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Chapter 0

Prelude

0.1 Basic concepts

At the beginning we shall explain a number of concepts from set theory,

algebra, topology and mathematical analysis that will appear later on in

these notes. It is assumed that the Reader has had a contact with the

language of formal logic and set theoretical operations, and also got some

basic knowledge of the calculus, algebra and ordinary di�erential equations

included in the undergraduate teaching curricula at technical universities.

We expect that if a certain notion has not been de�ned in these notes, the

Reader is able to �nd it out in the literature.

0.1.1 Set theory

The concept of a set is treated as a primary concept. Suppose that X,Y

denote some universa (sets) with elements x,y, z. A subset R ⊂ X× Y will

be called a binary relation. We say that x is in relation R with y, xRy, if

(x,y) ∈ R.

Definition 0.1.1 A relation R ⊂ X× Y will be named a function, if

(x,y), (x, z) ∈ R =⇒ y = z.

The function is written down by the formula f : X −→ Y. The set Gf =

{(x,y)|(x,y) ∈ f} is referred to as the graph of the function.

Definition 0.1.2 Given a universum X, the function

f : X× X −→ X

will be called a (binary) operation in X.

1



Chapter 0. Prelude 2

Definition 0.1.3 A relation R ⊂ X×X will be called an equivalence relation,

if the following conditions hold:

� reexivity: xRx,

� symmetry: xRy =⇒ yRx,

� transitivity: xRy∧ yRz =⇒ xRz.

Every equivalence relation partitions the universum into non-empty and

disjoint equivalence classes de�ned as

[x] = {y ∈ X|yRx}.

This partition is exhaustive, i.e.
⋃
x∈X[x] = X, so each element of the uni-

versum belongs to a certain equivalence class. A classi�cation of elements

of a universum consists in the introduction into it of an equivalence relation

and the characterisation of every equivalence class by its speci�c element

playing the role of a label. Such an element is called a normal form or,

sometimes, a canonical form of elements from this class. Therefore, the

objective of a classi�cation is the determination of equivalence classes and

ascribing to each of them a normal form. To make the classi�cation e�ec-

tive it is desirable to get a �nite number of the equivalence classes. On the

other hand, the classi�cation must not be trivial, for example assigning to

all the universum's elements a single class. A leitmotif of these notes will be

a classi�cation of three universa: functions, dynamic systems, and control

systems.

0.1.2 Algebra

Definition 0.1.4 Let X denote a universum with a binary operation ◦. The

system (X, ◦) is named a group, if there exists in X a neutral element

e, such that x ◦ e = e ◦ x = x and every element x ∈ X has the inverse

element x−1 ∈ X for which x−1 ◦ x = x ◦ x−1 = e. If the group operation

is commutative, x◦y = y◦x, the group is called commutative (Abelian).

When the group operation is associative, x◦(y◦z) = (x◦y)◦z, the group

is called associative.

Definition 0.1.5 If in the universum X there are two operations: one ◦,
with respect to which X is a group and another ∗, such that they are

distributive: x∗ (y◦z) = (x∗y)◦ (x∗z) and also (y◦z)∗x = (y∗x)◦ (z∗x),
then X will be named a ring. If there exists in the ring an element 1,

such that 1 ∗ x = x, the ring is called a ring with unity.
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Definition 0.1.6 A universum X is referred to as a linear space over the

set of real numbers R, if the group (X, ◦) is commutative and associative,

and a multiplication is de�ned of elements X by numbers α,β, 1 ∈ R,

having the following properties: (α+β) ◦x = αx◦βx, α(x ◦y) = αx◦αy,

(αβ)◦x = α(β◦x) and 1x = x. If, instead of R we take a ring with unity

then X is called a module over this ring.

Definition 0.1.7 A universum X with two operations ◦, ∗, such that (X, ◦)
is a linear space over R and (X, ∗) is a ring, while the introduced oper-

ations satisfy the conditions (x ◦ y) ∗ z = (x ∗ z) ◦ (y ∗ z) and x ∗ (y ◦ z) =
(x ∗ y) ◦ (x ∗ z), we call an algebra.

0.1.3 Topology

The notion of a topological space will be introduced by means of a family

of open sets.

Definition 0.1.8 Let X denote a universum. Its topology X will be de-

�ned as a family O of subsets of X, called open sets, with the following

properties:

� the empty set and the whole universum belong to O,

� the meet of two open sets is an open set,

� the union of arbitrary number of open sets is open.

The pair (X,O) will be called a topological space. By a neighbourhood

of a point x ∈ X we understand any open set X containing x.

Definition 0.1.9 Let a function f : X −→ Y between two topological spaces

be given. The function f is named continuous, if the counter-image of

any open subset of Y is open in X. Using the terminology of sequences

this implies that for any sequence {xn} of elements of the space X there

holds

lim
n→+∞ f(xn) = f

(
lim
n→+∞ xn

)
.

In what follows we shall exploit topological characteristics of some sets. For

this reason we de�ne the following.
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Definition 0.1.10 A closed set is the complement of any open set. An inte-

rior intA of a subset A ⊂ X is de�ned as the biggest open set contained

in A. A subset A is called a boundary set, if its interior is empty. A

subset A is dense in X if in every neighbourhood of each point x ∈ X

there are some points from A. A set A is nowhere dense if it is closed

and boundary. A topological space is complete if the limit of every

sequence of elements of this space belongs to this space.

0.1.4 Calculus

A basic tool used in these notes is the di�erential calculus. A useful scenery

for the introduction of the concept of derivative is a Banach space.

Definition 0.1.11 A topological space X is named a Banach space if it is

a linear space (over R), normed, and complete. The topology of the

Banach space is de�ned by means of the norm. If || · || denotes a norm

then a neighbourhood of radius r of a point x in the Banach space takes

the form

{y ∈ X| ||y− x|| < r},

while a sphere centred at x0 with radius r is de�ned as

Br(x0) = {y ∈ X| ||y− x0|| = r}.

Definition 0.1.12 Let f : X −→ Y be a transformation of Banach spaces.

The Fr�echet derivative of the function f at a point x is a linear function

Df(x) : X −→ Y that satis�es the condition

f(x+ v) = f(x) +Df(x)v+O(v2),

where the Landau symbol O(ε) denotes terms of order > 2. The Gateaux

derivative of the function f is de�ned as

Df(x)v =
d

dα

∣∣∣∣
α=0

f(x+ αv) =
∂f(x)

∂x
v.

The Gateaux derivative is e�ciently computable. Its signi�cance results

from the fact that if the Gateaux derivative exists and is continuous then it

is equal to the Fr�echet derivative.
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0.2 Linear control systems

By a linear control system we mean a system described by linear di�erential

equations

σ : _x = Ax(t) + Bu(t), (0.1)

where x ∈ Rn { state variable, u ∈ Rm { control variable, and A and B are,

respectively, the dynamics and control matrices of dimensions n × n and

n×m. The spaces Rn and Rm are called, accordingly, a state space and a

control space. For a control system the control problem consists in de�ning

such a control that guarantees the achievement of a control objective.

Every linear control system can be identi�ed with a pair of matrices,

σ = (A,B), so the set of linear control systems Σ ∼=Rn
2+nm. Given a control

function u(t) and an initial state x0, the system's trajectory can be found

as a solution of the di�erential equation (0.1). Invoking the method of

variations of constants we get

x(t) = etAx0 +

∫t
0

e(t−s)ABu(s)ds. (0.2)

The matrix exponential appearing in the formula (0.2) is de�ned as a sum

of the in�nite series

etA =

∞∑
i=0

(tA)i

i!
.

A number of methods exist allowing for the computation of the matrix

exponential without resorting to the summation of the in�nite series.

0.2.1 Controllability

A fundamental property of a control system, its raison d'etre, is the possibil-

ity of reaching any point of the state space using a suitably chosen control.

This fundamental property is referred to as controllability. To make this

concept precise we adopt the following de�nition of controllability

Definition 0.2.1 The system (0.1) is controllable, if for any initial state

x0 and any terminal state xd there exists a control u(t) and a control

time T > 0, such that

x(T) = eTAx0 +

∫T
0

e(T−s)ABu(s)ds = xd.
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Because x0 and xd are arbitrary, and the matrix eTA is invertible, the

property of controllability means that the integral

I =

∫T
0

e−sABu(s)ds (0.3)

assumes all values from Rn. Having de�ned the concept of controllability

we ask how to check if a linear system is controllable. For linear control

systems an answer to this question appears to be relatively simple and leads

to e�ective controllability conditions. Given a state x, let us de�ne a control

in the following way

u(t) = BTe−tA
T

G−1
T x. (0.4)

The matrix

GT =

∫T
0

e−sABBTe−sA
T

ds

appearing above is known as the Gram matrix of the system (0.1). It is

easily observed that the control (0.4) is well de�ned on condition that the

Gram matrix is invertible. Evidently, a substitution of this control to (0.3)

yields I = x. On the basis of these observations one can state the following

necessary and su�cient controllability condition for a linear system.

Theorem 0.2.1 The system (0.1) is controllable if and only if for a certain

T > 0 the Gram matrix GT =
∫T
0 e

−sABBTe−sA
T
ds is invertible (detGT 6=

0). Furthermore, the control transferring the system from the state x0
to the state xd in time T takes the form

u(t) = BTe−tA
T

G−1
T

(
e−TAxd − x0

)
.

A direct check of conditions stated in Theorem 0.2.1 is not easy, therefore,

in order to decide controllability e�ciently we use the following Kalman

criterion.

Theorem 0.2.2 For a system σ = (A,B) described by the formula (0.1) we

introduce the Kalman matrix

Ω =
[
B, AB, . . . ,An−1B

]
.

The system (0.1) is controllable if and only if the Kalman matrix has

full rank n,

rankΩ = n.
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0.2.2 Equivalence

Take two linear systems of the form (0.1) given as

σ : _x = Ax(t) + Bu(t),

σ ′ : _ξ = Fξ(t) +Gv(t),

where x, ξ ∈ Rn u, v ∈ Rm. These control systems will be referred to as

equivalent if there exists an unambiguous relationship between their tra-

jectories. More precisely, two kinds of equivalence of linear control systems

are distinguished, the S-equivalence and the F-equivalence, de�ned in the

following way.

Definition 0.2.2 Two linear control systems are S-equivalent, i.e.

σ ∼=
S
σ ′ ⇐⇒ u = v and (∃P, det P 6= 0)(ξ = Px, s.t. PA = FP, PB = G).

Definition 0.2.3 Two linear control system are F-equivalent, i.e.

σ ∼=
F
σ ′ ⇐⇒ (∃P, det P 6= 0, K, Q, det Q 6= 0)(ξ = Px, u = Kx+Qv,

s.t. PA+ PKB = FP, PBQ = G).

Both these equivalences are equivalence relation, what means they are re-

exive, symmetric and transitive. It is easily seen that the S-equivalence

is a speci�c case of the F-equivalence for K = 0 and Q = Im. A relation-

ship between controllability and the system equivalence is revealed by the

following

Theorem 0.2.3 Controllability is an invariant of both these equivalences,

i.e. if σ ∼=F σ
′ and σ is controllable then also σ ′ is controllable. A for-

tiori, the same conclusion is valid for the S-equivalence.

0.2.3 Classification and normal forms

Let a single input linear control system be given

σ : _x = Ax(t) + bu(t),

where x ∈ Rn, u ∈ R, A ∈ Rn2 , b ∈ Rn. We shall demonstrate that by a

speci�c choice of the matrix P the system σ can be made S-equivalent to

so-called controllability normal form. Since the system σ is controllable, it

satis�es the Kalman criterion, so the quadratic matrix

Ω =
[
b,Ab, . . . ,An−1b

]
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is invertible. Take P = Ω−1. We are looking for a matrix F, such that

PA = FP, i.e. AΩ = ΩF. We compute

AΩ =
[
Ab,A2b, . . . ,Anb

]
.

From the Cayley-Hamilton Theorem we deduce

An = −an−1A
n−1 − an−2A

n−2 − · · ·− a0In,

where ai denote coe�cients of the characteristic polynomial of the matrix

A, det(λIn−A) = 0. Now, using the condition for S-equivalence, AΩ = ΩF,

we get the equation

AΩ =

[
Ab A2b . . . −

n−1∑
i=0

aiA
i

]

=
[
b Ab . . . An−1b

]

0 0 · · · −a0
1 0 · · · −a1
...

...

0 0 · · · −an−1

 = ΩF.

The control vector g of the normal form results from the identity Pb = g,

tantamount to b = Ωg, so g = (1, 0, . . . , 0)T In this way we have proved

S-equivalence of the system σ to the the controllability normal form

σ ′ : _ξ = Fξ(t) + gu(t), (0.5)

containing the matrix F and the vector g given below

F =


0 0 · · · −a0
1 0 · · · −a1
...

...

0 0 · · · −an−1

 , g =


1

0
...

0

 .

An alternative normal form of the system σ, named the controller normal

form, can be derived in the following way. We look for a matrix F and a

vector g that for a certain matrix P ful�l the relationship PA = FP and Pb =

g. Let again Ω denote the Kalman matrix. It follows from controllability

that this matrix is invertible, therefore there exists the matrix Ω−1. Denote

its rows by vT1 , . . . , v
T
n, so that

Ω−1 =


vT1
vT2
...

vTn
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By de�nition the matrix Ω satis�es the condition

Ω−1Ω =


vT1
vT2
...

vTn

 [b Ab . . . An−1b
]
= In,

that results in the equalities

vTnb = vTnAb = · · · = vTnAn−2b = 0, vTnA
n−1b = 1.

Now we can de�ne the matrix P in the following way

P =


vTn
vTnA
...

vTnA
n−1


The product of matrices is equal to

PΩ =


vTn
vTnA
...

vTnA
n−1

 [b Ab . . . An−1b
]
=


0 0 · · · 0 1

0 0 · · · 1 ∗
...

