control variable

{x = f(x(t), u(t))

, 8.
y() = h(x(t) (8:2)

where x € R™, u € R™, y € RP denote, respectively, the state, the control,
and the output variable. We shall assume that the system is smooth, so
is the function f € C*®(R™ x R™, R™) describing the system’s dynamics as
well as the output function h € C*(R™,RP). Usually, we have m < n and
p < n. Notice that with fixed control u(t), the control system becomes a
time-dependent dynamic system of ordinary differential equations, of the
form

y(t) = h(x(t))

Taking into account the Existence and Uniqueness Theorem one derives the
following sufficient conditions under which the trajectory x(t) of the system
(8.1) exists

{x = f(x(t),u(t)) = f(x(t), )

e the function f(x,t) depends continuously on time t,
e the function f(x,t) satisfies the Lipschitz condition with respect to x,
e the function f(xo,t) is bounded with respect to t.

Observe that the Lipschitz property results from the smoothness of the func-
tion f(x,u), while the remaining conditions will follow from the continuity
and boundedness of control functions u(t). The control functions will be

86
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Figure 8.1: Piecewise continuous controls

u(t)

,

~Y

Au(t)

~Y

Figure 8.2: Piecewise constant controls

simply referred to as controls. A basic requirement imposed on the admis-
sible control is to guarantee the existence and uniqueness of the trajectory
x(t). Therefore, a basic class of admissible control is the class of continuous
and bounded functions of time. For some practical, but also theoretic rea-
sons, bounded and piecewise continuous controls are also allowed, including
the piecewise constant controls. Examples have been shown in Figures 8.1
and 8.2.

8.1 Control affine and driftless systems

An important subclass of control systems is constituted by control affine
systems described by the following equations

% = f(x(t)) + g(x(t))u(t)) = Fx(t)) + Y gi(x(t)ui(t) (8.2)
i=1 :

The columns of the matrix g(x) are formed by vector fields g;(x), ..., gm(x).
All vector fields appearing in (8.2) are assumed smooth. Since when the
controls are "switched off”’, u = 0, the system’s behaviour is determined
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by the vector field f(x), it is called a drift vector field or just a drift. The
significance of control affine systems results from several reasons, like the
following:

e Many control systems, including those with Lagrangian dynamics, as-
sume the affine form.

e In case when the controls in the system (8.1) are differentiable, after
introducing a new state variable (x,u) € R™*™, one gets a control

affine system
X\ _ (f(x(t),u(t) 0
(@)= ("5 ) [ e

whose control is v = 11.

e For u close to zero one can expand the right hand side of the system
(8.1) in the Taylor series

of(x,0)
ou

f(x,u) = f(x, 0) + u—l—O(x,uz),

what suggests that the control affine system (8.2) approximates the
system (8.1) for small values of controls.

e Linear control system

{x = Ax(t) + Bu(t)
y(t) = Cx(t)

1s control affine.

If in the control affine system the drift f(x) is absent, the equations (8.2)
take the form

= Y (8.3)

The importance of driftless systems is a.0. a consequence of the fact that
they represent the kinematics of non-holonomic systems, like the wheeled
mobile robots.
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8.2 Differentiation of the end-point map

Consider the control system (8.1). Denote by

d(px,t (LL)
dt
the trajectory of this system from the initial state x, subject to a control
u. Having fixed the final time T, we can define a function endy : (x,u) —
x(T) = @«,7(u) called the end-point map of the system. Under appropriate
assumptions imposed on the control system it can be proved that the end-
point map is differentiable with respect to the initial state and the control

function. We want now to compute both these derivatives.

x(t) = @x,(u), = fl@x,t(u), u(t),

e For any t € R, y € R™ it is true that

0@y, (U d
LR AR —= t = — X .
ox y=&(t) doc|,_, P +ocy,t(u)
The time derivative
. d d d d
&= at do o (Px—l—ocy,t(u) = Ao o E‘Px—b—ocy,t(u)
d of(x(t),u(t
= 21 oy, u) = T g Ay,
& | 5o 0x

After solving the equation £ = A(t)&(t) with the initial condition
&(0) =y one obtains

dendr(x,u
T~ g = o(T, 0y,
X
where ®(t,s) is the fundamental matrix of the differential equation

&= A(t)E(t).

e Analogously, when differentiating with respect to the control function,
for t € R and an admissible control v, one computes

0 u d
9t iy = 41 pnlut av).
ou da

Next, the time differentiation results in

d

d
Pxt(u+av) = —
0

— Ox(u+av)
=0 dt

_dad

T dt do do

x=
d

. fl@x,t(w+ av),u(t) + ov(t))
do

=0
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Finally, in order to find the derivative of the end-point map, we need
to solve the equation ¢ = A(t)C + B(t)v(t) with the initial condition
((0) =0, and then substitute

-

v=(T) = L O(T, )B(t)v(t)dt.

Oendr(x,u)
ou

8.3 Accessibility and controllability

Let o denote a control affine system (8.2) with piecewise constant admissible
controls of the form

we = {(u',t1), (U3 t2),..., (W5, t) },

for a certain k € N and u' € R™. An application of such a control means
that over the time interval t; the system is controlled by u', next, for
the time t, a constant control u? will be applied, etc., finally a constant
control u* acts on the system for the time t,. After the application of
such a control we get a system’s trajectory that consists of a segment of
the trajectory of the vector field f(x) + g(x)u' followed by a segment of the
trajectory of f(x) + g(x)u? etc. We can say that the motion of the system
o is determined by a family of associated vector fields

Fo ={f + gulu € R™}.

In summary, under the control wuy, the motion of o is defined by vector
fields X;(x) = f(x) + g(x)u' acting over time intervals t;, fori=1,2,..., k.
Suppose that ¢y (x) denotes the flow of the vector field X;(x), and let xo be
an initial state. Then, acted on by the piece-wise constant control wy, after
the time Y ¥ , t;, system o will be transferred from x, to the final state

X = (Pk,tk % (pk—],tk,1 O (Pl,t] (XO)

Choosing various piecewise constant controls uy, for various k, one obtains
a set of states reachable in the system o from the state xp at the time
instant t,

k
Ro(xo,t) = {(Pk,tk O Pr—1,t, 1 O @1 (X0t =0, Y ti=t, k> 0} .

i=1
The reachable set from the state xo at any time instant is the union

Ro(x0) = | Rolxo,t).

>0
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Figure 8.3: Accessibility property: a), b) yes, c) no

a) b)

RG(XO)
X0 .XO
xo € intRs(x0) Xg € intRg(x0)

Figure 8.4: Local controllability: a) no, b) yes

The reachable set serves to introduce several controllability-type concepts,
specified below.

Definition 8.3.1 The system o s called controllable from the point xo if
Rs(xp) = R™, and controllable if Rs(xo) = R™ for every xo.

Besides the concept of controllability a weaker concept of accessibility is
used.

Definition 8.3.2 The system o has the accessibility property from the point
Xo if the reachable set from xo has non-empty interior, int Ry (xo) # 0.
The system has the accessibility property if int Rs(xg) # 0 for every xo.

We recall that the interior of a set is the biggest open set contained in this
set. Figure 8.3 illustrates the concept of accessibility.

Intuitively, if a system has the accessibility property from a point xo,
then it is possible to pass from xo to a point, from which the system could
move in any direction in the state space R™. However, from the point
xo itself such an omnidirectional motion may not be possible. The third
concept that applies to control affine system is the local controllability.

Definition 8.3.3 The system o s locally controllable from the point xo if
xo € int Ry (x0), and locally controllable if xo € int Rs(xg) for every xo
(see Figure 8.4).
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8.4 Controllability theorems

In order to formulate some controllability conditions, it is advantageous to
exploit the big adjoint operator AdY Y(x) = Do _¢(@¢(x))Y(@+(x)), and the
small adjoint operator adx Y(x) = [X, Y](x), defined in the previous chapter.
Relying on these operators, to the system o we assign two distributions

Dy = (Ady, [Fo) and dy = (ady, |Fo),

defined as the smallest distributions containing the family F, of vector fields
associated with the system o, both closed with respect to the operators
Ad and ad. For D, the closeness means that ¥, C Dy, and for every
X € F4, Y € Dy, the vector field Ad% Y € D, at any time instant t, and
analogously for ds. It is easily noticed that dg C Dy. Two following results
on controllability can be stated in terms of the introduced distributions.

Theorem 8.4.1 (Chow-Sussmann-Krener) The control affine system o has the
accessibility property if and only if

De = V®(RM).
Theorem 8.4.2 (Chow-Lobry-Krener) If de = V°(R™) then the system o has
the accessibility property.

In both these theorems the vector fields Fs can be replaced by Fs =
{f,91,92,..-,9m}. The sufficient condition for the accessibility property
can be conveniently expressed as the so called Lie Algebra Rank Condi-
tion (LARC). To this aim, we need to define the Lie algebra £, associated
with the system o, as the smallest Lie algebra that contains the vector fields
Fs. Then, we have the following

Theorem 8.4.3 If at any point x € R™
dimLs(x)=n
then the system o has the accessibility property.

It follows that for driftless systems (8.3) the above theorems provide condi-
tions for controllability, namely

Theorem 8.4.4 o A driftless control system 1is controllable if and only
if Do = V*(R™M).

e Ifdy; = V*(R™) then the driftless system 1s controllable.

e Ifdim Ls(x) =n then the driftless system s controllable.
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8.5 Checking controllability

A conclusion that may be drawn from the study of controllability of nonlin-
ear control systems accomplished above is that general necessary and suf-
ficient controllability conditions are not known. For control affine systems
much easily checkable (however much weaker) is the accessibility property.
Below we shall pay attention to a few specific cases, when controllability
can be established either directly or from the accessibility property.

e Let (up, xp) denote the equilibrium point of the control system (8.1),
what means that f(xg,up) = 0. We find the linear approximation of
the system at this point

of u of u
£, 1) = flxo,1p) + 00rt0) oy y fCxortto) oy
ox ou
+O((x —x0)?, (W —1up)?)
and let A = W and B = W, as well as & = x — xo,

v =u—ug. The following theorem holds.

Theorem 8.5.1 If the linear system
&= AE(t) + Bv(t)
18 controllable (satisfies the Kalman condition) then the nonlinear

system (8.1) 1s locally controllable from the point xo.

e The driftless system (8.3) that has the accessibility property is con-
trollable.

e If the drift vector field f(x) of a control affine system, with the flow
@(x), is Poisson stable then the control affine system having the ac-
cessibility property is controllable. We recall that a vector field X(x)
is Poisson stable if there exists a dense subset D C R™, such that

(Vvx eD)(VD DO U3 x)(VT >0)(3t;,t2 = T)
(@, (x) € Uand @_y, (x) € W).
An example of a Poisson stable system is an oscillator.

For the local controllability there exists a sufficient condition established
by Sussmann. Below we state this condition in the form applicable to single-
input systems. Let a system

x = f(x(t)) + g(x(t))u, x€R™, ueR,
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be given, with the equilibrium point (0,x). We introduce a family of dis-
tributions

8'(f,g) = span {g,ad¢g,...,adtg,...},
C(R™,R)

82(f,g) =8'(f,g) + span {[ad? g,ad?g]
C(R™,R)

11,1220}’

s¥(f,g) =8*"(f,g)
+ spance(gn R) {[ad}‘ g, {ad}z g--- {ad}ck" g, ad}k g} H

. . . )
11,12,...1k20}

where ad}“ g= [f, ad} g]. It is easy to observe that a characteristic feature
of the distribution 8'(f,g) is that the control vector field g appears in it
i times. In terms of these distributions the Sussmann’s condition can be
stated in the following form

Theorem 8.5.2 (Sussmann’s Controllability Condition) Suppose that for a cer-
tain integer k
85(f, g)(x0) = R™

and that, for any odd number j <Xk,

8 (f,9)(xo) = 8 (f, g) (xo)-
Then, the control affine system 1s locally controllable from the point xo.