...

1 ∗ · · · ∗ ∗

 ,
where asterisks stand for elements whose knowledge is not important. As

may be seen, the matrix P is invertible, so it may serve as a basis for intro-

ducing S-equivalence. Form the equivalence formula it follows that FP = PA;

invoking again the Cayley-Hamilton Theorem one shows that this condition

is satis�ed by the matrix

F =


0 1 · · · 0

0 0 · · · 0
... 0

−a0 −a1 . . . −an−1

 ,
where, as before, symbols a0,a1, . . . ,an−1 refer to the coe�cients of the

characteristic polynomial of the matrix A. The vector g = Pb, so g =

(0, 0, . . . , 0, 1)T . In conclusion, we have shown how the linear control system

σ can be transformed to the controller normal form

σ ′ : _ξ = Fξ(t) + gu(t),
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founded on the matrix F and the vector g speci�ed above. The controller

normal form has found an application at the feedback control synthesis, in

particular it allows to prove an important Pole Placement Theorem. Let σ

be a linear system (0.1).

Theorem 0.2.4 Suppose that the system σ is controllable. Then, there

exists a feedback u = Kx, such that the matrix A+BK of the system with

feedback has a prescribed spectrum. Equivalently, for any collection Λ =

{λ1, λ2, . . . , λn} of complex numbers satisfying the symmetry condition

λ ∈ Λ⇒ λ∗ ∈ Λ, ∗{ conjugation of complex numbers, it holds that

sp(A+ BK) = Λ.

Obviously, when the spectrum is placed in the left half of the complex

plane, we get an asymptotically stable linear system. Thus the stabilisation

problem of the system σ consists in �nding a feedback control, such that the

trajectories of the closed-loop system tend asymptotically to zero. A direct

consequence of the Theorem 0.2.4 is then that

Remark 0.2.1 Every controllable linear system is stabilisable.

0.3 Brunovsky Theorem

We have shown that a single input linear control system is S-equivalent to

the controller normal form (F,g). The explicit equations of this normal form

look as follows

_ξ1 = ξ2
_ξ2 = ξ3

...

_ξn−1 = ξn
_ξn = −a0ξ1 − a1ξ2 − · · ·− an−1ξn + u

.

Let us apply to this system the feedback u = kTξ+v, with kT = (a0, a1, . . . ,

an−1). This results in the system

_ξ1 = ξ2
_ξ2 = ξ3

...

_ξn−1 = ξn
_ξn = v

.
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It turns out that this kind of the normal form can be established for every

controllable linear system. The corresponding normal form is called the

Brunovsky canonical form. We let σ denote a system described by (0.1),

with n-dimensional state space and m control inputs, with the control ma-

trix B of rank m. De�ne for the system σ a string of numbers
ρ0 = rankB

ρ1 = rank [BAB] − rankB
...

ρn−1 = rank
[
BAB . . .An−1B

]
− rank

[
BAB . . .An−2B

] .

By de�nition, the numbers ρi have two properties:

ρ0 = m > ρ1 > ρ2 > · · · > ρn−1 > 0

and
n−1∑
i=0

ρi = n.

One can prove that these numbers are feedback invariants, i.e. systems F-

equivalent have identical numbers ρi. Moreover, the numbers ρi constitute

a complete system of feedback invariants, what means that

σ ∼=
F
σ ′ ⇐⇒ ρi(σ) = ρi(σ

′).

It has been demonstrated that instead of n-invariants ρi it su�ces to take

m-invariants κ1, κ2, . . . ,κm de�ned in the following way

κi = #ρk|ρk > i, i = 1, 2, . . . ,m.

The symbol # denotes the number of elements. The numbers κi bear the

name of controllability indices of the system σ; they have the following

properties:

κ1 > κ2 > · · · > κm > 1

and
m∑
i=1

κi = n.

Similarly as ρi, also κi form a complete system of feedback invariants. In

this context the following result is of fundamental signi�cance.
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Theorem 0.3.1 (Brunovsky) Suppose that a controllable system σ = (A,B)

with rankB = m has controllability indices κ1, κ2, . . . ,κm. Then, the

system σ is F-equivalent to the system σ ′ = (F,G) in the Brunovsky

canonical form with the dynamics matrix

F =



[
0 Iκ1−1
0 0

]
0 · · · 0

0

[
0 Iκ2−1
0 0

]
· · · 0

...
...

0 0 · · ·
[
0 Iκm−1

0 0

]


n×n

and the control matrix

G =




0

0
...

1


κ1×1

0 · · · 0

0


0

0
...

1


κ2×1

· · · 0

...
...

0 0 · · ·


0

0
...

1


κm×1


n×m

.

It turns out that a system in the Brunovsky canonical form has the structure

ofm strings of integration, of length κ1, κ2, . . . ,κm, presented schematically

in Figure 1. Observe that the subset B ⊂ Σ of the space Σ ∼=Rn
2+mn of lin-

ear control systems that satisfy the conditions stated in the Theorem 0.3.1

includes "almost all" linear systems. More precisely, the systems that do

not ful�l these conditions are de�ned by a number of polynomial equations

of the form det = 0, thus they constitute so-called algebraic set, composed

of the roots of polynomials depending on the entries of matrices A and B.

The algebraic set is closed and boundary (does not contain any open sub-

set). Therefore, its complement that consists of the systems satisfying the
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v2 . . .

...

...
. . .vm

ξκ1+1

ξκ1+···+κm−1+1

∫
∫
∫

v1 . . . ξ1

∫

∫ ∫

...∫
∫
∫

ξκ1+κ2

ξκ1+···+κm

ξκ1

Figure 1: System in the Brunovsky canonical form

Brunovsky conditions is open and dense in Σ. This being so, the Brunovsky

Theorem 0.3.1 establishes that the set of "almost all" or "typical" linear

control systems can be partitioned into a �nite number of classes of systems

F-equivalent to a corresponding Brunovsky canonical form. The number of

these classes is determined by the number of partitions of the integer n into

a sum of m integer components > 1, ordered decreasingly. The number

N of these equivalence classes is small for n and m small, but it grows up

quickly as n and m increase. Setting n = km+r, r < m, we get an estimate

p(r) 6 N 6 p(n −m), where p(r) denotes the number of partitions of the

integer r, i.e. the number of representations of r in the form of the sum of

positive integers. There exists a table of values of p(r) for r 6 200, partially
displayed below:

r 1 2 3 4 5 6 7 8 9 10 . . . 200

p(r) 1 2 3 5 7 11 15 22 30 42 . . . 3972999029388

The theorem on Brunovsky canonical forms belongs to the deepest and the

most beautiful results of linear control theory.

0.4 Basic ideas of this course

The course's objective is to make the student acquainted with selected

mathematical concepts and methods applied in the modern automation and

robotics. The guideline of the course relies on a classi�cation of three kinds

of mathematical objects: functions, dynamic systems, and control systems.

An unrivalled example of such a classi�cation is the Brunovsky Theorem

presented in the previous subsection. Following this guideline we shall fo-

cus on three so-called pillars of nonlinear analysis, that are
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� Inverse Function Theorem,

� Theorem on the Existence and Uniqueness of Solution of a System of

Di�erential Equations,

� Frobenius Theorem on Distributions.

0.5 Proofs

0.5.1 Pole Placement Theorem

The proof of Theorem 0.2.4 exempli�es an application of normal forms of

linear systems. We shall restrict the proof to single input systems (A,b), of

the form _x = Ax(t) + bu(t).

Proof: As we have already demonstrated in subsection 0.2.3, controllability

of a liner system implies the existence of the controller normal form _ξ =

Fξ(t) + gu(t), such that

F =


0 1 0 . . . 0

0 0 1 . . . 0
... . . .

...

−a0 −a1 −a2 . . . −an−1

 , g =


0

0
...

1

 ,
where the numbers {a0,a1, . . . ,an−1} denote the coe�cients of the charac-

teristic polynomial of the matrix A. We recall that the transformation of

the system to the controller normal form relies on a matrix

P =


vTn
vTnA
...

vTnA
n−1

 ,
in which the row vTn comes from the last row of the inverse Kalman matrix

Ω−1, such that

PA = FP, Pb = g.

As the matrices A and F are related by the similarity, their characteristic

polynomials, characteristic equations, and spectra are identical. Let Λ =

{λ1, λ2, . . . , λn} stand for eigenvalues of the closed loop system. Using them

we de�ne a polynomial

αγ(λ) = (λ−λ1)(λ−λ2) . . . (λ−λn) = λ
n+γn−1λ

n−1+· · ·+γ1λ+γ0. (0.6)
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For the controller normal form with feedback f = (f0, f1, . . . , fn−1) we con-

sider a matrix

F+ gf,

whose characteristic polynomial is equal to (0.6). Then, we have

F+ gf =


0 1 0 . . . 0

0 0 1 . . . 0
... . . .

...

−a0 −a1 −a2 . . . −an−1

+


0

0
...

0

1

 (f0, f1, . . . , fn−1)

=


0 1 0 . . . 0

0 0 1 . . . 0
... . . .

...

f0 − a0 f1 − a1 f2 − a2 . . . fn−1 − an−1



=


0 1 0 . . . 0

0 0 1 . . . 0
... . . .

...

−γ0 −γ1 −γ2 . . . −γn−1

 .
Observe that above ai denote the coe�cients of the characteristic polyno-

mial of the matrix A, while γi are coe�cients of the characteristic polyno-

mial of the matrix of the closed loop system. The feedback for the controller

normal form can be de�ned as fi = ai − γi. With this choice of the feed-

back the controller normal form has a prescribed characteristic polynomial

αγ(λ). Now we return to the original system. Suppose that there exists a

feedback k = (k0, k1, . . . ,kn−1) under which there holds

P(A+ bk) = (F+ gf)P.

For the reason that PA = FP, it must be Pbk = gfP, but as Pb = g, the

above identity will be satis�ed provided that

k = fP.
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Taking advantage of the form of the matrix P we obtain

k = (f0, f1 . . . , fn−1)


vTn
vTnA
...

vTnA
n−1

 = vTn(fn−1A
n−1 + · · ·+ f0In)

= vTn
(
(an−1 − γn−1)A

n−1 + · · ·+ (a0 − f0)In
)

= vTn(an−1A
n−1 + · · ·+ a0In︸ ︷︷ ︸

−An

−(γn−1A
n−1 + · · ·+ γ0In))

= −vTn(A
n + γn−1A

n−1 + · · ·+ γ0In) = −vTnαγ(A).

The last identities result from the Cayley-Hamilton Theorem. The sym-

bol αγ(A) denotes the characteristic polynomial (0.6) determined by the

prescribed spectrum, and computed for the matrix A. The formula

k = −vTnαγ(A)

de�ning the feedback placing the poles in the system (A,b) is referred to as

the Ackermann's formula. �

0.6 Problems and exercises

Exercise 0.1 Show that similar matrices have the same characteristic poly-

nomials.

Exercise 0.2 Check controllability of the linear control system

_x =

1 0 0

0 0 1

1 0 0

 x+
11
0

u.
Compute etA.

Exercise 0.3 Check controllability and stability of the linear system

_x =

[
−1 0

0 3

]
x+

[
0

1

]
u.

Using the Ackermann's formula �nd a feedback placing the poles {−1,−3}.
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Exercise 0.4 Check controllability and stability of a model of the inverted

pendulum (α, δ < 0, β,γ > 0)

_x =


0 1 0 0

0 0 α 0

0 0 0 1

0 0 β 0

 x+

0

γ

0

δ

u.
Find a feedback placing the poles {−1,−1,−2,−2}.

Exercise 0.5 Enumerate possible controllability indices for linear control sys-

tems of dimensions (n,m) = (3, 2), (5, 2) and (7, 2).

0.7 Bibliographical remarks

A detailed explanation of basic concepts of set theory, algebra, topology,

and mathematical analysis can be found, for instance, in preliminary chap-

ters of the monographs [AMR83, Sas99]. A geometric approach to linear

control systems is presented in the book [Won79]. Classic theory of linear

control systems is the subject of the textbooks like [Fai98]. Controllability

of linear systems in the way similar to ours is exposed in subsection 4.1 of

the monograph [L�ev09]. The Brunovsky canonical forms have been intro-

duced in the paper [Bru68]; they are also discussed in the mentioned book

[Won79]. Complementary information on the action of the feedback group

on linear systems are included in the paper[Tch83]. The Cayley-Hamilton

Theorem is a basic result of linear algebra, and can be found in the book

[Ber05]; from the same source one can also learn on basic properties of the

matrix exponential. The Ackermann's formula is dealt with in [Fai98]. The

term "pillars of nonlinear analysis" comes from the monograph [AMR83].
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Chapter 1

Functions

1.1 Classes of functions

We shall assume that the notion of the vector space, the de�nition of the

function, the concept of continuity, and the concept of di�erentiability of

functions is known to the Reader. Our interest will be focused on functions

(maps, transformations) between real vector spaces

f : Rn −→ Rm, y = f(x). (1.1)

This notation means that the components of a vector y are given as
y1 = f1(x1, . . . , xn)

y2 = f2(x1, . . . , xn)
...

ym = fm(x1, . . . , xn)

.

By default, both these vector spaces Rn and Rm will be equipped with the

Euclidean inner product (ξ,η) = ξTη. The following classes of functions

will be distinguished:

� C0(Rn,Rm) { the class of continuous functions,

� Ck(Rn,Rm) { the class of functions continuously di�erentiable up to

order k,

� C∞(Rn,Rm) { the class of smooth functions,

� Cω(Rn,Rm) { the class of analytic functions.