The second condition in Theorem 8.5.2 means that the directions of motion
at the point xo generated by the distribution $¥(f, g) that contain an even
number of appearances of the vector field g should be provided by an odd,
smaller by 1, number of appearances of g. The Lie brackets containing an
even number of the vector field g are called the "bad Lie brackets”. It is
easily noticed that if the first condition of Theorem 8.5.2 holds for k = 1,
then the local controllability results from the controllability of the linear
approximation of the system.

8.6 Examples

Example 8.6.1 Let’s ezxamine the controllability of the control affine sys-
tem
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Figure 8.5: Reachable sets R (0,t) and Ry (0)

with vector fields f(x) = (0,1)7 and g(x) = (1,0)7, u € R, from the state
xo = (0,0)T. The system’s equations yield that under constant controls

1
X2 = —X7.
u

The states reachable from xo (see Figure 8.5) lie on the rays emanat-
ing from xo, located in the upper half-plane of the coordinate system,
whereas the motion along the x-axis corresponds to zero control, u =0,
and the motion along x1 1s not possible at all. Therefore, we have
Re(x0) C R2+. By virtue of definition the system has the accessibility
property from xo, however it is neither controllable (the point in the
lower half-plane are not reachable at all), nor locally controllable from
xo (xo does mot belong to the intertor of the set Rs(xo)).

Example 8.6.2 Consider a chained form system
5(] =1
0:4 %2 =Uy
5(3 =Uu1X2
The systems 1s driftless, with two vector fields g1(x) = (1,0,x2)" and

g2(x) = (0,1,0)T. The equilibrium point is given as uy =0, xo = 0. We
begin with computing the linear approrimation

&= AE(t) + Bv(t)

of the system o at the equilibrium point. This gives A =0 and B =
[g1(0),g92(0)] = [(13 i}. It 1s obvious that the linear approzimation does
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not satisfy the Kalman condition, therefore it is not controllable. It
follows that we cannot use the linear approrimation to deduce con-
trollability of this system. More generally, it can be noticed that ev-
ery driftless control system with m < n has the linear approzima-
tion uncontrollable. Let us now check the Lie algebra rank condition.
We have Fs = {g1,92}, so, the Lie algebra of the system Lo con-

tains the vector fields g1,92,912 = [g1,92],.... We compute gi2(x) =
Dg2(x)g1(x) — Dg1 (x)g2(x) = 24 = (0,0,~1)". Thanks to

10 0
dimLs(x)=rank |0 1 0 | =3,
00 —1

the system o is controllable.

Example 8.6.3 Now, consider the control affine system

X1 =1
0:4¢ X2 =1 )
X3 =X1 +U1Xx2
that results from the previous system after adding the drift vector field
f(x) = (0,0,x1)". The control vector fields g1 and g, remain unaltered.
The equilibrium point is at uwp = 0, xo = 0. The linear approrimation

at this point
& =A&(t) + Bv(t),

0 00 10
15 determined by matrices A=Df(0)= |0 0 0| andB= |0 1|. The
100 00

Kalman matriz
Q = [B,AB,A’B] = [I3, %]

has rank 3, therefore the linear approzimation s controllable, and the
system o 1s locally controllable from the equilibrium point. Let’s check
other points using the LARC. We have Fx ={f, 91,92} C L. The Lie al-
gebra also contains the vector field adsgq(x) = Dgq (x)f(x)—Df(x)gq(x) =
(0,0,—1)T that makes the LARC to be satisfied,

1 0 0
dimLs(x)=rank |0 1 0 | =3,
x> 0 —1

therefore the system o has the accessibility property.
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Example 8.6.4 As the subsequent ezample we shall study the control affine
system in the plane,

o 7'(1 = X2
ke = —xg —I—(]—l—x%)u

with vector fields f(x) = (x2,x1)" and g(x) = (0,1 —|—x%)T. Its equilibrium
pownt s ug =0 and xo =0, while its linear approzimation 1s giwen as

£ = AE(t) + Bv(t),

0

where A = [ : (])] and B = [?] The Kalman matriz Q = [B,AB] =

[(1) (1)} has rank 2, so the system o 1s locally controllable from the

equilibrium pownt. The family of vector fields F = {f,g} C L, be-
sides, the Lie algebra L, of the system also contains the vector field
ade g(x) = (— (1 +x%) ,2x1x2)T. The LARC

0 —(1 —i—x%)

1+ X% 2x1%2 =2

dim £ s(x) = rank [
holds, then the system o has the accessibility property. Let us look more
carefully at the drift vector field f(x). The dynamic system defined by
this vector field assumes the form

)'(1 =X2

5(2 = —X1
It 1s not hard to see that this is an oscillating system whose orbits
are circles x§ +x3 = C. This means that the drift vector field is Poison

stable, as illustrated in Figure 8.6. In this case the accessibility property
implies the controllability of the system o.

Example 8.6.5 Eventually, we shall derive local controllability using the
Sussmann’s condition. To this objective we take the control affine sys-

tem
X]:X%
o:9 . )
X2 =U
3

whose vector fields are f(x) = (Xz,O)T and g(x) = (0,1)". This system
has the equilibrium point for u =0 and xo = 0. First we compute the
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pe

X2

Figure 8.6: Poisson stability

distribution
81(f,q) :span{g,adfg,...,adj;cg,...}.

Because ad¢ g(x) = (—3x§,O)T and for j > 2 ad) g(x) = 0, we get

81 (f, g)(0) = span { (?) } .

$2(f,0) =8'(f, ) + span{ [ad) g, ad} g|

Nezt, we find

Lk>o}'

The bracket [g,ads gl (x) = (—6xz,O)T, whereas the remaining brackets,
1n which the vector field g appears twice are equal to zero. This yields

s2(1,9)(0) =span { () } = '(1, 9101

Continuing the computations we find the distribution

83(f,9) = 82(f, g) + span{ [ad} g, [adf g,ad} g

LkJ>O}'

Now, taking into consideration that [g,[g,ads gll (x) = (—6,0)", we de-

duce
8$3(f, 9)(0) = span { (?) , <_06> } =R



Chapter 8. Control systems 99

This observation as well as the fact that $%(f,q)(0) = 8'(f,g)(0) al-
lows us to establish on the basis of the Sussmann’s condition the local
controllability of the system o from the point 0.
8.7 Problems and exercises
Exercise 8.1 For the linear control system

x = Ax + Bu,
x € R™, u € R™, show that the accessibility property implies controllability.

Exercise 8.2 For the control affine system

X]ZU
XZZX%

define the distribution ds, and examine the accessibility property, control-
lability, and local controllability of the system at the point (0,0)7.

Exercise 8.3 Examine the accessibility property of the controlled Euler equa-
tions (a, b, c, d - constant parameters)

X1 = axzx3 + bu
X2 = —axix3z +cu

)'c3:du

Exercise 8.4 Making use of the result of the exercise 8.3 prove controllability
of the controlled Euler equations.

Exercise 8.5 Prove the controllability of the Brockett’s integrator

7'61 =1
5(2 =u

X3 = XU — X2Uq

8.8 Bibliographical remarks

A basic knowledge on control system can be gained from the monographs
[Isi94, NvdS90, Son98, Kha00, KKK95, Blo03, Sas99, Lév09]. The formula
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for the derivative of the end-point map comes from [Son98]. Controllability
of nonlinear control systems has been addressed in the monographs men-
tioned above; our presentation agrees with subsection 4.2 of [Lév09], and
takes advantage of the results described in the paper [Kre85]. The Sussmann
sufficient controllability condition is taken from [Sus83]; its generalisation
for multi-input control systems has been published in [Sus87].
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Chapter 9

Equivalence of control systems

9.1 State space and feedback equivalence
Let the following two control-affine systems be given

o % =f(x(t)) + g(x(t)ult) = F(x(t) + X% gi(x(t)ui(t),
o’ E=TF(E() + GE(W)V(t) = FE(1) + 1%y Gilx(t)vi(t),

where x, & € R™, u,v € R™, and all the vector fields are smooth. Similarly
as in the case of dynamic systems, we shall define an equivalence of control
systems. There are two concepts of such an equivalence: the state space
equivalence, called S-equivalence, and the feedback equivalence that will be
referred to as F-equivalence.

Definition 9.1.1 Suppose that uw =v. The systems o and o’ will be called
S-equivalent,

(Y% o' & (I diffeomorphism & = @(x))
(De(x)f(x) = F(e(x)) and Do(x)g(x) = G(¢@(x))).

The last equality means that Do(x)g(x) = Gi(¢@(x)) for i = 1,2,...,m.
Observe that, as a matter of fact, the S-equivalence of control systems is
tantamount to the differential equivalence of the associated vector fields.
We do not make any use here of the fact that these systems are control
systems. For this reason, a more adequate to control systems is the feedback
equivalence.

101
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Definition 9.1.2 The systems o and o’ are named F-equivalent,

0% o' & (3 diffeomorphism & = @(x) and feedbacku = o(x) + B(x)v)
(Do (x)(f(x) + g(x)x(x)) = Fl@(x)) and Do(x)g(x)B(x) = G(@(x))).

The function «(x) appearing in the feedback is smooth, while (x) de-
notes a non-singular matriz of dimension m x m smoothly depending
on Xx.

It is easily seen that the F-equivalence converts to the S-equivalence when
a(x) = 0 and B(x) = I,,. Both these equivalences rely on an assumption
that trajectories of the equivalent systems are diffeomorphic, &(t) = @(x(t)).
For the F-equivalence this means that

£ = Do (x)x = Do (x)(f(x) + g(x)u) = Do (x)(f(x) + g(x)((x) + B(x)v)
=Do(x)(f(x) + g(x)a(x)) + Do(x)g(x)B(x)v = Fle(x)) + G(e(x]))v.

Obviously, if the diffeomorphism ¢(x) is defined locally, we speak of the
local S- or F-equivalence, denoted, correspondingly, by the symbols =g
and =rf. The introduced concepts of S- and F-equivalence specify to the
corresponding equivalences of linear control systems. Namely, for linear
systems

oL : x = Ax(t) + Bu(t),

o[ : £ =FE(t) + Gv(t)

we get

oL =0 < (3P,Q,K)(P(A +BK) = FP and PBQ = G),

for non-singular matrices P, Q of dimensions n x n and m x m, and for an
arbitrary matrix K of dimension m x n. It follows that for linear systems
@(x) = Px, a(x) = Kx and B(x) = Q.

Remark 9.1.1 In order to establish the F-equivalence between the systems
o and o’ one needs to find the functions @(x), x(x) and B(x), for given
f(x), g(x), F(&) and G(&). This boils down to solving the equivalence
equations

Do(x)(f(x) + g(x)a(x)) = Flo(x)) and De(x)g(x)B(x) = G(e(x])).



Chapter 9. Equivalence of control systems 103

9¢1(x) . d91(x)
0xq oxn

Notice that the matrix De(x) = S contains partial deriva-
R g
tives of unknown components of the diffeomorphism, so the equivalence
equations take the form of nonlinear partial differential equations. In what
follows, conditions for the existence of the feedback will be stated for very
specific ”target” systems o’. From the viewpoint of control problems, the
most important case is when for the system o’ there exist well known con-
trol algorithms. Undoubtedly, the linear control systems o’ = o] belong to

this class.

9.2 State space and feedback linearisation

Consider a control-affine system 0. We make the following definitions:

Definition 9.2.1 The system o s called state space linearisable (linearis-
able by a change of coordinates in the state space), in short S-lineari-
sable, 1f

o=07.
S L

If the S-equivalence holds locally (0 =1 s o[ ) then the system o is referred
to as locally S-linearisable.

Similarly, we state the next.

Definition 9.2.2 The system o is called feedback linearisable, (F-linearisa-

ble), if
~ /!
o=op.