19
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In accordance with this classi�cation, the function f ∈ Ck(Rn,Rm), if at

any point its partial derivatives

∂pfi(x)

∂xi11 ∂x
i2
2 . . .∂xinn

are continuous, where
∑n
j=1 ij = p, for all p 6 k and all i = 1, 2, . . . ,m.

By a smooth function we understand a function of the class Ck for every

k. An analytic function is a smooth function whose every component has

a convergent Taylor series. At the point 0 ∈ Rn this means convergence of

the series

fi(x) = fi(0)+Dfi(0)x+
1

2!
D2fi(0)(x, x)+ . . .+

1

k!
Dkfi(0)(x, x . . . , x)+ . . . ,

where the symbol D stands for the di�erentiation. The derivative of a

function f : Rn −→ Rm will be computed in the following way. For a vector

v ∈ Rn

Df(x)v =
d

dα
|α=0f(x+ αv) =

∂f(x)

∂x
v.

The matrix Df(x) is called the Jacobian matrix of the function f at the point

x. By de�nition, the classes of functions distinguished above are related as

follows

Cω ⊂ C∞ ⊂ Ck ⊂ C0.
Occasionally, further on we shall use more general functions than contin-

uous, such as the piece-wise continuous or piece-wise constant functions.

They will be introduced in due time. Given an analytic function, it follows

from the de�nition of analyticity that the values of such a function in the

neighbourhood of a point, e.g. zero, are determined by derivatives of this

function at the point. A collection of these derivatives is named the jet of

the function. The jet of order k at zero has then the form

jkfi(0) =
(
fi(0),Dfi(0),D

2fi(0), . . . ,D
kfi(0)

)
.

If, for every component of an analytic function de�ned on Rn, the jet

j∞fi(0) = 0 then f(x) is identically equal to 0 on the whole space Rn. In or-

der to better explain the di�erence between smooth and analytic functions,

let's consider the function

f(x) =

{
0 for x 6 0

e−
1
x for x > 0

,

whose plot has been portrayed in Figure (1.1). It is easily checkable that this
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x

f(x)

Figure 1.1: Smooth, non-analytic function

function is smooth and its in�nite jet at zero vanishes j∞f(0) = 0. On the

other hand, in any neighbourhood of 0 the function f(x) does not vanish.

Apparently, the function f(x) is an example of a smooth function that is

not analytic. An obvious example of a function that has a �nite order of

smoothness (it is of the class C1, but not C2) is the function

f(x) =

{
0 for x 6 0

x2 for x > 0
.

1.2 Algebraic structures in the set of functions

Consider a pair of continuous functions f1, f2 ∈ C0(Rn,Rm). They can be

added and multiplied by real numbers α ∈ R

(f1 + f2)(x) = f1(x) + f2(x), (αf1)(x) = αf1(x).

It follows that continuous functions C0(Rn,Rm) form a linear space over the

set real numbers R. Under assumption thatm = 1, the continuous functions

can also be multiplied by each other

(f1f2)(x) = f1(x)f2(x).

A linear space with a multiplication (a product) is called an algebra, so we

say that the space C0(Rn,R) is an algebra. If we focus solely on the operation

of multiplication, we shall call the class C0(Rn,R) a ring. Obviously, smooth

functions C∞(Rn,R) along with the function multiplication also form a ring.

Now, let us choose a smooth function f ∈ C∞(Rn,Rn) and a function a ∈
C∞(Rn,R). The product

(af)(x) = a(x)f(x)
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is a smooth function. This means that C∞(Rn,Rn) is a module over the ring

of functions C∞(Rn,R). Moreover, for two functions f1, f2 ∈ C∞(Rn,Rn)
one can de�ne another product as

[f1, f2](x) = Df2(x)f1(x) −Df1(x)f2(x)

that is called the Lie bracket. The linear space C∞(Rn,Rn) together with
the Lie bracket is referred to as a Lie algebra. This being so, C∞(Rn,Rn)
is a Lie algebra over real numbers R and simultaneously a module over the

ring of smooth functions C∞(Rn,R). We shall come back to the notion of

the Lie bracket in the section devoted to vector �elds.

As another example of the Lie algebra we can take the space of smooth

functions C∞(R2n,R) with the operation of the Poisson bracket. Suppose

that x = (q,p). Then, the Poisson bracket is de�ned as

{f1, f2}(q,p) =

(
∂f1(x)

∂q

)T
∂f2(x)

∂p
−

(
∂f1(x)

∂p

)T
∂f2(x)

∂q
.

The Poisson bracket plays an important role in Hamiltonian mechanics.

As the last example of an algebraic structure in the set of functions let's

look at the smooth functions of a single variable C∞(R,R). This class is

an algebra that is additionally closed with respect to di�erentiation, i.e. if

f ∈ C∞(R,R) then _f ∈ C∞(R,R). This kind of algebra is called a di�erential

algebra; the di�erential algebra of functions of time appears in the analysis

of di�erentially at control systems.

1.3 Inverse Function Theorem

For a pair of continuous functions f1, f2 ∈ C0(Rn,Rn) one can de�ne an

operation called a composition of functions

(f1 ◦ f2)(x) = f1(f2(x)),

that consists in computing the function f1 for a value of the function f2.

We introduce the following de�nition.

Definition 1.3.1 The function f1 is an inverse function of the function f2,

if

(f1 ◦ f2)(x) = x.
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The inverse function of f will be denoted by f−1. Elementary examples of

functions and their inverses are ex, and ln x, tan x and arctan x, sinx and

arcsinx, etc. For di�erentiable functions f1 and f2 there is the following

rule of the di�erentiation of a composed function (the chain rule)

D(f1 ◦ f2)(x) = Df1(f2(x))Df2(x).

The question of existence of the inverse function is answered by the follow-

ing Inverse Function Theorem, regarded as one of the pillars of nonlinear

analysis.

Theorem 1.3.1 (Inverse Function Theorem) Choose a function f ∈ Ck(Rn,Rn)
for a certain k > 1, and let f(x0) = y0. Assume that

rank Df(x0) = n.

Then, in a neighbourhood U of the point y0, there exists the inverse

function f−1(y), also of the class Ck.

It results from the de�nition of the inverse function f ◦ f−1(x) = x and from

the chain rule that

Df(f−1(x))Df−1(x) = In,

so

Df−1(x) =
(
Df(f−1(x))

)−1
.

A function f ∈ Ck(Rn,Rn) that has the inverse function of the class Ck will

be called a di�eomorphism. In the case when f−1 exists only locally, the

di�eomorphism is named local. The Inverse Function Theorem provides us

with a su�cient condition for a local di�eomorphism. We want to admit

that there is no necessary and su�cient condition for a function to be a dif-

feomorphism and each particular case needs to be approached individually.

1.4 Implicit Function Theorem

One of the most signi�cant consequences of the Inverse Function Theorem

is the Implicit Function Theorem stated below.

Theorem 1.4.1 (Implicit Function Theorem) Let a function f ∈ Ck(Rn × Rm,

Rm), w = f(x,y), be given for a certain k > 1, such that f(x0,y0) = w0.

Suppose that

rank
∂f(x0,y0)

∂y
= m.
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Then, there exists a function y = g(x,w) of the class Ck, de�ned in a

neighbourhood of (x0,w0) and satisfying

f(x,g(x,w)) = w.

A proof of this theorem will be provided in Appendix. In order to determine

derivatives of the function g we shall reason in the following way. Since

f(x,g(x,w)) = w then, by di�erentiation of both sides of this identity with

respect to x, we get

∂f(x,g(x,w))

∂x
+
∂f(x,g(x,w))

∂y

∂g(x,w)

∂x
= 0,

therefore

∂g(x,w)

∂x
= −

(
∂f(x,g(x,w))

∂y

)−1
∂f(x,g(x,w))

∂x
.

In a similar way we �nd

∂g(x,w)

∂w
= −

(
∂f(x,g(x,w))

∂y

)−1

.

1.5 Computation of the inverse function

In various problems of automation and robotics, as e.g. in the inverse kine-

matics problem of manipulators, we need to compute the inverse function.

Suppose that a function f ∈ Ck(Rn,Rn) ful�ls the conditions of the Inverse
Function Theorem, i.e. at any point rankDf(x) = n. Given a terminal point

yd ∈ Rn we want to determine a point xd ∈ Rn, such that f(xd) = yd. Gen-

erally this problem is solved numerically. Two algorithms of computing the

inverse function will be described below.

1.5.1 Newton Algorithm

According to this algorithm we start from choosing an initial point x0 ∈ Rn.
If our choice is accurate, i.e. f(x0) = yd, we �nish. Otherwise, we perform

a "deformation" of the point x0 to a di�erentiable curve x(θ) parametrised

by θ ∈ R, such that x(0) = x0. The error of reaching the terminal point

along this curve amounts to

e(θ) = f(x(θ)) − yd.
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Now, we want to pick the curve x(θ) in such a way that when θ→ +∞ the

error e(θ) decreases along the curve x(θ) exponentially. To this objective

we require that the error satis�es a di�erential equation

e ′(θ) = −γe(θ),

where γ > 0 denotes a convergence rate. Suppose that the required curve

x(θ) exists. Having di�erentiated the error we obtain

e ′(θ) = Df(x(θ))x ′(θ) = −γe(θ).

Due to the invertibility of the matrix Df(x) the above equation means that

the curve x(θ) should solve the di�erential equation

x ′(θ) = −γ (Df(x(θ)))−1 (f(x(θ)) − yd),

often attributed to Wa_zewski-Davidenko, with the initial condition x(0) =

x0. Then, the value of the inverse function xd = f−1(yd) is obtained as the

limit

xd = lim
θ→+∞ x(θ).

This algorithm is known as the Newton Algorithm. It follows that in order

to compute the inverse function using the Newton Algorithm one needs to

solve numerically a certain di�erential equation, and then pass to the limit of

its solution. For computational purposes this algorithm is often presented in

a discrete form, e.g. by invoking the Euler scheme, leading to the di�erence

equation

xk+1 = xk − γ (Df(xk))
−1 (f(xk)) − yd), k = 0, 1, . . .

1.5.2 Steepest Descent Algorithm

Alternatively to the Newton Algorithm one may exploit the following Steep-

est Descent Algorithm. We begin with guessing a solution x0, similarly

as in the former algorithm. If this is not successful, we de�ne a function

e(x) = f(x) − yd. The core idea of this algorithm consists in generating

a motion of the point x ∈ Rn along a curve x(θ), in the direction of the

quickest decrease of the error

E(x) =
1

2
eT (x)e(x) =

1

2
||e(x)||2.
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Obviously, this direction is − gradE(x), therefore the curve x(θ) needs

to obey the equation

x ′(θ) = −γ gradE(x(θ)), γ > 0.

By de�nition, the gradient of a function satis�es

(gradE(x), v) = DE(x)v,

so, consequently

gradE(x) = (De(x))Te(x).

Eventually, using the de�nition of e(x), the curve of the steepest descent

should solve the di�erential equation

x ′(θ) = −γ(Df(x(θ)))T (f(x(θ)) − yd), x(0) = x0.

Analogously to the Newton Algorithm, the inverse function xd = f−1(yd)

is computed as the limit

xd = lim
θ→+∞ x(θ)

of the trajectory of this di�erential equation. The discrete version of the

Steepest descent Algorithm takes the form

xk+1 = xk − γ(Df(xk))
T (f(xk) − yd), k = 0, 1, . . .

where γ can be interpreted as the step length of the algorithm. A rational

way of choosing γ relies on the minimisation of the function

E(xk+1) = E(xk − γ gradE(xk)).

A necessary condition for the minimum is

dE(xk+1)

dγ
= −(DE(xk − γ gradE(xk)))

T gradE(xk)

= − gradT E(xk+1) gradE(xk) = 0.

It can be seen that with this choice of the coe�cient γ the direction of

motion in the step k + 1 is perpendicular to the motion direction in the

step k.
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1.6 Proofs

1.6.1 Implicit Function Theorem

Proof: The Implicit Function Theorem can be deduced from the Inverse

Function Theorem in the following way. Given the function f(x,y) we in-

troduce a function F : Rn × Rm −→ Rn × Rm de�ned as

F(x,y) = (x, f(x,y)) = (x,w).

The function F is of the class Ck. Its derivative at the point (x0,y0),

DF(x0,y0) =

[
In 0

∂f(x0,y0)
∂x

∂f(x0,y0)
∂y

]
,

has rank n +m due to the assumption rank ∂f(x0,y0)∂y = m. Therefore, we

can apply to the function F the Inverse Function Theorem that guarantees

the existence of the function G(x,w) = (G1(x,w),G2(x,w)), such that

F(G(x,w)) = (G1(x,w), f(G1(x,w),G2(x,w))) = (x,w).

The above identity yields

G1(x,w) = x and f(x,G2(x,w)) = w,

so the function g(x,w) = G2(x,w). �

1.7 Problems and exercises

Exercise 1.1 Prove that the functions given below are local di�eomorphisms

in a neighbourhood of the point 0:

a) ϕ : R3 −→ R3,

ϕ(x) = (x3, x2, x1 − sin x2)
T ,

b) ϕ : R4 −→ R4,

ϕ(x) = (x1, x2,−x3 sin x1 + x4 cos x1 − x2, x3 cos x1 + x4 sin x1)
T ,

c) ϕ : R5 −→ R5,

ϕ(x) = (x1, sin x2, cos x2 sin x3, x4, x5 + x
3
4 − x

10
1 )T .

Are these di�eomorphisms global?
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a1a2
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r2 r1

Figure 1.2: Mechanism of the manipulator from exercise 1.5

Exercise 1.2 Show that the following system of equations{
x1y1 − x2y2 = 0

x2y1 + x1y2 = 2

de�nes a function y = g(x). Compute the derivative Dg(x) at the point

x1 = x2 = y1 = y2 = 1.

Exercise 1.3 Given the forward kinematics of the robotic manipulator of the

type of double pendulum:{
y1 = l1 cos x1 + l2 cos(x1 + x2)

y2 = l1 sin x1 + l2 sin(x1 + x2)
.

show that outside singular con�gurations there exists a solution of the in-

verse kinematics problem.

Exercise 1.4 Using the Implicit Function Theorem examine conditions under

which the eigenvalues of a matrix An×n are functions of the coe�cients of

its characteristic equation.

Exercise 1.5 Examine the existence of the forward and inverse kinematics of

the mechanism presented in Figure 1.2, described by the equations{
(a1 − y1 + l1 cos x1)

2 + (y2 − l1 sin x1)
2 = r21

(a2 + y1 + l2 cos x2)
2 + (y2 − l2 sin x2)

2 = r22
.
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1.8 Bibliographical remarks

Complementary information on functions can be found in the monograph

[GG74]. Theorem on the inverse and the implicit functions in Banach spaces

have been presented in [AMR83]. An exhaustive exposition of the Newton

methods is contained in the book [Deu04]; their application to the motion

planning of mobile robots is described in [Tch17, DS03]. The Wa_zewski-

Davidenko equation comes from the papers [Wa_z47] and [Dav53].
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Chapter 2

Linear functions. Equivalence of
functions

2.1 Linear functions

A speci�c class of functions is the class of linear functions. We shall accept

the following de�nition.

Definition 2.1.1 A function f : Rn −→ Rm is called linear if for every pair

of points x1, x2 ∈ Rn and every pair of numbers α1,α2 ∈ R there holds

f(α1x1 + α2x2) = α2f(x1) + α2f(x2).

Assume that in Rn and Rm we have chosen bases denoted, respectively

by {e1, e2, . . . , en} and {f1, f2, . . . , fm}. Let y = f(x), x =
∑n
i=1 αiei and

y =
∑m
j=1 βjfj. Then, by linearity

y = f(x) = f

(
n∑
i=1

αiei

)
=

n∑
i=1

αif(ei).

Let the function f transform the basis vectors in the following way

f(ei) =

m∑
j=1

ajifj.

Combining the above calculations we arrive at the identity

βj =

n∑
i=1

ajiαi

30
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or, for vectors α = (α1,α2, . . . ,αn)
T and β = (β1,β2, . . . ,βm)T ,

β = Aα.

The matrix A = [aij] with m rows and n columns represents the linear

function f with respect to the chosen bases. If these bases have been �xed,

one can identify linear functions with their matrices. Obviously, the linear

functions are analytic.

2.2 Matrices and their norms

In diverse applications we need to compute a norm of the matrix. Recall

that the norm in Rn is a function that assumes values greater than or equal

to zero,

|| || : Rn −→ R+,

that satis�es the following conditions (α ∈ R, x1, x2 ∈ Rn)

||x|| = 0⇐⇒ x = 0, ||αx|| = |α| ||x||, ||x1 + x2|| 6 ||x1||+ ||x2||.

The last condition is known as the triangle inequality. A well known norm

of a vector (in fact this is a family of norms) is the p-norm de�ned as

||x||p =

(
n∑
i=1

|xi|
p

)1/p
, p > 1.

Speci�cally, we distinguish the following p-norms:

� for p = 1, 1-norm of a vector x, ||x||1 =
∑n
i=1 |xi|,

� for p = 2, 2-norm of a vector x, ||x||2 =
(∑n

i=1 xi
2
)1/2

,

� for p =∞, ∞-norm of a vector x, ||x||∞ = maxi |xi|

For the reason that ||x||2 = (x, x)1/2 = (xTx)1/2, 2-norm is identical with

the Euclidean norm. It can be shown that the p-norms mentioned above

ful�l the inequalities ||x||1 > ||x||2 > . . . > ||x||∞.
Now, let us pay our attention to matrix norms. Let A = [aij] denote a

matrix of dimension m × n; the set of such matrices will be symbolised as

Mat(m,n). A matrix norm should satisfy three axioms analogous to that

for the vector norm, i.e. for α ∈ R and two matrices A1,A2 ∈ Mat(m,n) we

have

||A|| = 0⇐⇒ A = 0, ||αA|| = |α| ||A||, ||A1 +A2|| 6 ||A1||+ ||A2||.
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Basically, these axioms de�ne the matrix norm, however, for the matrices

that can be multiplied by each other, e.g. for A1,A2 ∈ Mat(n,n), we

de�ne an additional property of primary importance, referred to as the ring

property,

||A1A2|| 6 ||A1|| ||A2||.

Having the axioms of the matrix norm we ask, how to de�ne a concrete

matrix norm. There are two approaches to this question. First, by listing

the entries of the matrix one after another, one can identify a matrix A ∈
Mat(m,n) with a vector A ∈ Rmn containing mn components, and then

can use a certain p-vector norm. In this context we shall distinguish the

2-norm

||A||F =

∑
ij

a2ij

1/2 = (tr(AAT ))1/2 ,
named the Frobenius matrix norm. The matrix norms "inherited" from

a vector usually do not have the ring property, however the Frobenius norm

does. Second, one can regard the matrix as a kind of operator acting between

vector spaces, and interpret the matrix norm as a "measure of ampli�cation"

assigned to this operator. The norms devised in the latter way are called

operator matrix norms. The operator norm is de�ned as the biggest ratio of

the "amplitude" of the image of a point x to the "amplitude" of this point

itself (the original). Formally speaking, this means that

||A|| = sup
x 6=0

||Ax||Rm

||x||Rn
,

where we have marked that the original vector and its image may come from

di�erent spaces. Due to the property ||Ax||
||x|| = ||A x

||x|| ||, the operator matrix

norm can also be expressed as

||A|| = sup
||v||=1

||Av||.

By selecting various p-norms in Rn and Rm one can introduce in�nitely

many matrix norms. Below we shall restrict only to three of them, de�ned

under assumption that the norms of the original and of the image are the

same and have the form of either 1 or 2 or∞ vector norm. The correspond-

ing matrix norms produced in this way will be symbolised by ||A||1, ||A||2
and ||A||∞. The following result is true
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Theorem 2.2.1 The operator matrix norms are given in as follows:

||A||1 = maxj
∑m
i=1 |aij|,

||A||2 = �λ
1/2

AAT
,

||A||∞ = maxi
∑n
j=1 |aij|,

where �λM stands for the biggest eigenvalue of a symmetric matrix M.

In the face of the multitude of matrix norms, a paramount role is played by

the concept of the equivalence of norms.

Definition 2.2.1 Two matrix norms ||A||a and ||A||b are equivalent if there

exist numbers α,β > 0, such that

α||A||b 6 ||A||a 6 β||A||b.

It turns out that the equivalence of norms is an equivalence relation. If two

matrix norms are equivalent then the convergence of a sequence of matrices

with respect to one of these norms implies the convergence with respect to

the other norm.

For invertible square matrixA there holds 1 = ||AA−1||2 6 ||A||2||A
−1||2 =

χ(A). The number χ(A) is called the condition number of the matrix A.

2.3 LR-equivalence

In this section we shall introduce a concept of equivalence of functions.

Definition 2.3.1 Two smooth functions f1, f2 ∈ C∞(Rn,Rm) are LR-equiva-

lent (left-right), f1 ∼=LR f2, if there exist di�eomorphisms φ : Rn −→ Rn

and ψ : Rm −→ Rm, such that

ψ ◦ f1 = f2 ◦ φ.

In case when the di�eomorphisms φ and ψ are de�ned locally, in some

neighbourhoods of the points x0 and y0 = f(x0), the equivalence is called

local, f1 ∼=LLR f2. We recall that a local di�eomorphism comes from the

Inverse Function Theorem.

LR equivalence is tantamount to commutativity of a diagram of functions

displayed in Figure 2.1.
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Rn
f1−−−−→ Rmyφ yψ

Rn
f2−−−−→ Rm

Figure 2.1: Diagram of LR equivalence

2.4 Submersions and immersions

In this section we shall deal with two classes of functions whose Jacobian

matrix has full rank.

Definition 2.4.1 Let f ∈ C∞(Rn,Rm), and let m 6 n. If at any point x ∈ Rn
there holds rankDf(x) = m then the function f is named a submersion.

In the case of m > n and when for every x ∈ Rn rankDf(x) = n, the

function f is called an immersion. A function f that is simultaneously a

submersion and an immersion is referred to as a local di�eomorphism.

Submersions and immersions have non-degenerate linear parts in their Tay-

lor series. Two following theorems establish a normal form of the submersion

and the immersion.

Theorem 2.4.1 (On Submersions) Suppose that m 6 n and f : Rn −→ Rm is

a submersion. Then

f ∼=
LLR

g,

where g(x) = (x1, x2, . . . , xm)T = Asx, As =
[
Im 0

]
.

Theorem 2.4.2 (On Immersions) Let m > n and f : Rn −→ Rm be an immer-

sion. Then

f ∼=
LLR

g,

where g(x) = (x1, x2, . . . , xn, 0)
T = Aix, Ai =

[
In
0

]
.

Observe that, if f is a submersion then locally it is de�ned completely by

its linear term in the Taylor series

f(x) = f(0) +Df(0)x+
1

2
D2f(0)(x, x) + . . .

A similar situation takes place for an immersion. In this sense it can be said

that submersions and immersions are 1-determined.
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An exciting property of immersions is their genericity. Consider a set

of smooth functions C∞(Rn,Rm). This set can be endowed with a cer-

tain topology that allows us to distinguish subsets of C∞(Rn,Rm) that are

open, closed, dense, etc. Let Imm(Rn,Rm) ⊂ C∞(Rn,Rm) denote the set of

immersions. Then the following statement is true.

Theorem 2.4.3 (Whitney) If m > 2n then the set of immersions Imm(Rn,

Rm) is open and dense in C∞(Rn,Rm).

This statement means that for m > 2n every immersion has a neighbour-

hood consisting solely of immersions, and that in an arbitrarily neighbour-

hood of a smooth function in C∞(Rn,Rm) one can �nd an immersion. We

say that almost every smooth function is an immersion.

2.5 Proofs

2.5.1 Theorem on Submersions

Proof: The proof relies on the construction of a local coordinate changes φ

and ψ de�ning the LR equivalence, that satisfy the Inverse Function Theo-

rem. The derivative Df(x) can be written down as a block matrix

Df(x) =


∂f1(x)
∂x1

. . . ∂f1(x)
∂xm

∂f1(x)
∂xm+1

. . . ∂f1(x)
∂xn

...
...

∂fm(x)
∂x1

. . . ∂fm(x)
∂xm

∂fm(x)
∂xm+1

. . . ∂fm(x)
∂xn

 =
[
∂f(x)
∂xm

∂f(x)
∂xn−m

]
,

where xm = (x1, . . . , xm) and xn−m = (xm+1, . . . , xn). Without any

loss of generality we may assume that rank ∂f(0)∂xm = m (otherwise it is

enough to re-order the coordinates x). Now, let us de�ne a function φ(x) =

(f(x), xm+1, . . . , xn)
T . From this de�nition it follows that φ is smooth and

that φ(0) = 0. Furthermore, the rank of the Jacobian matrix

Dφ(0) =

[
∂f(0)
∂xm

∂f(0)
∂xn−m

0 In−m

]

is equal to n, so, by the Inverse Function Theorem, in a certain neigh-

bourhood of the point 0 ∈ Rn the function φ is a di�eomorphism. Since

g(x) = xm, we get g ◦ φ(x) = f(x), concluding the proof (we take a trivial

ψ(y) = y). �
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2.5.2 Theorem on Immersions

Proof: Similarly as in the previous proof we shall use the Inverse Function

Theorem. The Jacobian matrix of the function f can be represented in the

block form

Df(x) =

[
∂fn(x)
∂x

∂fm−n(x)
∂x

]
,

where fn and fm−n stand for the �rst n and the remaining m − n com-

ponents of the function f. Assume that rank ∂f
n(0)
∂x = n. Let us take

y = (yn,ym−n) and de�ne the following change of coordinates ψ(y) =

(fn(yn),ym−n + fm−n(yn)). The function ψ is smooth and vanishes at

zero, ψ(0) = 0. Its Jacobian matrix

Dψ(0) =

[
∂fn(0)
∂yn 0

∗ Im−n

]
,

where the asterisk denotes a matrix whose form is meaningless. Now, since

rankDψ(0) = n, by the Inverse Function Theorem, in a certain neighbour-

hood 0 ∈ Rm ψ is a di�eomorphism. Finally, taking g(x) = (x, 0) we have

ψ ◦ g(x) = ψ(x, 0) = (fn(x), 0 + fm−n(x)) = f(x), what �nishes the proof

(now φ(x) = x). �

2.6 Problems and exercises

Exercise 2.1 For a rotation matrix R ∈ SO(3) compute the norms ||R||2
and ||R||F. Find the norm ||R||1 for the matrix R = Rot(Z,α).

Exercise 2.2 Prove that any operator matrix norm has the ring property

||AB|| 6 ||A|| ||B||.

Exercise 2.3 Show that ||A||2F = tr(AAT ), An×n.

Exercise 2.4 For a matrix An×n prove the inequality

1√
n
||A||F 6 ||A||1 6

√
n||A||F.

Hint: Use the inequality (
∑n
i=1 |ai|)

2 6 n
∑n
i=1 |ai|

2.

Exercise 2.5 Show that the condition number of the matrix A is equal to

χ(A) =
(
λ
AAT

λ
AAT

)1/2
, where λ and λ denote the biggest and the smallest

eigenvalue.
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Exercise 2.6 For the matrix A =
[
1 0
2 1

]
compute the norms ||A||1, ||A||2, ||A||F

and ||A||∞, and the condition number χ(A).