In the case of a local F-equivalence (o= 0] ), the system o will be
referred to as locally F-linearisable.

Necessary and sufficient conditions for the linearisation will be provided
below. Assume that the system o hasin u=0€ R™ and xo =0 € R" an
equilibrium point (so f(0) = 0), and let the linear system o] be controllable.
For the system o we define a family of distributions

DO = span {gih:],...,m} )

Dk = span { gi,ads gi, ..., adf 91‘1:1,...,m} ,

for k > 0, where ad}¥ "' g; = [f,ad} g;]. Then we have
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Theorem 9.2.1 (Krener-Sussmann-Respondek) The system o s locally S-line-
arisable around 0

GL%S o{ &= dimD"'(0) = n and [ad? gi,ad} g;] (x) =0

in a certain neighbourhood of 0, for p,v >0, p+r<2n—1.

Conditions for F-linearisation are included in the next theorem.

Theorem 9.2.2 (Jakubczyk-Respondek) The system o jest is locally F-linea-
risable around 0,

GL%F o] & dim D 1(0) = n and distributions D* for k =0,1,...,n—2

are 1n a certain nerghbourhood of 0 of constant dimension and involu-
tive, t.e.
dim D*(x) = const, [D¥, D*] c DX

9.3 Equivalence equations

We shall study in more depth the S- and F-equivalences of control-affine
systems

o %= f(x(t)) + g(x(t)u(t) = f(x(t) + Xy gilx(t)ui(t),
o E=F(E(1) + GE(D))v(t) = FE[M) + X%, Gi(&(t)vi(b),

where x, & € R™, u,v € R™. From the viewpoint of the synthesis of control
algorithms, a fundamental problem consists in determining the transfor-
mations establishing the equivalence, i.e. a diffeomorphism & = ¢@(x) for
S-equivalence and a feedback transformations & = @(x), u = a(x) + B(x)v
for the feedback equivalence. To this objective we need to solve a system
of partial differential equations called the equivalence equations. We shall
now state these equations.

e S-equivalence: Do (x)f(x) = F(@(x)), Do(x)g(x) = G(@(x)).

e F-equivalence: Do (x)f(x) + g(x)a(x)) = Fle(x)), De(x)g(x)B(x) =
Gle(x)).

In the case when we study the linearisation problem, so when

o’ & =TFE(t) + Gv(t),
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F and G - matrices, the equivalence equations get simplified thanks to a
specific choice of the system o¢’. To this aim we assume that u = 0 and
xo = 0 is an equilibrium point of the system o. Then, in the problem of
S-linearisation the system o’ is taken as the linear approximation of the
system o at the equilibrium point. This means that the matrix F = ag(f),
while the matrix G = ¢(0). Dealing with the problem of F-linearisation
we first find the linear approximation and check its controllability, then
compute its controllability indices k = (k1,K2,...,Km), and finally define
the corresponding Brunovsky canonical form. The matrices F and G need

to be chosen in the Brunovsky form. For the linearisation problem the

equivalence equations will take the following form:
e S-equivalence: Do (x)f(x) = Fo(x), Do(x)g(x) = G.
e F-equivalence: Do(x)(f(x) + g(x)x(x)) = Fo(x), Do(x)g(x)B(x) = G.

Solutions of example equivalence equations will be given below, in subsection
Examples.

9.4 Significance of linearisability for the synthesis of control
algorithms

Consider the control-affine system
o: x =f(x(t)) + g(x(t))u(t)
and the feedback equivalent linear system in the Brunovsky form
o' £ =FE(t) + Gv(t)

characterised by controllability indices (ki,K2,...,Km). We assume that
&= @(x), u=a(x)+pB(x)v denote a feedback linearising the system o. The
result of applying this feedback is shown in Figure 9.1.

Suppose that in the system o we address the following state trajectory
tracking problem: Given a reference trajectory xq4(t), find a control u(t)
in the system o, such that the resulting trajectory x(t) — xq(t) for t —
+o00. The linearisability of the system o will allow us to transform the
reference trajectory to the linear system, &4(t) = @(xq(t)), and to formulate
the tracking problem in the linear system: Find a control v(t), such that
the corresponding trajectory &(t) — &4(t). Since the system o’ has the
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—

Figure 9.1: Result of applying linearising feedback

Brunovsky form

é] 2827322537"'15«1 =V

£K1+1 = £K1+2;"'7£K1+K2 =V2
?
£K1+---+Km,1+1 = £K1+---+Km,1+2: SRR EZI“:] kKi=n — Ym
what means that E(K‘) =v E(KZ) =v E(K“‘) = Vi, it is
1 = V1 641 T V2 eSSk +1 T Y

not hard to verify that the tracking algorithm in the system o’ may take
the form

v = EE{T) — K1 (81— Ean) T — o —Kqg0(&1 — Ear)
A: E’dK]+ +Km— 1+1+ ' (91)
m—1)
7kam71(E'K]+"'+Kmf1+1 E’dKK1+ K 1+1) et
7k’m0(EvK1+-~+Km,]+] - EdK1+~~~+Km,1—H)

With notation e; = &; — &q; we derive the tracking error equations in the
linear system as follows

e kel 4 kager =0
(Km) +k (km—1) ++k _O
eK]_._.A._._Km_]_F] MKy —1 eK]+~-+Km_]+] mOeK1+~-~+Km,]+] —

If the gains ki; are selected in such a way that the characteristic polyno-
mial of each differential equation is Hurwitz then the tracking problem in
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e &d
A e et
Figure 9.2: Trajectory tracking system

the linear system will be solved by the algorithm (g.1). Having applied the
control v(t) to the system o’ we find the trajectory &(t), then the trajec-
tory x(t) = @' (&(t)), and the control u(t) = x(x(t)) + B(x(t))v(t) in the
original system o. This way of proceeding establishes a synthesis procedure
of the tracking control algorithm based on the feedback linearisation. The
algorithm is illustrated in Figure 9.2. Similar results can be obtained if, in-
stead of being the linear system, o’ will have another form for which there
exists a tracking control algorithm. One of such form will be described in
chapter 11.

9.5 Examples

Example 9.5.1 Let a control-affine system

o X1 = X2 (] +X%)
' Xy —arctanxj +u

be given, with vector fields f(x) = (x2 (1+x%) , arctanx; )T, g(x)=(0,1T.
We have f(0) = 0. Assume that the system o’ is the linear approrima-
tion of the system o at the equilibrium point. This means that

o &1=6&
2=V
It is easily checked that the system o’ is controllable. We shall check

whether the system o 1s S-linearisable. To this objective we compute
ads g(x) = [f, gl(x) = —(1 —i—x%,O)T, hence D' = span{g, ad¢ g} and

dim D'(0) = 2.
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Nezxt, we compute the Lie brackets [g,ads g], [g, ad% gl, lads g, ad% gl and
[g,ad? g]. We have [g,adsg] = 0, and also ad? g = [f,ad; g] = g, what
implies [g,ad? gl = [g,g] =0, ad} g = [f,ad? g] = [f,g] = ad; g as well as
g,ad? gl = [g,ad¢ gl = 0. Now, relying on the Theorem 9.2.1, we con-
clude that the system o 1s locally S-linearisable around the equilibrium
pont.

Example 9.5.2 Ezamine the control-affine system

7'(] = SiIle
(O . X
X2 =U

whose vector fields are f(x) = (sinx,0)" and g(x) = (0,1)". The vector
field f vanishes at 0. The linear approzimation of the system o has the
Brunovsky form, so it is controllable. The system o’ we also take in
the Brunovsky canonical form,

&1 =&

52 =V
We compute the distributions D° = span{g} and D' = span{g,ads g}.
Because ad¢ g(x) = [f, gl(x) = —(cosx2,0)T, we get dimD'(0) = 2. The
distribution D° has constant dimension equal to 1, and is trivially in-
volutive as a distribution generated by a single vector field. Therefore,

the conditions of Theorem (9.2.2) are fulfilled, what implies that in a
neighbourhood of the point 0 the system o is F-linearisable.

Example 9.5.3 Now we shall find a diffeomorphism & = @(x) that re-
alises S-linearisation of the system o from Ezample 9.5.1. We begin
with recalling the linear approzimation of the system at the point 0,
F= ag(f) =[9}] and G =g(0) = (9). We are looking for S-equivalence
between the system o and the linear system o’ described by matrices
F,G. From Ezample 9.5.1 it follows that the linearising diffeomorphism
exists. Suppose that it has the form @(x) = (@1(x), 92(x))". Its compo-

nents need to satisfy the equivalence equations

Do(x)f(x) =Fo(x), De(x)g(x) =G,
that yield
do1(x)f(x) = @2(x), de2(x)f(x) = @1(x),
de1(x)g(x) =0, de2(x)g(x) =1.
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Due to the form of the vector field g(x) we get

3(01(X):0 and 02 (x)

=1.
0x2 0x2

The former equality implies that ¢q(x) does not depend on x, So
©1(x) = @1(x1). The latter equality s fulfilled, a.0. by @2(x) = x2.
Accepting this solution we compute @1(x7) = do(x)f(x) = arctanxy. In
this way we have found the diffeomorphism &=(&1,8,) = (arctanx;,x2)".
The system equations in new coordinates are

&1 = sz)ﬂ X2 =&

£) =%y =arctanx; +u==%&; +u

Example 9.5.4 In turn, let us establish a feedback that linearises the sys-
tem analysed in Example 9.5.2. We have already shown that such a
feedback exists. We assume that the system o’ has the Brunouvsky form,
so F=[80], G=(9). Our objective is to find out a diffeomorphism
E=op(x) = (@1(x),92(x))" and functions a(x), B(x) # 0 satisfying the
equivalence

de1(x)(f(x) + g(x)x(x)) = @2(x), de2(x)(f(x) + g(x)x(x)) =0,
de1(x)g(x)B(x) =0, de2(x)g(x)B(x )=1

Using the fact that B(x) # 0, the last two equalities result in the iden-
tity aq"( ) =0, s0 @i(x) = (p1.(7.c1), and B(x) = m. Tak-
mng mto account two first equalities, we deduce @z(x) = doi(x)f(x)
and «(x) = —%m. For the reason that ¢, depends only on
x1, we shall try the simplest solution @1(x) = x1. With this assump-
tion we compute @,(x) = sinxy. Hawving ezploited the diffeomorphism
@(x) = (x1,sinx2) ", by suitable substitutions we determine the remain-
ing elements of the linearising feedback, «(x) =0 and B(x) = CO;XZ. The

resulting feedback is well defined in the set R x (—m/2,7/2). In the new
coordinates, after applying the feedback, the system o takes the form

(éz =CcosXu=v

{51 =x1=%x2=&

Our choice of the component @1 of the diffeomorphism has been quite
arbitrary. This choice 18 by no means unique, as it 1s eastly verified
that the choice @1(x) = sinxq leads to @,(x) = cosxjysinxy, «(x) =
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%, and B(x) = m This feedback 1s well defined in the
square (—m/2,7/2)?, and yields the same linear system in the Brunovsky

form that the former feedback.

Example 9.5.5 Using the Brunousky canonical form of the single-input
linear system we shall now wnvestigate the equivalence equations for
a general control-affine system with singe input. Suppose that the sys-
tem

o: x =f(x)+ gx)u,

15 gwen, where x € R™ and u € R. Let’s take a linear system
o' &=FEL+ Gy

in the Brunovsky form, so F = [8 I“O*‘ | and G = [°y']. We are looking
for a diffeomorphism @(x) = (@1(x), 92(x),..., on(x))T and functions
a(x), B(x) # 0. Under assumption that the system o satisfies conditions

of Theorem 9.2.2, the equivalence equations

Do () (Fx) +ga)alx)) =Fox) = (0200, @n(LOT,
Do (x)g(x)B(x) = G = (0,...,0,1)7 o

have a solution. It is not hard to notice that the latter group of these
equations 1s of the form

doq(x)g(x)B(x) = = don_1(x)g(x)B(x) =0, den(x)g(x)B(x) =1,

what results in

1
de1(x)g(x) = =den_1(x)g(x) =0, and f(x) = —————.
9 no1xg P = dontxigh
Now, a substitution of the former group of the equivalence equations
(9.2) allows one to find the diffeomorphism @(x), if only its first com-
ponent 18 known. Namely,

@2(x) = doq (x)f(x), @3(x) =de2(x)f(x),..., n(x) = den_1(x)f(x).