Exercise 2.7 Consider a system of linear equations Ax = b, An×n, with the

right hand side perturbed in such a way that Ax̂ = b + ε. Prove that the

relative solution error δx = ||x̂−x||
||x|| satis�es the estimates

δb 6 δx 6 χ(A)δb,

where δb =
||ε||
||b|| , and χ(A) { is the condition number.

Exercise 2.8 Using the Theorems on Submersions and Immersions establish

normal forms of the following functions:

a) f(x) = x1 + x
2
2, x = (x1, x2)

T ∈ R2, f(x) ∈ R,

b) f(x) = (sin x, cos x)T , x ∈ R, f(x) ∈ R2,

c) f(x) = (x, tan x)T , x ∈ R, f(x) ∈ R2,

d) f(x) = (x1 + x
2
2, x2)

T , x = (x1, x2)
T ∈ R2, f(x) ∈ R2.

2.7 Bibliographical remarks

A comprehensive treatment of matrices can be found in the monograph

[Ber05]. The exposition of the equivalence of functions, submersions, im-

mersions as well as the Whitney Theorem is based on the classical book

[GG74]. Theorems on submersions and immersions in Banach spaces have

been presented in the monograph [AMR83]. To a reader interested in sin-

gularity theory of functions we recommend the books [GG74, Mar82].
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Chapter 3

Morse functions. The Fixed Point
Theorem

3.1 Critical points and values

Definition 3.1.1 Let f ∈ C∞(Rn,Rm). A point x0 ∈ Rn is called a critical

point of the function f if

rankDf(x0) < min{m,n}.

A point that is not critical (so rankDf(x0) = min{m,n}) will be named

a regular point of the function f.

It is easily seen that for m = 1 (i.e., for a function f ∈ C∞(Rn,R)), critical
points are the points at which the derivative Df(x0) = 0. Given a function

f, the set of its critical points will be denoted as

Cf = {x ∈ Rn| rankDf(x) < min{m,n}}.

The image f(Cf) of this set by f is referred to as the set of critical values

of the function f. By de�nition, the set of critical points Cf is closed in

Rn. Example critical points and critical values of a function are presented

in Figure 3.1.

It is easily to show that for smooth, but not analytic functions, the set of

critical points can be "big", i.e. it can include an open set. A good example

is provided by the function from Figure 3.2. The set Cf coincides in this

case with the negative half axis of the real numbers. Contrary to smooth

and non-analytic functions, the set of critical points of an analytic function

is "small" in the sense that it does not contain any open set (has empty

38
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x

f(x)

cr. p.cr. p.

cr. v.

cr. v.

Figure 3.1: Critical points and values

x

f(x)

1

Cf

Figure 3.2: A "big" set of critical points Cf

interior), i.e. is a boundary set. Di�erently to the set of critical points,

the set of critical values of smooth functions is always small in the sense

speci�ed by the following

Theorem 3.1.1 (Sard) For any smooth function f ∈ C∞(Rn,Rm) the set of

critical values f(Cf) has measure zero in Rm.

This theorem asserts that the set of critical values can be covered by a count-

able number of open sets (balls) whose total volume is arbitrarily small.

Obviously, in case of m > n, the image f(Rn) of the whole space Rn has

measure zero, so, a fortiori, the measure of the set f(Cf) is also zero.

3.2 Morse functions, Morse Theorem

It follows from the previous chapter that submersions and immersions do

not have critical points whatsoever. Being locally equivalent to their linear
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approximations (the linear portions of their Taylor series) these functions

are not tremendously interesting. We feel intuitively that functions that

have critical points may be much more interesting. Indeed, this is the case,

and the simplest class of functions possessing critical points are the Morse

functions.

Definition 3.2.1 A smooth function f ∈ C∞(Rn,R) is called a Morse func-

tion if all its critical points are non-degenerate, i.e.

Df(x) = 0 =⇒ rankD2f(x) = n,

where D2f(x) =
[
∂2f(x)
∂xi∂xj

]
denotes the matrix of the second order deriva-

tives of the function f (the Hesse matrix).

In order to better understand the concept of a Morse function f, let us de�ne

a function F = Df : Rn −→ Rn. Since f is the Morse function, at each its

critical pointDf(x) = 0 there holds rankD(Df)(x) = n. Invoking the Inverse

Function Theorem we conclude that Df is a local di�eomorphism. This

being so, if at a point Df(x0) = 0 then in some neighbourhood of the point

x0 it must be Df(x) 6= 0, as otherwise Df wouldn't have an inverse function.

This observation yields that around a critical point of a Morse function there

are no other critical points. We say that the Morse function has isolated

critical points. This property allows us to immediately exclude from the

class of Morse functions the function displayed in Figure 1.1, because, as we

have observed, its critical points occupy an open subset of the real numbers

R. Relying on this we may expect that a Morse function f : R −→ R will

have a countable set of extrema. Take as an example the Morse function

f(x) = sin x.

The normal forms of the Morse function are characterised by the follow-

ing

Theorem 3.2.1 (Morse) Suppose that f ∈ C∞(Rn,R) is a Morse function,

and let f(0) = 0, Df(0) = 0, as well as rankD2f(0) = n. Then, in

a certain neighbourhood of 0, it is true that

f ∼=
LLR

g,

where g(x) = −x21−x
2
2− · · ·−x2p+x2p+1+ · · ·+x2n. The integer p denotes

the number of negative eigenvalues of the matrix D2f(0), and is named

the index of the critical point 0.
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The following functions exemplify the concept of the Morse function:

� f(x) = x31 + x21 + x22: The critical point (0, 0) has index p = 0, so

by virtue of the Morse Theorem f ∼=LLR g, g(x) = x21 + x
2
2. Further-

more, the LLR-equivalence is determined by the local di�eomorphism

(a substitution of variables) φ(x) = (x1
√
x1 + 1, x2),

� f(x) = x21+x1x2−x
2
2: In this case the index of the critical point (0, 0)

is equal to p = 1, and the Morse Theorem provides the normal form

g(x) = −x21 + x
2
2. We get f(x) = g ◦ φ(x), where φ(x) = (

√
5
2 x2, x1 +

1
2x2).

3.3 Hadamard’s Lemma

The following result can be employed in the proof of the Morse Theorem; it

proves also useful outside the context of this theorem.

Theorem 3.3.1 (Hadamard) Let f ∈ C∞(Rn,R). Then, there exist smooth

functions g1, g2,. . . , gn, such that

f(x) = f(0) +

n∑
i=1

gi(x)xi,

where gi(x) =
∫1
0
∂f(tx)
∂xi

dt.

One can notice that, having applied this result again, to each function gi(x),

we obtain

gi(x) = gi(0) +

n∑
j=1

hij(x)xixj,

where gi(0) =
∂f(0)
∂xi

as well as hij(x) =
∫1
0
∂gi(sx)
∂xj

ds =
∫1
0

∫1
0
∂2f(stx)
∂xi∂xj

tdtds.

In conclusion, we have arrived at the following expression

f(x) = f(0) +Df(0)x+

n∑
i,j=1

hij(x)xixj.

Following this kind of argument we come up to a sort of Taylor series of the

function f.
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3.4 Classification of function: Summary

Within the class of functions we have realised our programme of classi�-

cation of functions and their description by normal forms for three classes

of functions: submersions, immersions, and Morse functions. A range of

these classi�cations can be assessed after introducing into the set of smooth

functions a certain topology, called the Whitney topology. This is just the

topology to which the Whitney Theorem, stated in the previous chapter,

refers.

3.5 The Fixed Point Theorem

In this section we shall present one of the most signi�cant theorems of

matematics, the Fixed Point Theorem, sometimes referred to as the "carthorse

of nonlinear analysis". This name underlines that many fundamental results

in analysis can be derived just from this theorem. For the sake of generality

we shall formulate this theorem in the framework of Banach spaces. We

recall that a space is a Banach space provided that it is a linear, normed,

and complete space.

Theorem 3.5.1 (Fixed Point Theorem) Let X be a Banach space, equipped

with a norm || · ||. Assume that on this space a function

T : X −→ X

has been de�ned, obeying the condition

||T(x2) − T(x1)|| 6 ρ||x2 − x1||,

Where 0 < ρ < 1. Then, the function T has a �xed point x∗, such that

T(x∗) = x∗.

The �xed point is unique, and can be found as the limit x∗ = lim xk of

the sequence

x0, x1 = T(x0), . . . , xk+1 = T(xk), . . .

whose initial element x0 is an arbitrary point of the space X.

A fundamental assumption made in this theorem is that the function T

"shrinks" the distance between points in its domain (such a function is called

a contraction). In applications, a useful part is played by a consequence of

the Fixed Point Theorem stated as the following.
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Theorem 3.5.2 Suppose that S ⊂ X is a closed subset of a Banach space

on which the function T : S −→ S shrinks. Then, T has a unique �xed

point in S.

3.6 Proofs

3.6.1 Hadamard’s Lemma

Proof: From the de�nition of the integral there results immediately that∫1
0

df(tx) = f(tx)|10 = f(x) − f(0).

Exploiting this observation we get

f(x) = f(0) +

∫1
0

df(tx) = f(0) +

∫1
0

n∑
0

∂f(tx)

∂xi
xidt = f(0) +

n∑
0

gi(x)xi,

gi(x) =
∫1
0
∂f(tx)
∂xi

dt, that �nishes the proof. �

3.6.2 Fixed Point Theorem

Proof: Take a sequence x0, x1 = T(x0),. . . , xk+1 = T(xk) . . .. The shrinking

property implies that

||xk+1 − xk|| = ||T(xk) − T(xk−1)|| 6 ρ||xk − xk−1||,

therefore

||xk+1 − xk|| 6 ρ||xk − xk−1|| 6 ρ
2||xk−1 − xk−2|| 6 · · · 6 ρk||x1 − x0||.

Now, let m = k+ r. We want to demonstrate that the sequence x0, x1,. . . is

a Cauchy sequence, what means that its su�ciently far elements di�er from

each other as little, as we wish. Indeed, we have a number of inequalities

||xm − xk|| = ||xm − xm−1 + xm−1 − xm−2 + · · ·+ xk+1 − xk||
6 ||xm − xm−1||+ ||xm−1 − xm−2 + · · ·+ ||xk+1 − xk||

6 ρm−1||x1 − x0||+ ρ
m−2||x1 − x0||+ · · ·+ ρk||x1 − x0||

= ρk||x1−x0||(1+ρ+·+ρm−k−1) 6 ρk||x1−x0||(1+ρ+· · · ) =
ρk

1− ρ
||x1−x0||.
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From the last inequality it follows that for any ε > 0 we can �nd an integer

N, such that for k > N we get ||xm − xk|| < ε, i.e. the sequence x0, x1,. . . is

Cauchy. Because in a complete space each Cauchy sequence has a limit, we

conclude that the limit x∗ = lim xk+1 = lim T(xk) = T(x
∗) exists. In order

to show that the limit point x∗ is unique, suppose that there are two di�erent

�xed points x∗ 6= x̂ that ful�l the condition x∗ = T(x∗) and T(x̂) = x̂. We

compute

||x∗ − x̂|| = ||T(x∗ − x̂)|| 6 ρ||x∗ − x̂||,

that implies that

(1− ρ)||x∗ − x̂|| 6 0.

But we have ρ < 1, so it must be x∗ = x̂. In this way the theorem has been

proved. �

3.7 Problems and exercises

Exercise 3.1 Check the existence and (non)degeneracy of critical points of

the following functions:

a) f(x) = x3, x ∈ R,

b) f(x) = x31 − 3x
2
1x2, x = (x1, x2)

T ∈ R2,

c) f(x) = x21, x = (x1, x2)
T ∈ R2,

d) f(x) = x1x2, x = (x1, x2)
T ∈ R2,

e) f(x) = x21 cos x2 + sin2 x2, x = (x1, x2)
T ∈ R2.

Exercise 3.2 Without invoking the Morse Theorem show that the function

f(x) = x21 + x1x2 + x
2
2 is LR-equivalent to the function g(x) = x21 + x

2
2.

Exercise 3.3 Similarly as in the problem 3.2 show that the function f(x) =

x1x2 + x
2
2 is LR-equivalent to g(x) = x

2
1 + x

2
2.

Exercise 3.4 Making use of the Morse Theorem �nd normal forms of the

following functions, in a neighbourhood of the point 0:

a) f(x) = x21 cos x2 + sin2 x2,

b) f(x) = cos x1 − 2x1x2 + cos x2 − 2,
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c) f(x) = x1 sin x2 + x2 sin x1,

d) f(x) = x21 cos x3 + x2x3 + x
2
3,

e) f(x) = sin x1 sin x2 − x
2
3,

f) f(x) = x1x2 + x2x3 − x1x3.

3.8 Bibliographical remarks

The concepts of critical points, critical values, and Morse functions come

from the monograph [GG74]. The Sard Theorem is can be found in [GG74],

and also in [AMR83]. The Morse Theorem, together with a proof, has been

reported in [GG74]. As a "vehicle" in this proof the Hadamard's Lemma

has been used. The Fixed Point Theorem comes from Banach [Ban22].

A proof of the Inverse Function Theorem based on the Fixed Point Theorem

is provided in [AMR83].
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Chapter 4

Time dependent dynamic systems

4.1 Differential equations. Theorem on Existence and Unique-

ness of Solution

In this section we shall study systems of ordinary di�erential equations, of

the form

_x = f(x, t), x ∈ Rn, f : Rn × R −→ Rn, x(0) = x0. (4.1)

By default, the variable t will be interpreted as time. A solution or a tra-

jectory or an integral curve of the system (4.1) is a time function x(t), such

that, at any time instant t,

_x =
dx(t)

dt
= f(x(t), t) and x(0) = x0.

We say that x(t) satis�es the system (4.1). Obviously, if x(t) satis�es the

system of equations then

x(t) = x0 +

∫t
0

f(x(τ), τ)dτ.

A fundamental question of the analysis of the system (4.1) is the question

of existence of the solution x(t), as well as of its uniqueness. The relevant

theorem, referred to as the Theorem on Existence and Uniqueness, similarly

to the Inverse Function Theorem, creates one of the pillars of nonlinear

analysis. This theorem assumes the following form.

Theorem 4.1.1 (On Existence and Uniqueness) Suppose that the function f(x, t)

is continuous with respect to t, bounded for the initial condition, ||f(x0, t)|| 6

46
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M, and satis�es the Lipschitz condition with respect to x, i.e.

||f(x2, t) − f(x1, t)|| 6 L||x2 − x1||, L > 0,

for the points x1, x2 belonging to a certain ball centred at x0 of radius r,

x1, x2 ∈ B(x0, r). Then, the system (4.1) has a solution x(t) de�ned on

a time interval [0,α], starting at t = 0 from the initial condition x0.

Furthermore, this solution is unique.

The uniqueness of the solution x(t) for t ∈ [0,α] means that, if there exists

another solution �x(t) de�ned for t ∈ [0, �α] then both these solutions coincide

on the common part of their intervals of de�niteness, i.e. for t ∈ [0,α]∩ [0, �α]
there holds x(t) = �x(t).

A consequence of the Theorem on Existence and Uniqueness is that the

solution x(t) is de�ned locally in time, on an interval [0,α] that depends on

the initial condition x0. In case when x(t) exists for all time instants t ∈ R
and all initial conditions x0 ∈ Rn, the system (4.1) will be called a time

dependent (nonautonomous) dynamic system.

4.2 Bellman-Gronwall Lemma, dependence on initial condi-

tions

An important role in the analysis of systems (4.1) is played by the Bellman-

Gronwall Lemma that can be stated in the following form.

Lemma 4.2.1 (Bellman-Gronwall) Suppose that two functions φ(t),ψ(t) > 0
ful�l the inequality

φ(t) 6 a
∫t
0

φ(s)ψ(s)ds+ b, for a,b > 0.

Then, it is true that

φ(t) 6 bea
∫t
0ψ(s)ds.

As an example application of this lemma we shall demonstrate that the

solution of a system of di�erential equations depends continuously on the

initial condition. Let x0(t) denote such a solution initialised at x0. Choose

another initial condition x0+η, where ||η|| 6 ε, and let the solution starting

from x+η be denoted as xε(t). We ask the following question: assuming that

the initial conditions are close to each other (ε is small), are the solutions
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x0(t) and xε(t) close as well? To answer this question, we compute

||xε(t) − x0(t)|| =

∣∣∣∣∣∣∣∣x0 + η+ ∫t
0

f(xε(τ), τ)dτ− x0 −

∫t
0

f(x0(τ), τ)dτ

∣∣∣∣∣∣∣∣
6 ε+

∫t
0

||f(xε(τ), τ) − f(x0(τ), τ)||dτ 6 ε+ L
∫t
0

||xε(τ) − x0(τ)||dτ.

To the last expression we apply the lemma 4.2.1. Having substituted φ(t) =

||xε(t) − x0(t)||, ψ(t) = 1, a = L, and b = ε, we get

||xε(t) − x0(t)|| 6 εe
L
∫t
0 ds = εetL.

It follows that for any �nite t one can always �nd such an ε that the solu-

tion xε(t) will be arbitrarily close to x0(t). This is exactly meant by the

continuous dependence of the solution of the initial condition.

4.3 Time dependent linear systems

A speci�c class of system (4.1) is constituted by linear systems of the form

_x = A(t)x(t), (4.2)

where A(t) is a matrix of dimension n × n, depending on time. Invoking

the Theorem on Existence and Uniqueness we discover that the premises

of this theorem now reduce to a requirement that the matrix function A(t)

be continuous and bounded. If this is true, the solution exists for every

t and every initial condition x0, therefore the system (4.2) is an example

of a time dependent dynamic system. In the context of dynamic systems

more often than "a solution" we shall use "the state trajectory" or just "the

trajectory", while the initial condition will be called an initial state of the

system. Let x(s) be the trajectory of the system (4.2) for a certain s 6 t.
Then, one can show that

x(t) = Φ(t, s)x(s).

The matrix Φ(t, s) is named the fundamental matrix (the transition matrix)

of the system, and solves the equation

∂Φ(t, s)

∂t
= A(t)Φ(t, s), on condition that Φ(s, s) = In.

As a matter of fact we have

_x =
∂Φ(t, s)

∂t
x(s) = A(t)Φ(t, s)x(s) = A(t)x(t).
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Furthermore, for three time instants u 6 s 6 t the following identity holds

x(t) = Φ(t, s)x(s) = Φ(t, s)Φ(s,u)x(u),

resulting in the so called semigroup property of the fundamental matrix

Φ(t, s)Φ(s,u) = Φ(t,u).

If one sets u = t then

Φ(t, s)Φ(s, t) = Φ(t, t) = In,

what means that the fundamental matrix is invertible, and Φ−1(t, s) =

Φ(s, t). In this way we have discovered three important properties of the

fundamental matrix

Φ(t, t) = In, Φ−1(t, s) = Φ(s, t), Φ(t, s)Φ(s,u) = Φ(t,u).

4.4 Peano-Baker Formula

If the matrix A(t) does not depend on time, we get a liner dynamic system

_x = Ax(t). (4.3)

A feature of this system is that its fundamental matrix can be computed

explicitly, namely,

Φ(t, s) = e(t−s)A,

where the matrix exponential function is de�ned as the sum of the series

etA =
∑∞
i=1

(tA)i

i! . Several methods are known of e�ciently computing the

matrix exponential, e.g. based on the Cayley-Hamilton theorem. Observe

that not only for the system (4.3) the computation of the fundamental ma-

trix is tantamount to the computation of an exponential function; the same

is true also for a 1-dimensional time dependent system. Namely, for

_x = a(t)x(t), x,a, x0 ∈ R,

the trajectory is x(t) = e
∫t
0 a(u)dux0. This being so, can one expect that

perhaps in general Φ(t, s) = e
∫t
sA(u)du? The answer is negative. In general

case the fundamental matrix is expressed by so called Peano-Baker formula

that assumes the form of an in�nite series

Φ(t, s) = In +

∫t
s

A(σ1)dσ1 +

∫t
s

A(σ1)

∫σ1
s

A(σ2)dσ2dσ1 + · · ·

+

∫t
s

A(σ1)

∫σ1
s

A(σ2) . . .

∫σk−1
s

A(σk)dσkdσk−1 . . .dσ1 + · · ·
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A necessity of resorting to this formula is a consequence of non-commutati-

vity of the matrix multiplication. If, for any, t1, t2 the matrices A(t1) and

A(t2) commute, i.e. their commutator

[A(t1),A(t2)] = A(t1)A(t2) −A(t2)A(t1) = 0,

then the Peano-Baker Formula yields Φ(t, s) = e
∫t
sA(u)du.

4.5 Ważewski Inequality

Consider a time dependent linear system. Its asymptotic behaviour is char-

acterised by the following

Theorem 4.5.1 (Ważewski) For the system _x = A(t)x(t) with initial state x0,

let �A(t) = 1
2(A(t)+A

T (t)). Then, the norm of the state trajectory ful�ls

the following Wa_zewski Inequality

e
∫t
0 λ�A(s)ds||x0|| 6 ||x(t)|| 6 e

∫t
0
�λ�A(s)ds||x0||,

where, for a symmetric matrix M, λM and �λM denote, respectively, the

smallest and the biggest eigenvalue.

The Wa_zewski Inequality �nds applications in the study of asymptotic sta-

bility of linear time dependent dynamic systems.

4.6 Proofs

4.6.1 Theorem on Existence and Uniqueness

Proof: We shall present a proof of this theorem, based on the Fixed Point

Theorem. Let for a certain α > 0 C0n[0,α] denote the space of continuous

functions de�ned on the interval [0,α], with values in Rn. To simplify

notation a continuous function belonging to C0n[0,α] will be denoted by x.

The space C0n[0,α] appears to be a Banach space, with the norm

||x||∞ = sup
06t6α

||x(t)||,

where ||x(t)|| is the Euclidean norm in Rn. We pick a continuous function

x ∈ C0n[0,α], and let z(t) = x0 +
∫t
0 f(x(τ), τ)dτ. From the premises of

the theorem 4.1.1 it follows that z ∈ C0n[0,α], as we can assume that the
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constant function x0 belong to this space. Now, we take the ball B(x0, r),

and de�ne a subset S ⊂ C0n[0,α] as

S =
{
x ∈ C0n[0,α]| ||x− x0||∞ 6 r} .

Consider a function

P : C0n[0,α] −→ C0n[0,α],

such that

(P(x))(t) = x0 +

∫t
0

f(x(τ), τ)dτ.

We shall show that P is a contraction on the set S. To this objective, for

two functions x1, x2 ∈ C0n[0,α] we compute

||P(x2) − P(x1)||∞ = sup
06t6α

∣∣∣∣∣∣∣∣∫t
0

f(x2(τ), τ)dτ−

∫t
0

f(x1(τ), τ)dτ

∣∣∣∣∣∣∣∣
6 sup
06t6α

∫t
0

||f(x2(τ), τ) − f(x1(τ), τ)||dτ 6 L sup
06t6α

∫t
0

||x2(τ) − x1(τ)||dτ,

where the last step uses the Lipschitz property. But we have ||x2(τ) −

x1(τ)|| 6 sup06t6α ||x2(τ) − x1(τ)|| = ||x2 − x1||∞. Continuing in this way

we arrive at the conclusion that

||P(x2) − P(x1)||∞ sup
06t6α

∫t
0

dτ = Lα||x2 − x1||∞.
We see that, if only ρ = Lα < 1 then P is shrinking. Next, we need to check

if P takes values in the set S, so if P : S −→ S. Let's choose a function x ∈ S.
From the assumptions we deduce

||P(x) − x0||∞ = sup
06t6α

∣∣∣∣∣∣∣∣∫t
0

f(x(τ), τ)dτ

∣∣∣∣∣∣∣∣ 6 sup
06t6α

∫t
0

||f(x(τ), τ)||dτ

= sup
06t6α

∫t
0

||f(x(τ), τ) − f(x0, τ) + f(x0, τ)||dτ

6 sup
06t6α

(∫t
0

L||x(τ) − x0||dτ+

∫t
0

||f(x0, τ)||dτ

)
6 Lr sup

06t6α

∫t
0

dτ+M sup
06t6α

∫t
0

dτ = (Lr+M)α.

Finally, we get that P takes its values in the set S, on condition that (Lr +

M)α 6 r, what means that α should be su�ciently small α 6 r
Lr+M . Having
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chosen α = min
{
ρ
L ,

r
Lr+M

}
we can guarantee that P is a contraction on S.

This being so, the theorem 3.5.2 implies that the function P has a �xed

point, such that P(x∗) = x∗, therefore, for any t ∈ [0,α],

x∗(t) = x0 +

∫t
0

f(x∗(τ), τ)dτ,

i.e.

_x∗ = f(x∗(t), t), x∗(0) = x0.

The theorem has been demonstrated. �

4.6.2 Peano-Baker Formula

Below we sketch a scheme of deriving the Peano-Baker Formula. We look

for a fundamental matrix Φ(t, s) that ful�ls the identity

∂Φ(t, s)

∂t
= A(t)Φ(t, s), with the initial condition Φ(s, s) = In.

By integrating this identity from s to t we get

Φ(t, s) = In +

∫t
s

A(σ1)Φ(σ1, s)dσ1.

Analogously, we compute

Φ(σ1, s) = In +

∫σ1
s

A(σ2)Φ(σ2, s)dσ2,

which, after the substitution to the previous expression, results in

Φ(t, s) = In +

∫t
s

A(σ1)dσ1 +

∫t
s

A(σ1)

∫σ1
s

A(σ2)Φ(σ2, s)dσ2dσ1,

etc.

4.6.3 Ważewski Inequality

Proof: Suppose that x(t) denotes the trajectory of the linear time-depen-

dent system. We take the square of the norm ||x(t)||2 = xT (t)x(t), and

di�erentiate it with respect to time

d||x(t)||2

dt
= _xT (t)x(t) + xT (t) _x(t)

= xT (t)AT (t)x(t) + xT (t)A(t)x(t) = 2xT (t)�A(t)x(t).
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To the last term on the right hand side we apply the Rayleigh-Ritz's in-

equality, that yields

λ �A(t)||x(t)||
2 6 xT (t)�A(t)x(t) 6 �λ �A(t)||x(t)||

2.

In particular, from the right hand side of this inequality, we obtain

d||x(t)||2

dt
6 2�λ �A(t)||x(t)||

2.

The integration of this inequality side-wise results in∫t
0

d||x(s)||2

||x(s)||2
= ln

||x(t)||2

||x0||2
6 2
∫t
0

�λ �A(s)ds,

that directly implies

||x(t)||2 6 ||x0||
2e2

∫t
0
�λ�A(s)ds.

The above expression is equivalent to the right hand side part of the Wa_zew-

ski Inequality. The left hand side part can be proved in the same way. �

4.7 Problems and exercises

Exercise 4.1 Using the Fixed Point Theorem derive a su�cient condition for

convergence of the following algorithm of solving a system of linear equations

x = Ax. Algorithm:

xk+1 = Axk,

x0 { starting point.

Exercise 4.2 Show that the fundamental matrix Φ(t, s) of the linear system

_x = A(t)x satis�es the equality

∂ΦT (s, t)

∂t
= −AT (t)ΦT (s, t).