We also obtain (x) = —%};YQ). The total feedback 1s then defined by
the function @1(x). A geometric meaning of the choice of this function
1s revealed by the following reasoning, in which, for the sake of con-
ciseness, we shall denote the Lie deriwative of a function with respect

to a vector field be LY¢1(x) = @1(x) and LET@71(x) = L (Lke1(x)).
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Figure 9.3: Model of induction electric motor

We set Lag; g@1(x) = Lig,g1@1(x) = LeLgo1(x) — LgLr@1(x). Under such
assumptions the equations (9.2) can be written down as

Lgp1(x) =Lgpa(x) = =Lgon_1(x) =0,

L1 (0) = 0200), Lega(x) = 93(%); - Lign1(x) = o). O3

Now, let us compute the Lie derwatives of the function ¢@i(x) with
respect to the vector fields ads g, ad% g, ---, ad?_] g. The employment
of the relationships (9.3) leads to the following conclusion

Lag; g@1(x) = LiLgq(x) — LgLspq(x) = —Lgep2(x) =0,
Lagz g@1(x) = LiLag; g@1(x) — Lag, gLr@1(x) = Ly@s(x) =0, (0.0
. 9-4

Lad?*z g®1 (x) =0, Lad?*1 g @1 (x) = (-1 )n71 Lg on(x) #0.

Geometrically, the equations (9.4) say that the function @1(x) needs to
be chosen so that at each point the differential d@(x) be vertical to
n—1 vectors g(x), ads g(x), ..., ad?i2 g(x), while deq(x) adf“*1 (x) #0.

Example 9.5.6 As a more practical ezample of a feedback linearisable sys-
tem we shall ezamine a model of the induction electric motor displayed
schematically in Figure 9.3. The electro-mechanical equations of the
motor working without any loading on its shaft can be formulated as
follows

5= w,
d):—];—miasin6+kT‘“ib cosé—?w, (9.5)
la=—Rig + Enwsing + Yo, 95

i, = —Rip, — Emwcosd + L.



Chapter 9. Equivalence of control systems 112

The symbols appearing wn these equations have the following mean-
ng: & — rotation angle of the rotor, w — angular velocity of the rotor,
ia,1b,Uq, Up — currents of the stator and the supply voltages, F,] — me-
chanical parameters, L, R — electric parameters, k., — electro-mechanical
constant. To simplify the notations we introduce new variables x1 =9,
X2 = W, X3 = iq, X4 = ip, ‘%m:a,?:b,%:c, km =g, Yo =1y,
% =uy. In new variables the system (9.5) becomes control-affine, with
the drift f(x) = (x2, axz sinxq + ax4 cos x; — bxy, —cx3 + dxo sin x1, —cxq —
dxzcosx1)T, and control vectors g1(x) = e3 and g2(x) = e4, where e;
stands for the i-th umit vector in R*. The system (9.5) has an equi-
librium point xo = 0, and its linear approzimation at this point is the

following

01 0 0 0 0
_3f(0) |0 =b 0 a oo
A= lo 0 e o BTI0=11
0 —d 0 -c 0 1

By checking the Kalman condition rank [B,AB,A%B| = 4 we establish
that the linear approzimation is controllable. For submatrices of the
Kalman matriz we get the indices po = rankB = 2, p; = rank[B, AB] —
rankB = 1 and p» = rank[B,AB, A?B] — rank[B,AB] = 1, so the con-
trollability indices of the linear approrimation amount to k1 = 3 and
k2 = 1. In order to check the linearisability conditions of the system in
accordance with Theorem 9.2.2, we find the distributions

DO = span{gy, g2} = span{es, e4},

D' = span{g1, g2, 2ds g1, ads g2} = span{ey, e3, e4},

D? = span{g1, 92,ads g1,ads g2,adf g1,adf o} = spanfer, ez, €3, ea).
It 15 a direct consequence of the form of this distribution that the lin-
earisability conditions are satisfied. The system (9.5) is F-equivalent to
the linear system

&1 =&
& = &3
é,s:\’l
342\’2

9.6 Problems and exercises

Exercise 9.1 Examine S-linearisability of the following control systems:
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a)

X1 e *1xy
X2 =eX —T1+u

{M = x, cos? X1

Xy =tanxq +u
Exercise 9.2 Check F-linearisability of the control systems:

a)

X2

X1 =
COS X1
Xy =sinx; +u

?

b)
U 2
X1 =X2 +Xx5U
. bl
X2 =U
c)
X1 :xz—l—e"zm—e"zxg
5(2 :Xg—Xg )
X3 = 2x3x3 — 53
3 = 2X5X3 X5 +u
d)
X1 =X2 +e 3%y
X2 = X3
7'63 =Uu

Exercise 9.3 Show that the control system

X1 = X2

X2 = x1x5 +sinx3

X3 = X4

X4 =U
representing the dynamics of a controlled ball and beam system is not F-
linearisable.
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Exercise 9.4 For the control system

X1 = sin X2
5(2 = sin X3
X3 = Xi + uq

X4 = x5+ x5 —x1°

X5 =Uup

write the equivalence equations involving a suitable Brunovsky canonical
form, and solve them.

9.7 Bibliographical remarks

The concept of equivalence of control systems has been studied, a.o. in the
publications [Kre73, JR80, Sus83, Res85, Jak90], specifically in the context
of linearisation. The conditions of S-linearisation come from [Kre73, Res85,
Sus83]. Fundamental results concerned with the feedback linearisation can
be found in [JR80, HSMS83]. An overview of these results is contained,
e.g. in chapter 9 of the monograph [Sas99], in chapter 6 book [NvdS90] as
well as in chapters 4 and 5 of the monograph [Isi9]. Genericity, or more
adequately, non-genericity of linearisability and other properties of nonlinear
control system is dealt with in [T'ch86]. The linearisation of the model of
the induction motor analysed in Example 9.5.6 is shown in [LU89].
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Chapter 10

Input-output decoupling and
linearisation

10.1 Differential degree

We shall deal with a control affine system with output

,  (10.1)

o Jx= 100+ gl(tuly) = f(x(1) + D gix(t)wi(t)
. i=1

y =h(x) = (h1(x),ha(x),. .., hp(x))T

where x € R™, u € R™, y € RP. Assume that the number of control
inputs is equal to the number of outputs, m = p. We are interested in the
dependence between the j-th output of the system and the control. From
the definition of the output function it follows that the control does not
influence the output y; directly. To reveal this influence we differentiate
this output with respect to time along the system’s trajectory x(t). For the
sake of the simplification of notation, we shall use the symbol of the Lie
derivative of a function dh;(x)f(x) = L¢hj(x), as well as to hide the time
argument t,

y; = dhj(x)x = dh;(x)(f(x) + g(x)u) = L¢hj(x) + Lghj(x)u,

where Lghj(x) = (Lg, hj(x),Lg,hj(x),...,Lg,.hy (x))T. Now, if in a cer-
tain neighbourhood of the point x the vector Lyh;(x) is non-zero, a direct
influence of the control on the output y; has been discovered. Suppose,
however, that around x we have Ljh;(x) = 0, what mean that y; = L¢h;(x).
A subsequent differentiation leads to

{5 = Lyhy = dLehj (x)% = L?hy(x) + LgLehy (x)u.

116
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Again a neighbourhood of the point x, it may happen that there holds
LyL¢hj(x) # 0. If this is the case, the control influences the second or-
der derivative of the output y;. But let that around the point x we have
LgLshy(x) = 0. If so, we get j; = LZh;(x), and the differentiation may be
continued. Finally, suppose that there exist an integer p;, such that all the
Lie derivatives L4LTh;(x) =0, forr =0,1,..., p;—2, but LyL? "hy(x) # 0.
This being so, the dependence between the control u and the output y; ap-
pears to be the following

y; = hy(x)

y; = Lhj(x)
: (10.2)
1 1

y =1 )

yj(pj) = Lo (x) + LgLY "

h; (x)u

The integer p; will be called the differential degree or the relative degree
of the output y;. Repeating this procedure for all outputs we arrive at
a collection of differential degrees p = (p1,P2,.-.,Pm). One may expect
that these differential degrees, if exist, are finite; otherwise certain system’s
output would not be influenced by any control, what could have indicated
a sort of dysfunctionality of the system.

10.2 Decoupling

Given the differential degrees p;, for all the outputs, and using the nota-

tion yf = <ygp‘),g(zpz), e ,y%ﬁ“) , we can write down the input-output
relationship in the system as
yP = LPn(x) + L4L? Th(x)u = P(x) + D(x)u, (10.3)
where
-
P(x) = (L2'ht (x), LRz (x), .., L™y () (10.4)
and : :
Lo, L Thi(x) ... Lg,.L¥"" "hi(x)
Dix) = z z . (10.5)
Lo, Lo Thin(x) ... Lg LP™ Thun(x)

The matrix D(x) will be referred to as the decoupling matrix. If for a control
affine system there exist the differential degree, and the decoupling matrix
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vy ! f _gimfji U1 f Ly
vmi J' UEETT” gn’l_ J‘ E Ym

Figure 10.1: Structure of the input-output relationship

is non-singular then, by means of a feedback
u=o(x)+px)v=—D"Tx)P(x)+ D" (x)v

the system can be converted to the decoupled form

y].(pj):vj, i=1,2,...,m. (10.6)
As can be easily seen, in the system (10.6) the control number j affects solely
the jth output. The structure of the input-output relationship is shown in
Figure 10.1.
Summarising, if a system has differential degrees (p1,p2,.-.,Pm), and
a non-singular decoupling matrix D(x) then the tracking control problem of
an output trajectory yq4(t) in such a system has a natural solution

Vi nyﬁﬁ —K1p,-1(y1 —yar) PV + -+ ky0(y1 —yar)

Vm :UE&T) _kmpm71 (Um _ydm)(pmin + - +km0(ym _ydm)

It easy to check that, if e; = y; —yq; denotes the tracking error of the jth
output then the error equations of the whole system can be represented in
the form

(pj—1)
j

(pj)

2 +kjpj,1e +---+Kkjoe; =0, j=1,2,...,m

In order to guarantee the asymptotic stability of the error system the char-
acteristic polynomial of each component error equation needs to be Hurwitz.

10.3 Dynamics of the decoupled system

Let the integers (p1,p2,-..,Pm) denote differential degrees of the control
system (10.1) that is input-output decouplable. Assume that the sum of the
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differential degrees ZJ“; pj = s, s < n. The feedback
u=-D"T(x)P(x) + D' (x)v,

that has enabled to decouple the system transform its dynamics to the
following form

{7’( = f(x(t)) + g(x(t))D7 T (x)P(x) + g(x)D~ " (x)v = F(x) + G(x)v
y =h(x)

In order to better understand the structure of the dynamic part of the
system subject to the decoupling feedback, we introduce new coordinates

hy (x)
L¢hy(x)

L?‘*"hl (x)
ha(x)
Leho(x)

L2 Thy(x) |

R (%)
I—fhm (X)

Lo T (x)

n—s

X

where the first s components have been defined by using the dependences
between the inputs and the derivatives of the output of the order ranging
from O to p; — 1, and the remaining coordinates, denoted as £" % = x""%,
have been chosen from among (x1,X2,...,Xn) in such a way that ¢(x) be
a local diffeomorphism. The independence of the first s coordinates can be
proved on the basis of the definition of differential degrees.We observe that
after applying the feedback (¢(x), a(x), B(x)) the system’s equations take
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________________________________________________

wi [ pe...— | [ -
S .[ —ES— e —d f €p1+~~.+pmq+]i yom

________________________________________________

Figure 10.2: Structure of control system (10.7)

the following form

(é-v] 25127&2:&37“';&()1 =Vi

Eorttpm 141 = Eprt o 14205 b5 = Vi

fm—s __ Fn—s —1 n—s —1

EMS =F 5 (@ () + G S (@ (&) v (10.7)
y1 =&

Y2 = Ep]+1

Ym = Epi4tppn i +1

Hereabout, by F* 5(x) and G™ °(x) we mean those components of the
vector fields F(x) and G(x) that correspond to the coordinates x™ 5. The
structure of the system (10.7) is presented in Figure 10.2. It turns out that
the s-dimensional subsystem of the system (10.7) has been decoupled and
linearised. Also, it can be seen that there exists a subsystem described by
the coordinates £™~° that is controlled by v, but that does not have any
influence on the system’s output. The evolution of this subsystem should
remain under control, and its trajectories be bounded. Suppose that at
any time all the outputs of the system (10.7) are equal to zero. Then it
follows that all the coordinates &1,...,&s = 0, and also v = 0. Under such
an assumption the dynamics of the coordinates £™° are described by the
dynamic system

énfs — Fn—s ((P71 (0, E,nfs)) — ]‘: (E’nfs) ]
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These dynamics are named the zero dynamics of the system (10.7). Now, in
order to efficiently apply a control algorithm based on the decoupling, the
zero dynamics must be stable (Lyapunov stable or asymptotically stable),
at least locally. A system with asymptotically stable zero dynamics is called
minimal phase. Obviously, if s =n then the zero dynamics are absent, and
the method of decoupling provides us with a linearising feedback without
solving any equivalence equations. In this context we formulate the following
observation.

Remark 10.3.1 If the differential degrees of the system o sum up to the
the dimension of the state space then the system s feedback linearisable
by the feedback of the form

-1 —1 T
000 = (M), o, L (%), (), L TR ()
a(x) = =D (x)"P(x),
B(x) = D~'(x),

where P(x) and D(x) are defined by the ezpressions (10.4) and (10.5).

10.4 Examples

Example 10.4.1 Consider the dynamics equations of a non-redundant ro-
botic manipulator with n degrees of freedom, described by the coordinate
vector q € R™, control vector u € R™, and the vector of task space
coordinates y € R™,

Q(q)g+B(q,q) =,

where Q(q) is the inertia matriz, and B(q,q) denotes the vector of
Coriolis, centripetal, and grawitational forces, with the kinematics

y = k(q).

To express these equations in the form of a control-affine system, we
make the substitutions x = q and & = (. It is easily checked that the
dynamacs will be characterised by the following control-affine system
with output

X = E:

£=—Q (B, & +Q (X,

y = k(x).
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Apparently, the differential degrees of all outputs are the same, so to
determine them we can differentiate the whole output vector simulta-
neously

§ = Dk(x)x = J(X)&,
§=J0E+J00E = J(x)E = JX)Q ™ (X)B(x, &) +]()Q ' (x) .

P(x,&) D(x)

As a result we have obtained differential degrees p; = 2, and the de-
coupling matriz D(x) that 1s non-singular outside the singular config-
urations of the manipulator. Furthermore, the sum of the differential
degrees s = 2n 15 equal to the state space dimension, hence the model of
dynamacs of the manipulator can be decoupled and linearised by feed-
back. While doing this, we do not need to use any coordinate change.
After the application of the feedback

u=-D""(x)P(x,&) + D (x)v,

the input-output relationship takes the stmple form

y=v

To solve the tracking problem of a task space trajectory ygq(t), it s
natural to exploit the PD algorithm with a feedforward term

v=1a—Ki(y—1Ya) — Koly —ya),

containing diagonal gain matrices Ko, Ky with positive entries. The
resulting tracking algorithm

u=—D""(x)P(x,&) + D (x)(a — K1 (Y —Ya) — Ko(y —ya))
1s well known wn robotics, under the name of the Freund’s algorithm.

Example 10.4.2 Consider a single-input, single-output control system

7'(1 :X3—x§

5(2 =—X2—U y
X3 = X% —X3+u
with the output function

y =h(x) =x;.
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The time differentiation of the output yields

OO _ 3
Y=X1 =X3 —X3

§J=x§—x3+3x3+(1+3x3)u
—_— ~—
P(x) D(x)

Thus we have found the differential degree p1 = 2 and the decoupling
matriz (more appropriately: the coefficient) D(x) # 0. The feedback
u= —g(();)) + Dgx)v leads to the decoupled input-output relationship | =
v. For the reason that s = 2 < n = 3, the zero dynamaics appear. In

order to determine the zero dynamics we choose new coordinates

&1 =h(x) =x1
&2 =Leh(x) =x3 —x3
&3 =%2

It is easily found that in a neighbourhood of the point 0 € R3 the function
& = @(x) 1s a diffeomorphism. The system’s equations in these new
coordinates become

&1 =6,

&=V

_ —_ 1 1 2 3

Setting y = 0 we get the zero dynamics

: 283
= — — —_ — k ,
&3 &3 15382 &3k(&3)
where k(é3) > 1. Now, for x = &3, let us choose the function V(x) =
1/,x?. Then we obtain V = xx = —x?k(x) < —x?> = —2V. As a result,

V(t) < V(0)e 2t, that implies |£3(t)] < |E30le™t, hence the zero dynamics
are globally asymptotically stable.

10.5 Problems and exercises

Exercise 10.1 For a non-redundant rigid manipulator described by the equa-
tions

{Q(q)'c'l +B(a,d) =u
y =k(q)

qd,u,y € R™, relying on the input-output linearisation, derive a tracking
algorithm of the trajectory yq4(t) in the task space.
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Figure 10.3: Vertical rolling wheel

Exercise 10.2 For the vertical rolling wheel in the plane, shown in Figure 10.3,
described as a control-affine system with output

X =17 CO8 @
y=mnising

¢ =n2

ézm

m =1w '
N2 =uz

Y1 =x

Y2 =y

using the input-output linearisation devise a tracking algorithm of the tra-
jectory ya(t) = (ya1(t),yaz2(t))". Introduce new coordinates and examine
the zero dynamics o the system.

Exercise 10.3 Given a control system of the form

7'(] = X2
Xz = SinX3
5(3 =X4
7'(4 =u

Invoking the Jakubczyk-Respondek Theorem, and using the input-output
linearisation with the output function y = x1, demonstrate that this system
is feedback linearisable in a neighborhood of the point 0 € R*
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10.6 Bibliographical remarks

The concept of the input-output decoupling and the related notions of the
differential degree and the zero dynamics have been described in the mono-
graphs [NvdS90, Isi94]. A concise and accessible overview of these issues is
also contained in chapter 9 of the book [Sas99]. Robotics aspects are dealt
with in the monograph [MZS94].
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Chapter 11

Chained form systems

The meaning of feedback for the synthesis of control systems results from
the fact that it allows to transform a control problem from a system that is
"hard” to analysis to an "easy” system in the normal form, with well known
control algorithms. This has been demonstrated in the previous chapter
by the example of the feedback linearisation. In this chapter we shall go
further in this direction and show another normal form system along with
a dedicated control method. The system we think of is the chained form
control system.

11.1 Chained form

We shall study a driftless control system with two inputs

o: x=g(x(t)u(t) = g1 (x(t)ur (t) + g2(x(t))uza(t), x€R™  (11.1)
The control distribution of this system D = spancegn g){g1,92}. A control
affine system

o' &=G(E(1)v = Gi(E(t)vi(t) + G2(&(t))va(t)

is referred to as the chained form control system if it has either of the
following two forms

o) &1 =v1, Ea=v2, &3 =Ev1, ., b0 = En 1

oh s &1 =v1, L2 =E3v1, &3 = Eavi, .o Enot = Envr, En = Vo
We look for a feedback & = @(x), u = B(x)v, that establishes the F-equiva-

lence of systems o and o’. If such a feedback exists, it needs to satisfy the
following equivalence equations

De(x)g(x)B(x) = Gle(x)).

(11.2)

126
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11.2 Murray’s Theorem

Given the system (11.1), we define two families of distributions, for k =
0,1,...,n—2
Do =D, Dx+1 = Dk + [Do, Dy

and
.DO — 'D, ®k+1 — @k + ['Dk,®k] )

The former family is called the small flag, the latter — the big flag of the
distribution. The component—distributions of the small and the big flag are
nested, i.e. Dy C Dy41, DX € D¥*1, we also have

Do =D°, Dy =D', Dy c DF

for k > 2. The last dependence explains the terminology "small” and
"big” flag. The following necessary and sufficient condition for a local F-
equivalence of systems o and o’ has been formulated in the language of
flags.

Theorem 11.2.1
o= o' & dim Dy (x) = dim D*(x) = k + 2

for x in a certain open set, and k=0,1,...,n—2.

11.3 Integrator backstepping

A control method applicable to the chained form systems is the integrator
backstepping method. The idea of this method will be explained below, by
the example of a single-input control affine system, of the form

{ x = f(x(t)) + g(x(t))&(t),

£=u(t), (2:3)

having the equilibrium point w =0, x =0, £ = 0, where x € R™, £,u € R.
The system (11.3) can represent the error dynamics of a control system.
We want to solve the problem of error stabilisation, i.e. to find a control
u(t), such that for t — +oo the trajectory (x(t), &(t)) — 0. The control
algorithm will be defined in the form of a state feedback, u = u(x,§). To
this objective we proceed as follows:
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e Consider the subsystem x = f(x(t)) + g(x(t))&(t), and let us treat the
variable & as a temporary control. We assume that there exists for this
system a stabilising feedback, i.e. a function & = ¢(x), ¢(0) =0, and
functions o (||x]]) < Vi(x) < o2(lIx]]), Wi(x) > 0, where «q, x> are
of class K, such that along the trajectory of the system with feedback
x = f(x(t)) + g(x(t))d(x) there holds

Vi(x) = dV(x)(f(x) + g(x)d(x)) < —Wi(x) <O0.

e Introduce a new variable z = & — ¢(x) and write down the system
(11.3) in the form

x = f(x(t)) + g(x(t))(x(t)) +9g(x(t))z(t),
. stable (11'4)

z=u(t) — d(x(t)) = v(t),

where ¢(x(t)) symbolises the time differentiation, while v denotes a
new control. Now we are looking for a stabilising feedback control for
the whole system (11.4). To this aim we choose the function

Va(x,z) = Vi(x) + %zz >0,
and compute
Va(x,2) = Vi(x) 4+ 22 < =W (x) + dV; (x)g(x)z + zv =
— Wi (x) + (dVi (x)g(x) +v)z.

Notice that after taking

dVi(x)g(x) +v =—kz
for a certain k > 0, we obtain

Va(x,z) < =W (x) — k2%,

that results in the stability of the system (11.4) with the control

v =—kz—dV;(x)g(x).