Exercise 4.3 Check that for a constant matrix A(t) = A the Peano-Baker

Formula produces the matrix exponential etA = Φ(t, 0).

Exercise 4.4 Check that the matrix M(t) =
∫t
0Φ(t, s)B(s)BT (s)ΦT (t, s)ds

obeys the Lyapunov di�erential equation

_M = B(t)BT (t) +A(t)M(t) +M(t)AT (t).
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Exercise 4.5 Prove the Bellmann-Gronwall Lemma. Hint: Notice that

φ(t)

a
∫t
0φ(s)ψ(s)ds+ b

6 1.

Exercise 4.6 Relying on the Wa_zewski Inequality verify the asymptotic sta-

bility of the following linear systems:

a) {
_x = −tx

_y = −y
,

b) {
_x = −x+ 2y

1+t2

_y = −y
,

c) {
_x = −2x+ 2y sin t

_y = −2y
,

d) {
_x = −t2x+ y cos t

_y = −t2y− x cos t
.

4.8 Bibliographical remarks

Basic as well as more advanced knowledge on dynamic systems can be gained

from the books [Har64, Arn78]. The proof of the Theorem on Existence and

Uniqueness presented in this chapter relies on the monograph [Sas99], also

the Bellman-Gronwall Lemma, and the Peano-Baker Formula can be found

therein. The Wa_zewski Inequality comes from the paper [Wa_z48]. The

Rayleigh-Ritz inequality (although without quoting its name) appears in

chapter 8.4 of the monograph [Ber05].
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Chapter 5

Stability

We shall consider time-dependent dynamic systems, of the form

_x = f(x(t), t), x(t0) = x0, (5.1)

where f : Rn × R −→ Rn is a smooth function (C∞) with respect to the

variable x. Observe that from the smoothness, there follows easily the local

Lipschitz property. For a proof, it su�ces to invoke a vector form of the

Hadamard's Lemma 3.3.1, namely, to notice that

f(x2, t) − f(x1, t) =

∫1
0

df(sx2 + (1− s)x1, t)ds

=

∫1
0

∂f(sx2 + (1− s)x1, t)

∂x
(x2 − x1)ds = G(x1, x2, t)(x2 − x1),

where G(x1, x2, t) =
∫1
0
∂f(sx2+(1−s)x1,t)

∂x ds. Having computed the norm we

get

||f(x2, t) − f(x1, t)|| 6 ||G(x1, x2, t)|| ||(x2 − x1)||.

Now, since the norm ||G(x1, x2, t)|| is a continuous function of its arguments,

it is bounded over the compact set B(x0, r) × [0,α], i.e. ||G(x1, x2, t)|| 6 L,
implying the Lipschitz property of f(x, t). In this way we have established

the local existence of the trajectory x(t) of the system (5.1). In what follows

we shall assume more, namely that x(t) exists for every time instant t, so

that (5.1) is a time dependent smooth dynamic system.

5.1 Stability, uniform stability, asymptotic stability

For a dynamic system we de�ne the equilibrium point.

56
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Definition 5.1.1 The point x0 ∈ Rn is called the equilibrium point of the

system (5.1), if for every t ∈ R

f(x0, t) = 0.

Obviously, a linear dynamic system _x = A(t)x(t) has the equilibrium point

x0 = 0. Nevertheless, not every system has such a point, for example the

system _x = x+ t has none.

Suppose that x0 = 0 denotes an equilibrium point of the system (5.1).

The behaviour of the system's trajectory in a neighbourhood of the equi-

librium point is characterised by a property named stability. For time-

dependent dynamic systems there exist several concepts of stability of the

equilibrium point. They will be presented below. The symbol t0 denotes

the initial time instant.

Definition 5.1.2 The equilibrium point x0 = 0 of a time-dependent dy-

namic system is:

� stable (S) if

(∀t0, ε)(∃η = η(t0, ε))(∀t > t0)(||x(t0)|| < η =⇒ ||x(t)|| < ε),

� unstable (U) if it is not stable

(∃t0, ε)(∀η = η(t0, ε))(∃t > t0)(||x(t0)|| < η and ||x(t)|| > ε),

� uniformly stable (US) if it is stable, and η does not depend on t0,

i.e. η = η(ε),

� asymptotically stable (AS) if it is stable, and there exists a number

c = c(t0), such that for ||x(t0)|| < c the trajectory x(t)→ x0,

� uniformly asymptotically stable (UAS) if it is asymptotically sta-

ble, and there exists a number c, independent of t0, such that for

||x(t0)|| < c the trajectory x(t) approaches x0 in asymptotically in

the uniform way, i.e. there holds that

(∀η > 0)(∃T = T(η))(∀t > t0 + T(η))(||x(t)|| < η),

� globally uniformly asymptotically stable (GUAS) if it is UAS and

c = +∞.
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x(t0)
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c
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x
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Figure 5.1: Stability and asymptotic stability

The idea of the stability and asymptotic stability is presented in Figure 5.1.

For a very simple dynamic system the stability can be deduced directly on

the basis of its de�nition. The following example may serve as an illustration

_x = −
x(t)

1+ t
, x ∈ R, t > −1.

The system's trajectory takes the form x(t) =
x(t0)(1+t0)

1+t , and the point

x0 = 0 represents an equilibrium. Now, for the reason that |x(t)| < |x(t0)|,

it is enough to pick η = ε, to discover that the equilibrium point is stable.

This point is also asymptotically stable, but it uniformly, because for a given

η the requirement that |x(t0+T)| =
x(t0)|(1+t0)|
1+t0+T

< η leads to the conclusion

T >
|x(t0)||(1+t0)|

η − 1 − t0 = T(η, t0), that means that T depends on the

initial time instant t0.

5.2 Class K and K∞ functions

Except for some trivial cases, usually the stability of an equilibrium point

cannot be decided directly from the de�nition. Instead, we need some in-

direct methods. In their statement we shall use so called (comparison)

functions of class K, de�ned in the following way

Definition 5.2.1 A continuous function α : [0,a] −→ R+, a > 0, is called

a class K function if α is strictly increasing and α(0) = 0. A function

α is a class K∞ function if a = +∞ and when r → +∞, the function

α(r)→ +∞.
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An example of a class K function, that is not a class K∞ function is α(r) =

arctan r. In contrast, the function α(r) = rn, n > 1, is simultaneously the

class K as well as the class K∞ function.

5.3 Lyapunov Function Theorem

Exploiting the functions of class K one can state the following su�cient

conditions of stability.

Theorem 5.3.1 (Lyapunov Function Theorem) Let a dynamic system (5.1) be

given, with an equilibrium point x0 = 0. Suppose that in a region

D ⊂ Rn containing x0 there exists a C1 function V : D × R −→ R.

Compute the derivative of V along the trajectory of the dynamic system,

_V(x, t) =
∂V(x, t)

∂t
+

(
∂V(x, t)

∂x

)T
f(x, t).

Then if

� there exist class K functions α1, α2, such that

α1(||x||) 6 V(x, t) 6 α2(||x||) and _V(x, t) 6 0

then the point x0 is uniformly stable,

� there exist class K functions α1, α2 and α3, such that

α1(||x||) 6 V(x, t) 6 α2(||x||) and _V(x, t) 6 −α3(||x||)

then the point x0 is uniformly asymptotically stable,

� the condition from the previous item holds for three class K∞ func-

tions α1, α2 and α3, and D = Rn then the point x0 is globally

uniformly asymptotically stable.

The function V is called a Lyapunov function, and a stable equilibrium

point is often named Lyapunov stable. For an illustration of the Lyapunov

Function Theorem consider a time-dependent dynamic system

_x = −
(
1+ t2

)
x3, x ∈ R.

It is easily seen that the point x0 = 0 is an equilibrium point of this system.

We choose V(x, t) = 1
2x
2. Clearly, for α1(r) = α2(r) = 1

2r
2 it holds that

α1(|x|) 6 V(x, t) 6 α2(|x|). The derivative _V(x, t) = 1(1 + t2)x4 6 −x4,

so for α3(r) = r4 we have _V(x, t) 6 −α3(|x|). Since all the functions αi
are class K∞ functions and D = R, Theorem 5.3.1 yields the global uniform

asymptotic stability of the point x0.
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5.4 Barbalat’s Lemma

In the study of stability of time-dependent systems, besides the Lyapunov

Function Theorem, one often uses another result called the Barbalat's Lemma.

In order to introduce this lemma, we shall �rst try to answer the following

questions concerning the real functions:

� Suppose that a smooth function f(t) has a limit at t→ +∞. Is it true

that _f(t)→ 0?

� Now, let _f(t)→ 0. Does it result in the existence of a limit of function

f(t) at t→ +∞?

An answer to both these questions is negative, what can be learnt from the

following counter examples: f(t) = e−t sin e2t and f(t) = sin ln t. Appar-

ently, in order to answer in positive we need to make an additional assump-

tion about the function f(t). It is included in the following

Theorem 5.4.1 (Barbalat) Let a function f ∈ C2(R,R) be given. If this func-

tion has a limit for t → +∞ and the second order derivative of f is

bounded, |�f(t)| 6M, then _f(t)→ 0.

The Barbalat's Lemma is often applied to a Lyapunov function in order to

either prove the asymptotic stability of a system or to get extra information

on the convergence of the system's trajectory. For illustration we shall

examine the dynamic system{
_x1 = −x1 + x2 sin t

_x2 = −x1 sin t
.

The point 0 ∈ R2 is an equilibrium point of this system. We choose a func-

tion V(x, t) = x21 + x
2
2 and compute _V(x, t) = 2x1 _x1 + 2x2 _x2 = −2x21. From

the Lyapunov Function Theorem we deduce that the equilibrium point is

stable (notice that the function x21 is not a class K function of the norm ||x||).

Could we show more than that? To this objective let's observe that along

the trajectory x(t) of the system the function W(t) = x21(t) + x
2
2(t) > 0,

while the function _W(t) = −2x21(t) 6 0, what means that W(t) is de-

creasing (non-increasing) and lower-bounded. This yields the existence

of a limit of W(t) at t → +∞. Compute the second order derivative
�W(t) = −4x21 _x1 = 4x21 − 4x1x2 sin t 6 4x21 + 4|x1||x2|. Since the func-

tion W(t) is non-increasing, W(t) 6 W(0), it follows that the trajectory
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x(t) = (x1(t), x2(t)) is bounded, ans so is �W(t). Finally, from the Bar-

balat's Lemma we deduce that _W(t) = −x21(t) → 0, i.e. x1(t) → 0. In this

way we have demonstrated that, besides the (Lyapunov) stability, one of

coordinates of the system converges asymptotically to 0.

5.5 Convergence estimation

In the course of analysis of the system's stability based on the Lyapunov

Function Theorem, it may happen that the derivative of the Lyapunov func-

tion along the trajectory is dependent on the function itself. This situation is

very advantageous due to a possibility of estimating the speed of convergence

of the trajectory to the equilibrium point. In order to better explain this

kind of reasoning we shall consider the system _x = −(1+t2)x3. This system

has the equilibrium point 0 ∈ R. Take the function V(x, t) = V(x) = 1
2x
2

and let W(t) = V(x(t)). It is easily seen that _W(t) 6 −x4(t) = −4W2(t).

By integration of this inequality sidewise we obtain W(t) 6 1
1

W(0)+4t
, that

implies that |x(t)| 6

(
2

1
V(0)+4t

)1/2
. As we can see, the system's trajectory

approaches 0 with a guaranteed speed of order t−1/2. Notice that this es-

timate is useful, but perhaps not very accurate, as actually the trajectory

x(t) = 1√
x−20 +2t+ 2

3t
3
tends to zero quicker, namely as the function t−3/2.

5.6 Problems and exercises

Exercise 5.1 Check stability of the following systems:

a) (
_x1
_x2

)
=

[
−1 e

1
2t

0 −1

](
x1
x2

)
,

b) (
_x1
_x2

)
=

[
−10 e3t

0 −2

](
x1
x2

)
,

c) (
_x1
_x2

)
=

[
−1 e2t

0 −2

](
x1
x2

)
,
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d) (
_x1
_x2

)
=

[
−1 2 sin t

0 −(t+ 1)

](
x1
x2

)
.

Exercise 5.2 Show that the equilibrium point (0, 0)T of the system{
_x1 = −x1 + x2 +

(
x21 + x

2
2

)
sin t

_x2 = −x1 − x2 +
(
x21 + x

2
2

)
cos t

is exponentially stable, and de�ne its stability region. Hint: Use V(x) =

x21 + x
2
2.

Exercise 5.3 Examine stability of the point (0, 0)T of the system{
_x1 = h(t) − g(t)x

3
1

_x1 = −h(t) − g(t)x32
,

where g(t), h(t) are smooth and upper-bounded, moreover g(t) > k > 0.

Hint: Take V(x) = x21 + x
2
2.

Exercise 5.4 Let V(x) denote a smooth potential function. Show that the

gradient system

_x = −
∂V(x)

∂x
= −DV(x)

has no closed orbits.

Exercise 5.5 Let H(x,y), x,y ∈ Rn denote a smooth Hamilton's function.

Prove that the Hamiltonian system
_x =

∂H(x,y)

∂y

_y = −
∂H(x,y)

∂x

does not have any asymptotically stable equilibrium point.

5.7 Bibliographical remarks

The exposition of stability theory presented in this chapter relies on the

monograph [Kha00]. Also, the chapter 5 of the book [Sas99] is devoted

to stability. The concept of the Hamiltonian system and other mechanical

analytic concepts can be found in [Arn78].
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Chapter 6

Time-independent dynamic systems

In this chapter we shall be dealing with systems of ordinary di�erential

equations, of the form

_x = f(x(t)), x(0) = x0, (6.1)

where f ∈ C∞(Rn,Rn). Notice that the right hand side of the system

(6.1) does not depend on time, therefore the conditions of the Theorem

on Existence and Uniqueness reduce to the Lipschitz condition that for the

smooth function f(x) is satis�ed automatically.