If we assumed that the function Wi (x) > o3 (]|x|]), for a K-class func-
tion «3 then we would get the asymptotic stability of the system
(11.4). Since & = z—d(x) and $(0) = 0, the convergence of (x(t), z(t))
to 0 implies that &(t) also converges to 0. The stabilising control for
the system (11.3) has therefore the form

u(x, &) = —k(& — d(x)) — dVi(x)g(x) + dd(x) (f(x) + g(x)&).
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Figure 11.1: Kinematic car

The presented procedure generalises to control systems containing many
integrations,

x = f(x(t)) + g(x(t)) & (1),

&1 = &2(1)

‘?k—] = ak(t)x

Ek =W

11.4 Examples

Example 11.4.1 The subject of our analysis will be the kinematic car
shown in Figure 11.1. Let q = (x,y,0, @)" denote the coordinate vector
describing the car (see the figure). Under assumption that the lateral
slip of the front and the rear wheels 1s not permitted, the model of
kinematics of the car assumes the form of a driftless control system

X =17 cos0cos @

Yy =ugsinBcos @

X ) (11.5)
0=u;sing
¢ =u

We shall demonstrate that this system is locally F-equivalent to a chain-
ed form system, and more specifically to the system o) that has appeared
in the formula (11.2). Suppose that the coordinates © and ¢ of the
system are bounded to the range +m/2, therefore |0|,|@| < m/2. With
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such an assumption we can define a preliminary feedback

_ |cosBcosp O
w_[ ‘ Ju,

that will allow us to write down the system (11.5) as

X =W
y=witanb
. tan(p . (11.6)
0 = Wj
cos 0
¢ =w

The system (11.6) s described by two control vector fields

:
tan 0
g1(q) = | tane |, g2(q) =

cos©
0

— O O O

so the distribution D = span{gi, g2}. Now we find the small and the big
flag. It follows from the Theorem 11.2.1 that it is enough to compute
the following distributions:

Do=D°=D>gi,92
Dy =D = Do + [Do, Dol 91,92, 912 = [g1, 92,
Dy =Dy + [Do, D11=D? > g1, 92, 912, 9112=[91, 912}, 9212 =[92, g12].

In our case we also have the identity of distributions D, = D?; this
feature s not general, but results from the fact that the distribution D
has two generators. A computation of Lie brackets gives

0 0
0 1

g12(q) = | 1 , 9112(q) = | cos3 0cos?
cos 0 cos? @ g

Now 1t s easily checked that the distribution D1 = span{gi, g2, 912},
while the distribution D, = span{g1, g2,912,9112}, thus at every point
q € R x R x (—m/2,4m/2)? the following conditions hold

dim Dy(q) = dimD°(q) = 2, dimD;(q) =dimD'(q) = 3,
dim D, (q) = dim D?(q) = 4.
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Theorem 11.2.1 yields that the system (11.6) s locally F-equivalent
to the chained form system, and for the reason that the system (11.5)
18 F-equivalent to (11.6) the kinematics of the kinematic car is locally
feedback equivalent to the chained form system.

Example 11.4.2 As an llustration of the integrator backstepping method
we shall derive a stabilisation algorithm of the equilibrium point 0 € R?
in the following system

X1 :x%—x?—kxz
f(zzu

In accordance with the scheme of the method we shall first treat the
variable x, as a control, and find a stabilising feedback x, = ¢(x1). For
this purpose we pick a function Vi(xq) = 1/2x%, and compute

Vi(x1) =x1% =x3 —x] +x19(x1) < x3 +x19(x1) =x1 (x] + d(x1)).

It is easy to observe that the choice ¢(x1) = —k1x3 —x% for k1 >0 yields
Vi(x1) < —kpc% = —Wj(x1), that in turn giwves the asymptotic stability
of the dynamics of the variable x1. Nezt, we introduce the variable
z = x3 — ®(x1) and re-write the equations of the whole system in the
form

X1 :x%—x?—i-d)(x])—i-z

i=u—d(x)=v
For this last system we take the function Vs (x1,z) = Vi(x1) + 142%. Its
derwative along the trajectory amounts to

Va(x1,2) = Vi +22 < —Wi(x1) + (dv(ix()”) +v> .
1

Now if ‘w#(?‘) +v = —kyz then the control v=—kyz — %(T‘) leads to

Va(x1,2) < Wi (x1) — kaz? = —kix§ — kaz2?,

so stabilises the system described by the wvariables (x1,z), ensuring a
convergence of the trajectory (x1(t),z(t)) to zero. Because $(0) =0, this
implies the convergence to zero of the original trajectory (xq(t),x2(t)).
Finally, the stabilising control for the system (xq1,x2) 18 equal to

_Vila) | do(xi)
dX] dX]

where Vi(x1) = 1/2x$ and d(x1) = —kixg —x%.

2
(x7 —x‘i’—i—xz),

u(x1,%2) =v+d(x1) = —ka(x2 —d(x1))
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AY

<Y

Figure 11.2: Unicycle

Example 11.4.3 As the next example of the application of the integrator
backstepping method we shall consider a kinematics model of the uni-
cycle mobile robot, described in coordinates q = (x,y,0)", presented in
Figure 11.2. The kinematics equation of the unicycle are the following

x =vcos0(t)
Yy = vsin 0(t)
0=w

Assume that the control problem of the unicycle consists in the track-
ing of the reference trajectory (xq(t),ya(t)). Let this trajectory be re-
alisable by the unicycle (admissible), what means that there exist a
reference control (vq(t),wq(t)), such that xqg = vq(t)cosB4(t), ya =
va(t)sinBq(t), 64 = wq(t). We define the tracking errors as Xe = Xq—X,
Je =Yya — Y, 0 = 04 — 0 and transform this error to the form

Xe cos® sinO® O Xe
Ye | = |—sin® cos® O | Ge
Oc 0 0 1 0

With this definition of the error, the error dynamaics can be expressed
by a time-dependent system

Vv(t) +va(t)cosOe(t),
+va(t)sinBe(t), (12.7)
t).

The synthesis procedure of a control algorithm based on the integrator
backstepping method consists of the following steps:
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o Suppose temporarily that in the second equation of the analysed
system (11.7) we have x. = 0, and try to stabilise the variable
Ye. To this objective we take 0. = —@(yeva)*, where ©(z) denotes
a function hawving the following properties: @(0) =0, zp(z) > 0
for z # 0, and the deriwative ¢’(z) 1s bounded. An ezample of
a function that satisfies these requirements is @(z) = 1:{;, for
a certain o > 0.

o Compute Ye = —va(t)sin@(ye(thva(t)). Taking Vi(ye) = v2,
and using the properties of the function ¢, for small values of the
function ©(yeva) we get the time derivative \Z (Ye) = —Yevasin @(yeva) <
0. This yields the uniform asymptotic stability of the variable ye.

e Define the variable z = 0.+ @ (yeva), and compute its time deriva-
tive

z= ée + (P/(yevd)(gevd +YeVa)
=Wgq—W+ (P/(Uevd)(_wxevd +V%1 sin 0, +ye"’d)-

e Take the function

1 1 1
VZ(txxexyexz') = Exé + Eyé + ZZZ,

for some vy > 0. The differentiation of V, along the trajectory of
the error system (11.7) results in

. . . 1 . .
V2 = XeXe +YeYe + ;zz = Xe(—V+vqc080.) + YeVvq sin O,
1 . .
+ ;z (Wa =W+ @' (Yeva) (—Wxeva + visin0e +yeva)) -

e [nvoke the Hadamard’s Lemma presented in subsection 3.3, in the
form

1 1

df(s(x+xo)+(1—s)xo):f(xo)—i—xJ f/(sx+x0)ds.

fx-Fxo) Zf(Xo):J
0

0

We have z = 0. + @(yeva), therefore

1
sin 0 =sin(z—@(yeva)) =sin(—@(yeva)) +ZL cos(sz — @(yeva))ds.

n

*the argument of ¢ is the product of y. and v4
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o Utilising the above, compute

V2 = Xe(—V + V4 c050e) — Yeva sin h(yeva) + Yeznva

+ ;z (Wa — W+ @ (Yeva) (—Wxeva +visin0c +yeva))

. 1
= Xe(—V+vqcos0c) — Yevasind(yeva) + v (Yyenva

+wa — (14 @' (yeva)xeva) w+ @’ (visinOe +yeva)) .

e In order to get the derivative V, negative, choose the controls v
and w wn such a way that satisfy the dependences

—V+vgqc080. = —CiXe
—(1+ @' (yeva)xeva)w +vyenva + wq )
+o’ (vf1 sin O, +ye\')d) =—C2z

for positive coefficients ¢1 and c2. Having made them explicit we
obtain

{v =C1Xe +VvgcosBe
1

w = m (CZZ‘i_YUQan +Wd + (P, (V%i Sin Qe +ye\)d))
as well as
Vi = —c1x% — Yevasin d(yeva) —c2z? < 0.
>0

To finalise our analysis we notice that the inequality Vo < 0 implies
a boundedness of the function V,, so also of the variables x., Y. and
z. Furthermore, if the reference trajectory (vq(t),wq(t)) s bounded
together with its first order deriwvative then the controls v(t), w(t) as
well as the derwatives Xe, Ye and ée stay bounded. We then conclude
that the second order deriwative V, is bounded. Since the function V>
has a limit, and the function V, is bounded, we obtain from Barbalat’s
Lemma that V> — 0, i.e. (xe(t),ye(t)va(t) sin d(ye(t)va(t)), Be(t)) — 0.
Under suitable assumptions imposed on the reference trajectory this
allows us to show that also ye(t) — 0.



Chapter 11. Chained form systems 135

11.5 Bibliographical remarks

The chained form systems play in control theory a particular role, both
for purely theoretical reasons (the so called Goursat normal form) as well
as with respect to the existence form them control algorithms, see [JN99,
MZ594], chapter 8, [Kha00], chapter 14 or [Sas99], chapter 12. The Murray’s
Theorem can be found in the chapter 8 mentioned above or in chapter 9
of [Sas99]. Example 11.4.1 comes from [MLS94], the Example 11.4.2 has
been borrowed from the monograph [Kha00], whereas the Example 11.4.3
is a reconstruction based on [JN97]. To a Reader interested in a more in
depth study of the method of backstepping we recommend the monograph
[KKK95].
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Chapter 12

Dynamic feedback, linearisation

12.1 Motivation

Let us look again at the kinematics of the unicycle

X =1ujcos0
Yy=1ursinb
G =Uup
described by the coordinates q = (x,y,0)". Assume that we want to control

the end position of the shaft of length d fixed to the unicycle as shown in
Figure 12.1. The output function of this system takes the form

Yy =x+dcos0d
Y2 =y +dsinb

<Y

Figure 12.1: Unicycle with shaft

136
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First, let us check, if the system is input-output decouplable. To this aim
we differentiate

U1 =% —d0sin0 = u; cos® —uydsin 6,
U =1U+dOcos® =u;sin®+u,dcoso,

Yr) _ |cos® —dsin®] fug) Y A%
(gz) N Line dcosﬁ] <u2> =Dlgju=v= <V2>'

The differential degrees of both outputs are identical, p; = p, = 1, and if
det D(q) = d # O then the system is decouplable. Since p; +p2 =2 < 3,
there appear the zero dynamics. To describe them, we shall introduce new
coordinates

1.e.

&1=w
&2 =12
&3 =10
In these coordinates the system’s equations look as the following
E1=101=v
E2=92=v2
ég —0=w, = _%Vl sin 0 + 1H\QCOSG

The assumption that y;(t) = 0 and y,(t) = O requires zeroing the coor-
dinates &7, &,, as well as the inputs v; and v,. In consequence, the zero
dynamics become

&3 =0,
thus they are bounded. If the control problem consists in the tracking of
a prescribed trajectory (xq(t),yq(t)) the tracking control algorithm may
have the form of a proportional (P) regulator with a feedforward term, i.e.

Vi =Xq —Kki(x —xq)

v2 =Ya —ka2(y —ya)
As can be seen, the procedure of feedback decoupling and (partial) lineari-
sation of the model of unicycle has been successful, on condition that we
want to control a point located at the end of the shaft, in some distance d

from the middle point of the rear axle. Now we shall examine in more detail
the case of d =0, so of the output function

{U1=X
Y2=Yy
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In this case we have
Y1 =1uqcosB
Yo =uqsinbd

thus the decoupling matrix is singular and the decoupling procedure is not
applicable. Not discouraged too much by this fact, we shall differentiate the
output function once again under assumption that the controls are differen-
tiable,

Y1 =ujcos0 —u10sin® =1 cos® —uqu,sind
Yy =11sin0+u10cosO =1qsin 6 + uju, cosO

Now, let us assume that in the formulas given above w; does not denote
a control any more, but an extra state variable. Instead, as the control we
shall take wi =117 and w, = u,. This being so, we get

U1 cos® —uqsind
<g2> [sine u; cos 0 ] w=Dlg,wm)w

On condition that 1y # 0 the matrix D(q, 1) becomes a decoupling matrix.
Having applied the feedback v = D(q, u;)w we arrive at a decoupled input-

output relationship
U1 = v
Y2 =w2

It turns out that, after extending the state space of the unicycle by the
variable 1 and adding to the unicycle’s equations the identity 11; = wy,
the system

X =ujcosb

Yy=ugsinbd
BZWZ
ll] = W1

with output

{U1=X
Y2 =y
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is decouplable and linearisable by the feedback & = @(x) = (y1,U1,Y2,92)",
v =D7"(q,ur)w, under which it takes the form

&1 =&
£ =W
E3=84
54:\’2

valid in the region R3 x R —{0}. The feedback based on an extension of
a system by an extra dynamic part is called dynamic. The feedback without
such an extension, discussed in section 9.2, is referred to as static. Therefore,
the kinematic equations of a moving unicycle (u; # 0) with the zero length
of the shaft d = 0, are dynamic feedback linearisable, but they are not
static feedback linearisable. This shows that the dynamic feedback is a more
powerful tool than the static one. In the next section we shall define the
concept of the dynamic feedback in a formal way.

12.2 Dynamic feedback

Let a control-affine system
o: % = f(x(t) + g(x(u(t) = f(x(t) + Y gix(wi(t)  (32.2)

be given, where x € R™, u € R™. To this system we add a dynamic
compensator

, (12.2)

‘. z = F(x(t)), z(t)) + G(x(t), z(t))w
"l u=H(x,z) + K(x, 2)w

z € R9, w € R™. The variable z is the state variable of the compensator;
the dimension of the compensator’s state space equals q. A coupling of the
system (12.1) and the compensator (12.2) gives the control system

LR\ (Fx(t) + g(x(t)H(x(t), 2(1))
o) (z> ‘( F(x(1), (1)) )

[g(x(t t t))

C w = O(x(t), z(t)) + ¥(x(t), z(t))w. (12.3)
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For a control system
o’ E=F(E(1) + G(E(D)v.
we introduce the following definition of the dynamic feedback equivalence.

Definition 12.2.1 The system o 1s dynamic feedback equivalent to the sys-
tem o'/, o =pf o’ if there exists a dynamic compensator Kk and a static
feedback

{& = ¢(x,2)

w = «(x,z) + B(x,z)v

such that

(0 +k)=0'.
F

If the diffeomorphism ¢(x,z) is local, we speak of the local dynamic
feedback equivalence.

The system o is named dynamically feedback linearisable (dynamically lin-
earisable) if o’ is a linear system, and there holds o =pfo’.

12.3 Theorems on dynamic linearisation

Intuitively, after the analysis of our examples of decoupling and linearisation
with extra integrators employed in the control loop, we may believe that
the essence of the dynamic feedback consists in a "mutual shifting” of the
controls acting on the system. We can assume that such a shifting is achieved
by the integration of controls. Therefore, if there is only one input, the
dynamic feedback should not be effective. It is indeed the case, as it follows
from the next theorem.

Theorem 12.3.1 A single-input system 1s dynamac feedback linearisable if
and only if it 1s static feedback linearisable.

The next result presents a necessary condition for dynamic linearisation.
Since a statically linearisable system is a fortior: dynamically linearisable,
obviously this is also a necessary condition for static linearisation.

Theorem 12.3.2 If a system 1s dynamaic feedback linearisable in a neigh-
bourhood of an equilibrium point then its linear approzimation at this
pownt s controllable.
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wi f Ziy,  Z12 f Z11! W
Wi, J" Zmpum  Zm2 J‘ Zm1 Um

Figure 12.2: Brunovsky compensator

12.3.1 Brunovsky compensator

A glance at the dynamic linearisation problem allows one to expect that the
problem is much harder than that of the static linearisation for the reason
that in dynamic linearisation we need to design a compensator and then
to linearise the system together with the compensator. It turns out that
the choice and the linearisation of the compensator can be accomplished in
a quite arbitrary manner, by using a linear compensator in the Brunovsky
canonical form. This is done in the following way. For the system (12.1)
we choose a collection of integers 0 < py < p2 < -+ < Wyp. Their sum
defines the state space dimension of the compensator, ¢ = Y ", ni. The
Brunovsky compensator is a specific instance of the system (12.2), defined
in the following way (see Figure 12.2):

Z11 =212, 212 = Z13,- -+, 21y = W1, uy =211,

221 =222, 222 = Z23y- -1 22,4, = W2, uy =231,

Zml =Zm2, Zm2 = Zm3;--- :impm =Wm, Wm = Zml-
By the definition of the Brunovsky compensator it follows that ugm) =wr,
u(2”2) = W3,..., u](#‘“) = W, 50 the new controls need to be integrated,
respectively, w1, 1o,..., Um times. We also observe that the dynamics of the

Brunovsky compensator do not depend on the state variables of the system
(12.1), what makes the compensator a sort of universal. The numbers ;
are ordered increasingly; thus if a certain u; = O, then all the p; preceding
u; are also equal to zero. p; = O means that the control input w; will not
be integrated, i.e. u; = wj. Now, let us take the system (12.1), and choose
the Brunovsky compensator described by the integers (w1, u2,..., tm). We
define a collection of distributions

Ao = span {gx|luk =0}, Aiy1 = A +ads Ay + span {gilux =1+ 1}
Co(R™,R) Co(R™,R)
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Sufficient conditions for the dynamic linearisation (the linearisation employ-
ing the Brunovsky compensator) are included in the following theorem.

Theorem 12.3.3 (Charlet-Lévine-Marino) The system
s %= f(x(t)) + g(x(t)u(t) = F(x(t) + D gi(x(t)ui(t),
i=1

x € R™, u € R™, 1s dynamic feedback linearisable in a neighbourhood of
the equilibrium point xo =0, f

1. dim An+um—1 (0) =mn,

2. the distributions A, 1=0,1,...,n+wmn—2 have around 0 constant
dimension and are involutive,

3. in a certain neighbourhood of zero there holds [g;, Ai]l C Aiyq, for
i=L2,...,mu=>1,1i=0,1,...,n+puy — 2.

In the case when 1 > iy, the last component of the distribution Ajq is
equal to zero. Notice that if u,, = O (therefore all u; = 0), the condition
for the dynamic linearisability coincides with the condition for the static
linearisability presented in Theorem 9.2.2.

12.4 Differential flatness

In the chapter devoted to the input-output decoupling and linearisation we
have noticed (Remark 10.3.1) that if the differential degrees of the outputs
sum up to the dimension of the system’s state space then there exists a
feedback (¢, «, 3) depending exclusively on the derivatives of the outputs
with respect to time, that linearises the system. One can say that both the
state variables as well as the controls in the new system depend only on the
jets of the outputs. This observation supports the concept of a differentially
flat system tat will be defined in the following way.

Definition 12.4.1 The control-affine system
o %= f(x(t)) + g(x(t)u=F(x(t) + D gi(x(t)ui(t),
i=1

where x € R™, uw € R™, 1s called differentially flat if there exist functions

yi:hi(x)y i’:]izi"'imi
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referred to as the flat outputs, such that almost everywhere, perhaps
except at some singular points, the state variables as well as the controls
of the system o can be expressed as some functions of the flat outputs
and their time derivatives, 1.e.

X{ =Xi (U,Q;---,U(ri)>; 1.':1727"'711
W = uj (y,g,...,y(si)), ji=1,2,...,m.

A fundamental feature of differentially flat systems is that they are almost
everywhere dynamically feedback linearisable. Because we do not have
checkable necessary and sufficient conditions for differential flatness, in or-
der to establish the flatness we usually need to resort to the definition. It
is known that the kinematics of mobile robots like the unicycle, kinematic
car and the tractor pulling trailers are differentially flat. Similarly, we can
prove the flatness of the chained form systems. Suppose that we have the
chained form system

7'(1 =1UuUq, 5(2:112, k3:x2u1,...,knzxn,1u1.

As the flat outputs let us choose y; = x; and y, = x,, and then compute

X1 =Y1, Xn = Y2, U1 =X1 =Y1, Xn-1 —:1 —1;,
Xn—1 _ Y2yr — Y2y :
Xn—2 = = yeeey, U2 = X2,

uq y%

It follows that the chained form system is differentially flat on condition
that y; = u; # 0. An example system that is not differentially flat is
the kinematics of the rolling ball. We want to conclude with an observa-
tion that, after showing the differential flatness of a system, the design of
the linearising dynamic feedback is quite natural. We shall see this when
studying Examples 12.5.2 and 12.5.3.

12.5 Examples

Example 12.5.1 Consider the following control-affine system

7'61 =X2
Xz =Uup
X3 =1

5(4 = X3 —X3Uy
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This system is described by three vector fields: f(x) = (x2,0,0,x3)"
g1(x) = e3, and g2(x) = ex —x3e4; e; denotes the i-th unit vector in R,
We shall verify a possibility of linearising this system by either static
or dynamac feedback. For completeness we shall begin with checking the
necessary condition for the feedback linearisability. It is easily noticed
that the point uw =0, xog = 0 s an equilibrium point of the o. The linear

approrimation

7

01 00 0 0
Cof0) |00 0o o1
0010 0 0

As can be checked, the rank of the Kalman matriz
rank [B, AB, A’B, A’B] = rank[B, AB] = 4,

so the linear approzximation s controllable, and the necessary condi-
tion holds. Now we ask the question of the linearisability by the static
feedback. We compute

D% = span {g1,92}= span {es, ez —xzeq}, dimDO(x) = 2.
C>(R™,R) C>(R™,R)

The distribution D° has constant dimension at any point x € R*. Let’s
find the Lie bracket

g12(x) = [g1, g2](x) = Dga(x) g1 (x) — Dg1(x)g2(x) = —es ¢ D°.

Since the distribution DO is not involutive, the system o is not static
feedback linearisable, and we shall try to achieve the dynamic feedback
linearisation. Our first step will be the choice of a Brunovsky compen-
sator. Suppose that w1 =0 and uy; = 1. Then we have q =1 and n = 4.
We compute the distributions

Ao = span {g1}= span {e3}.
C>(R™,R) C*(R™,R)

Obwviously, the distribution Ag has constant dimensiton = 1 and 18 tnvo-
lutive. Next, we find

A1 = Ao+ adsAo + span {g2}.
C>(R™,R)
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AY

<Y

Figure 12.3: Unicycle

Because A1 = spance(gn gyi€s, €4, €2 — X3e4} = spance gn g){€2, €3, esl,
the distribution Ay s also constant dimensional (of dimension 3) and
mvolutive. In the next step we compute

Ay = Ay +adsA; = span {e1, ez, e3,eslh.
C®(R",R)

The distribution Ay has constant dimension 4 that is equal to the di-
menston of the state space. This implies that the distributions Ay =
Az = A,, so the conditions number 1 and 2 of the Theorem 12.3.3 are
fulfilled. We are left with checking the condition number 3, i.e. showing
that

[92,A0] C A1, [92,A1] C Ay, [g2,A3] C As.

As a matter of fact, it suffices to check only the first from among these
conditions, what follows from the fact that [g2,91] = es € Ay. Sum-
marising, for all the conditions for the dynamic feedback linearisation
are satisfied, the system o 1s dynamaic feedback linearisable. This exam-
ple reveals that the class of dynamaically linearisable systems is larger
than the class of systems that can be linearised by means of the static
feedback.

Example 12.5.2 Let us ezamane the differential flatness of the kinematics
model of the unicycle characterised by coordinates q = (x,4,0)7, see
Figure 12.3,

X = ujcosb

y=uysinbd

é:uz
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To this avm we choose as the (candidate) flat outputs y1 =x, y, =y,
and compute

_ _ _ Y2 2 a2 _a_ Y2Yy1 — Y241
X=Y1, Yy=ya2, G—arctang], W ==44/yY7+y3, u2 =0= y% +g§ ,
that proves the flatness of the unicycle outside the singular point u; = 0.
In order to design the linearising feedback, let us observe that the state
coordinates of the unicycle have been ezrpressed in terms of the flat
outputs and thewr first order time derivatives. For this reason the new
coordinates can be defines as

&1 =y
& =1
&3 =Yz
&4 =12

The unicycle’s kinematic equations in these coordinates take the form

&1=&
E,z :131 :111 cose—u1uzsin9 =W cose—u1wzsine
&3 =&

&4 =172 =1U18in0 4+ ujuy cos® = wy sin 0 + wyw; cos 6

It follows that to the equations of the unicycle one needs to add the

dyna,mic compensator
111 = Wi
Uy =wy

{w =wjcos0 —ujwysin0

and apply the feedback

vy =wjsin 0 + uyw; cos 0

that converts the kinematic model of the unicycle to the linear system

£1=§&,
ézZW
£3 =144

&4 =V2
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Figure 12.4: Kinematic car

These feedback transformations are well defined in the set of states of
the system with compensator (q,u;) € R3 x R —{0}. The state space
diffeomorphism assumes the form

X
uq cos 0

Yy
uq sin @

£=o(q,u) =

Example 12.5.3 A slightly more involved s the kinematics model of the
kinematic car shown wn Figure 12.4. The coordinate vector of the kine-
matic car q = (x,Y,0,9)". The kinematics model will be taken in the
following form

X = uq

y=1u;tan0

N tan @
0= Ui cos 0

¢ =uy
that is valid under the condition |0, |@| < T/,. As in the previous sec-
tion, we choose the flat outputs as

Y2 =Yy
We compute
- Y2 4 U2u1—yoyr . tane
X = , = , W = ,Gzarctan,—,9:4, S = )
Y2y1 — Yz - s (3) - . (3)
@ = arctan = ———"35-cos0(y1,92), w2 = ¢(Y1,Y1,Y; Y2, 92,45 ).
U1 (97 +93) 1 2
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The results of these computations imply that for uw; # 0 the kinemat-
1cs of the car is differentially flat. Now we shall derive the linearising
dynamic feedback. Since q = q(y1,Y1,Y1,Y2,Y2,Y2), we pick new coor-
dinates as

&1 =y1

&2 =91 =uy

&3 =101 =1y

&4 =Yz

&s =Yz =ujtanb

&6 :1;]2 =17 tan0 Jru%(t:ss%

In these mew coordinates the equations of the kinematic car are the
following:

&1 =&

£ =&3

&3 =1y

£q = Es

s = &6

X <2L’L1 wg tan e+uy uz% ) cos® 6+%u? sin20tan? ¢
£ =1 tan 0 + 11y Lrtane corr @

cos> 0 cos® 0

This being so, we introduce a two-dimensional dynamic compensator

w =
ﬁ =W )
Uy =Wy
and the feedback
{V] = W1
3 313« 2 2
_ _ujtan@ 2nug tan @ cos® O+ 3Jujsin 20 tan” @ uy
V2 =N 30 + cos3 0 +witan 0 +w; cos? @ cos3 0

Subject to the dynamaic linearisation the car’s kinematics assume the
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form of a linear control system

&1 =&
& = &3
532\)1
& = &5
&5 = &6
észvz

This linearisation is justified in the region of state wvariables of the
system with the compensator, gwen by (q,u;,n) € R? x (—%,—i—%)z X

(R—{0}) x R. The state space diffeomorphism is defined by the formula

X
uq
n
Yy

uj tan®

2
ujtan @
T]tane—l- cos3 0

&=o(q,ur,m) =

12.6 Bibliographical remarks

Conditions of dynamic feedback linearisability by means of the Brunovsky
compensator, and Example 12.5.1 come from the paper [CLM91]. Non-
genericity of this kind of linearisation was examined in [T'ch94]. The dy-
namic feedback linearisation of a model of induction motor taking into ac-
count the magnetic flow has been described in [Chi93]. The concept of
differential flatness is discusses exhaustingly in the paper [FLR95]. The
development of the theory and applications of differentially flat systems,
mainly in the context of dynamic linearisation, has been described in mono-
graphs [SRA04, Lév09].
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Chapter 13

Limitations of feedback

In the last chapter of these notes we shall deal with certain limitations of
applicability of the feedback to the synthesis of control algorithms for non-
linear systems. As usual, the linear control systems will serve us as a point
of reference.

13.1 Linear systems

Let a linear system
o: x=Ax+ Bu, (13.1)

be given, with m control inputs and n-dimensional state space. We recall
that the system o is feedback stabilisable if there exists a linear function
u = Kx, such that the linear dynamic system

x = (A + BK)x

has an asymptotically equilibrium point xo = 0. In chapter 0.2.3 we have
stated the Remark 0.2.1, saying that a sufficient condition for stabilisability
of a linear system is its controllability. Also, we have shown that this prop-
erty results from a more general Pole Placement Theorem 0.2.4. Therefore,
the controllability of a linear control system guarantees its stabilisability.
Apparently, this feature does not generalise to non-linear control systems.

13.2 Brockett’'s Theorem
Consider a smooth control system
x = f(x, u), (13.2)

151
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and let u = 0, x = xo denote its equilibrium point, i.e. f(xg,0) = 0. The
system (13.2) is called feedback stabilisable if there exists a smooth function
u = «(x), a(xo) = 0, such that the point x¢ is an asymptotically stable
equilibrium point of the dynamic system

x = f(x, x(x)).

The following theorem establishes a necessary condition for stabilisability
of the system (13.2).

Theorem 13.2.1 (Brockett) Suppose that the system (13.2) is stabilisable,
and let A denote a neighbourhood of xo. Then, the tmage of the function

v:AxR™ — R™, y(x,u) =f(x,u),

15 a certain open neighbourhood of the point 0 € R™.

We often say the the Brockett’s Theorem defines an obstruction to stabilis-
ability of a non-linear control system. For illustration, take a system (13.2)
in the chained form

5(1 =1
5(2 =Uup
5(3 = X2Uq

We choose A = R3 and y(u,x) = f(u,x) = (uy,uz,xu7). In order to get
the point 0 € R3, we need to assume that u; = u, = 0. Notice, however,
that a point arbitrarily close to zero, of the form (0,0,¢e) € R3 does not
belong to the image of the function f. This means that the chained form
system is not feedback stabilisable. Also observe that the chained form
system is controllable, and despite that, not feedback stabilisable. A similar
conclusion holds for any driftless system, either controllable or not. To this
objective, consider the system

x =g(x)u= Z gi(x)ug

with control vector fields independent at the point xo. Without any loss of
generality we may assume that the matrix g(x) takes the form

[91 (X)]
g2(x)]’
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such that around the point xo rank §;(x) = m. Let
A ={x € R"|rank §; (x) = m}.

On the set A there exists the feedback u = §~' (x)v transforming the drift-
less system to the feedback equivalent form

X = [ bm ] v
h(x)
We have y(v,x) = (v, h(x)v). In order to reach the point 0 € R™, we need
to set v = 0. However, as far as m < n, no point of the form (0., €ey),
e; a unit vector in R™"™ ™, belongs to the image of the function y. Thus,
a driftless control system satisfying the condition m < n is not feedback
stabilisable. An analogous reasoning results with a conclusion that for a
control affine system

x=f(x)+ ) gilx)w
i=1

whose drift vector field belongs to the distribution spanned by the control
vector fields, and the number of controls is less than the dimension of the
state space, m < mn, a stabilising feedback does not exist either. The condi-
tion provided by the Theorem 13.2.1 is valid also when instead of a smooth
one takes a continuous feedback u = o(x).

The Brockett’s condition appeared to be one of the milestones in control
theory, and initiated an advancement of research on the feedback control
methods that would not be impaired by this condition, such as a feedback
depending on the state and time or a discontinuous feedback, as well as
on the methods of practical stabilisation where instead of the asymptotic
error convergence one requires that the system’s trajectory approached the
equilibrium point in some controlled manner.

13.3 Theorem of Lizarraga

In this section we shall study a result that plays the role of a counterpart of
the Brockett’s Theorem that applies to the problem of trajectory tracking.
In order to state this result, consider a control system of the form

X = f(X,LL), (133)

containing a continuous function f : R™ x R™ —— R™ such that, for a
fixed u € R™ the vector field f,,(x) = f(x,u) is smooth. We assume that
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admissible control functions u(-) € U are piece-wise continuous, and that for
every control function u(-) and every initial state xo there exists a trajectory
xu(t) = D¢(xo,u(:)) of the system (13.3). By a reference trajectory for
the system (13.3) we shall mean a trajectory y,(t) fulfilling the equation
Uy = f(yy, V) for a certain control function v(-) € U. We say that the system
(13.3) has a continuous stabiliser if there exists a continuous function

u = (X(X:U:V:t);

that satisfies the identity «(y,y,v,t) = v, and is such that for the trajectory
X« (t) of the time-dependent dynamic system

{ 7‘((X = f(X(x, O((Xouy\nv7 t))
gv = f(yv;v)

it holds that x4 (t) —t—+0o Yv(t). The theorem presented below estab-
lishes a sufficient condition for the non-existence of a continuous stabiliser.

Theorem 13.3.1 (Lizarraga) For the decomposition of the control space into
a direct sum of two subspaces

R™"=E ®E,;
let us define two collections of vector fields
Bi ={fu:R" — RMueky), i=1,2,

and let Bi(-) denote the smallest Lie algebra of vector fields containing
Bi. Suppose that for the introduced decomposition there exist submani-
folds S1,S, € R™ satisfying the conditions:

1. S; 15 tnvariant with respect to Bi(-), what means that trajectories
of vector fields belonging to the Lie algebra Bi(-), initialised in S;
stay within Sy,

2. dimensions dim Ei(p) of the spaces spanned by the vector fields
from the Lie algebras Bi(:) are constant at any point p € Sy,

3. there ezists a point q € S1 NSy, such that the sum of subspaces
spanned by the Lie algebras Bi(-) at this point is equal to the direct
sum of these subspaces, and 1s contained but not equal to the sum
of tangent spaces to the submanifolds S;

~

B1(q) +B2(q) =B1(q) @ B2(q) € TqS1 + TqS2.
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Then, there 1s no continuous stabiliser for the system (13.3).

A consequence of the Theorem of Lizdrraga is that not every admissible
reference trajectory in a non-linear control system can be tracked by means
of a continuous feedback depending on the system’s state, the reference
trajectory, and time. For illustration, take the chained form system

7'(1 =1
5(2 =Uup
5(3 = X2Ww

studied previously. The control space R? of this system can be decomposed
into a direct sum R? = E; ® E,, where E; = spang{ei}, i = 1,2. We have

1 0
B, = 0 V‘\)ER ,Bzz 1 W|W€R =&
X2 0

-

and, obviously, Bi(-) = Bj. Let’s choose the submanifolds S; = S, =
R3. Then the invariance condition is satisfied trivially. Both the subspaces
Ei(p), i1 =1, 2 are 1-dimensional, what implies that the dimension condition
holds. Eventually, for the point q =0 € S; NS, we have

B1(0)+B2(0) =B1(0) ®B2(0) =R? x {0} C TpS1 + ToS2 = R>.

Since all conditions of the Theorem 13.3.1 are fulfilled, the chained form
system does not have a continuous stabiliser.

13.4 Bibliographical remarks

The Brockett’s condition has been formulated in [Bro83]. For tens of years
it has played a role of the spiritus movens of non-linear control theory. The
theorem of Lizdrraga comes from the paper [Liz04].
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