6.1 System’s flow

In consequence of what has been said above, the system (6.1) has a solution

x(t) = ϕ(t, x), x(0) = x,
dϕ(t, x)

dt
= f(ϕ(t, x))

de�ned on a time interval containing the initial time instant. If ϕ(x, t) is

de�ned for every initial state x ∈ Rn and every time t ∈ R then (6.1) will

be called a time-independent (autonomous) dynamic system, or, simply, a

dynamic system. With reference to a dynamic system the function ϕ(x, t)

is named the system's ow. The ow depends smoothly on time as well as

on the state. It determines a state of the system at time t if its state at

time 0 has been x. In order to distinguish from each other the variables x

and t we often use the notation ϕ(x, t) = ϕt(x). The system's ow has the

following properties:

� ϕ0(x) = x (identity property),

64
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� ϕt ◦ϕs(x) = ϕt+s(x) = ϕs+t(x) = ϕs ◦ϕt(x) (semigroup property).

Using the above properties, for s = −t, we get ϕt ◦ ϕ−t(x) = ϕt−t(x) =

ϕ0(t) = x, what yields (ϕt)
−1 = ϕ−t. Consequently, {ϕt|t ∈ R} is a (1-

parameter) family of di�eomorphisms of the state space Rn.

Geometrically, the function f(x) appearing on the right hand side of

the system (6.1) can be interpreted as a vector �eld that to every point

x ∈ Rn assigns a direction of motion at this point, such that at any point

the system's trajectory must be tangent to the vector de�ned by the vector

�eld. This being so, it follows that the integration of a di�erential equation is

tantamount to inscribing into the state space curves tangent to the directions

de�ned by a vector �eld.

Having �xed in the ow the state x and let t change we arrive to the

concept of orbit of the dynamic system.

Definition 6.1.1 The set

O(x) = {ϕt(x)|t ∈ R}

is called the orbit of the system, passing through the point x.

Interestingly, there exist only three types of orbits of a dynamic system.

� O = {x} equilibrium point (∀t ∈ R)(ϕt(x) = x),

� O = {x ∈ Rn|(∃t > 0)(ϕt(x) = x)} ∼=S1 closed orbit,

� O ∼=R open orbit.

Above, the symbol ∼= denotes an isomorphism; it can be read out as "looks

like". S1 stands for the unit circle. All three types of orbits can be discovered

in the phase portrait of the mathematical pendulum �q = − sinq presented

in Figure 6.1. Finally, let us notice that by the Theorem of Existence and

Uniqueness the condition (∃t > 0)(ϕt(x) = x) indeed de�nes a closed orbit.

The minimum T > 0, such that ϕT = x is called the period of the closed

orbit. Obviously, ϕt+T (x) = ϕt ◦ϕT (x) = ϕt(x).

6.2 Equivalence of dynamic systems

Similarly as for functions now we shall introduce a concept of equivalence

of dynamic systems. Suppose that two dynamic systems are given, of the

form

σ : _x = f(x(t)) and σ ′ : _ξ = F(ξ(t)), x, ξ ∈ Rn,
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q

_q

π−π 2π−2π

Figure 6.1: Orbits of mathematical pendulum

with ows equal to, respectively, ϕt(x) and Φt(ξ). Then, two equivalences

can be de�ned:

Definition 6.2.1 � Topological equivalence

σ ∼=
TE
σ ′ ⇐⇒ (∃ homeomorphism ξ = ψ(x))(ψ ◦ϕt(x) = Φt ◦ψ(x)).

� Di�erential equivalence

σ ∼=
DE
σ ′ ⇐⇒ (∃ di�eomorphism ξ = ψ(x))(ψ ◦ϕt(x) = Φt ◦ψ(x)).

The concept of di�eomorphism has been introduced in chapter 2. Di�erently

to the di�eomorphism that needs to be continuously di�erentiable, and have

a continuous inverse, the homeomorphism needs to be continuous, invertible,

and have a continuous inverse. If the function ψ is de�ned only locally,

we speak of a local equivalence (topological, di�erentiable), in short LTE

and LDE. The essential meaning of the equivalence of dynamic systems is

revealed in Figure 6.2.

6.3 Theorem on Differential Equivalence

As follows form the de�nition, checking both types of equivalences of dy-

namic systems requires that the systems' ows are known, i.e. that the

systems' di�erential equations have been solved. In most cases this is not

possible, so it would be advantageous to have a test of the equivalence that

does not involves the ows. It turns out that such a test exists for the

Di�erential Equivalence. In this context the following results is true.
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x

ϕt(x) ψ

ψ(x)

Φt(ψ(x)) = ψ(ϕt(x))

ψ

Figure 6.2: Equivalence of dynamic systems

Theorem 6.3.1 (On Differential Equivalence)

σ ∼=
DE
σ ′ ⇐⇒ (∃ di�eomorphism ξ = ψ(x))(Dψ(x)f(x) = F(ψ(x)).

6.4 Straightening Out Theorem

For a dynamic system (6.1) the point x0, at which f(x0) = 0, will be named a

singular point or an equilibrium point of this system. In case when f(x0) 6=
0 the point x0 is referred to as a regular point. The next Theorem on

Straightening Out (a vector �eld) characterises the behaviour of a dynamic

system in a neighbourhood of the regular point.

Theorem 6.4.1 (Straightening Out Theorem) Let f(0) 6= 0. Then

σ ∼=
LDE

σ ′,

for σ ′ such that the vector �eld F(ξ) = e1 = (1, 0, . . . , 0)T ∈ Rn. In other

words, the system σ ′ assumes the form

_ξ1 = 1

_ξ2 = 0
...

_ξn = 0

,

while its ow

Φt(ξ) = ξ+ te1.

The name and the meaning of this theorem is explained in Figure 6.3. The

Straightening Out Theorem implies that, similarly as for functions, the be-

haviour of dynamic systems around regular (non-singular) points is not very
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ξ1

ξ2, . . . , ξn

Figure 6.3: Straightening out a vector �eld

exciting. In a search for more interesting behaviours below we shall focus

our attention on the equilibrium (singular) points.

6.5 Equilibrium points

Assume that x0 ∈ Rn denotes an equilibrium point of the system (6.1). We

take the Taylor series of the vector �eld f(x) in a neighbourhood of this

equilibrium point

f(x) = f(x0) +Df(x0)(x− x0) + o(x) = Df(x0)(x− x0) +O(x
2).

The matrix A = Df(x0) is called the matrix of the linear approximation of

the system at the point x0. Further on we shall distinguish two kinds of the

equilibrium points.

Definition 6.5.1 An equilibrium point x0 is called a hyperbolic, if eigen-

values of the matrix A have non-zero real parts. The point x0 is named

resonant, if eigenvalues λi of the matrix A obey the following dependen-

cies: λi =
∑
jmijλj for certain integers mij > 0, such that

∑
jmij > 2.

The equilibrium point x0 is referred to as non-resonant if it is not res-

onant.

For illustration of the concept of resonant point, let us look at a simple

oscillator described as {
_x1 = ωx2

_x2 = −ωx1
.
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It is easily checked that its orbits satisfy the identity x21 + x
2
2 = C. The

equilibrium point x0 = 0 is resonant because the matrix A =
[
0 ω

−ω 0

]
of

the linear approximation of the oscillator has eigenvalues ±iω, therefore
λ1 + λ2 = 0. It yields 2λ1 + λ2 = λ1, as required by the de�nition of the

resonant point. An association with the oscillator explains the origin of the

name "resonant". Notice that the resonance condition can also hold, when

the eigenvalues are real, and sum up to 0. This means that an equilibrium

point can simultaneously be resonant and hyperbolic, as in the system _x1 =

αx2, _x2 = αx1.

6.6 Linearisation of dynamic systems

The behaviour of dynamic system in a neighbourhood of a non-resonant

equilibrium point is described by the following

Theorem 6.6.1 (Poincaré-Siegel-Sternberg) Let x0 = 0 denote a non-resonant

equilibrium point of the dynamic systems σ : _x = f(x(t)). Then

σ ∼=
LDE

σ ′,

where σ ′: _ξ = Aξ and A = Df(0).

This theorem asserts that around a non-resonant point the dynamic system

behaves as its linear approximation at this point. For the hyperbolic point

an analogous result is true for the topological equivalence, as stated in

Theorem 6.6.2 (Hartman-Grobman) Suppose that x0 = 0 is a hyperbolic equi-

librium point of the dynamic system σ : _x = f(x(t)). Then

σ ∼=
LTE

σ ′,

where σ ′: _ξ = Aξ and A = Df(0).

6.7 Equivalence of linear systems

In this section we shall consider linear dynamic systems. Let two such

systems be given,

σ : _x = Ax(t) and σ ′ : _ξ = Fξ(t), x, ξ ∈ Rn, A, F matrices.
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The Di�erential Equivalence of linear systems means that

σ ∼=
DE
σ ′ ⇐⇒ (∃ P { non-singular matrix) (PA = FP).

It is not hard to observe that the eigenvalues of the matrices A and F are

invariants of this equivalence, therefore the equivalent linear systems have

matrices with the same eigenvalues. This property means that the cor-

responding equivalence classes must be very "small", and that there are

in�nitely many of them; for example two equivalent (identical) diagonal

matrices A and F will no longer be equivalent after an arbitrary small per-

turbation of any of them. For this reason the Di�erential Equivalence is not

a very useful tool for classi�cation of linear systems. If, instead, we use the

Topological Equivalence then the following result can be proved.

Theorem 6.7.1 (Kuiper) Assume that the linear system

σ : _x = Ax(t)

has a hyperbolic equilibrium point x0 = 0. Then,

σ ∼=
TE
σ ′k, k = 0, 1, . . . ,n,

where

σ ′k :



_ξ1 = −ξ1(t)
...

_ξk = −ξk(t)

_ξk+1 = ξk+1(t)
...

_ξn = ξn(t)

. (6.2)

The integer invariant k denotes the number of eigenvalues of the matrix A

with negative real parts. In the case of planar systems (n = 2), one deduces

from (6.2) that there exist three kinds of hyperbolic equilibrium points: the

sink points, the source points, and the saddle points. All of them are shown

in Figure 6.4

6.8 Classification of dynamic systems: a summary

We have shown that the Di�erential Equivalence is an e�cient tool for de-

scribing the behaviour of a dynamic system around the regular points or
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Figure 6.4: Hyperbolic equilibrium points in the plane: a) sink, b) source,

c) saddle

the non-resonant singular points. Complementarily, the Topological Equiv-

alence allows to identify the dynamic system with its linear approximation

at a hyperbolic equilibrium point. Additional advantages of the Topological

Equivalence become visible after combining Theorems 6.6.2 and 6.7.1. In

this way we arrive at the following �nite classi�cation of dynamic systems.

Theorem 6.8.1 In a neighbourhood of a hyperbolic equilibrium point a dy-

namic system is locally topologically equivalent to one from among

(n+ 1) normal forms described by the formula (6.2).

Theorem 6.6.2 also yields that on the basis of the linear approximation

at an equilibrium point one can reason about the local stability of this

point. This is the essence of so called First Method of Lyapunov of checking

stability. In particular, an equilibrium point of the system σ is locally

asymptotically stable if the corresponding normal form is σ ′n, and unstable

for the remaining normal forms.

6.9 Proofs

6.9.1 Theorem on Differential Equivalence

Proof: We recall that ows of the dynamic systems σ and σ ′ satisfy the

equations

dϕt(x)

dt
= f(ϕt(x)) and

dΦt(x)

dt
= F(Φt(x)).

� Necessary condition: Suppose that ψ ◦ ϕt(x) = Φt ◦ ψ(x). Since the
di�eomorphism ψ is di�erentiable, we compute the time-derivative of

both sides and obtain

dψ ◦ϕt(x)
dt

= Dψ(ϕt(x))
dϕt(x)

dt
= Dψ(ϕt(x))f(ϕt(x))
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and also
dΦt ◦ψ(x)

dt
= F(Φt(ψ(x)).

Having substituted t = 0, we deduce from the above identities that

Dψ(x)f(x) = F(ψ(x)).

� Su�cient condition: We assume that Dψ(x)f(x) = F(ψ(x)). Because

x is arbitrary, we replace x by the ow ϕt(x) that leads to the formula

Dψ(ϕt(x))f(ϕt(x)) = F(ψ(ϕt(x)). Now, observe that the left hand

side of this identity equals dψ◦ϕt(x)dt , therefore

dψ ◦ϕt(x)
dt

= F(ψ(ϕt(x)).

On the other hand, from de�nition of the system's ow of σ ′ it follows

that
dΦt ◦ψ(x)

dt
= F(Φt ◦ψ(x)).

We have concluded that the functions ψ◦ϕt(x)) and Φt ◦ψ(x) satisfy
the same di�erential equation, of the form

dα

dt
= X(α(t)),

with the same initial condition Φ0 ◦ ψ(x) = ψ(x) and ψ ◦ ϕ0(x) =

ψ(x). Finally, from the Theorem on Existence and Uniqueness these

solutions coincide,

ψ ◦ϕt(x) = Φt ◦ψ(x).

�

6.9.2 Straightening Out Theorem

Proof: Instead of the di�eomorphism ξ = ψ(x), such that Dψ(x)f(x) =

F(ψ(x)) we shall device the inverse di�eomorphism x = α(ξ) satisfying the

condition Dα(ξ)F(ξ) = f(α(ξ)). Having assumed f(0) 6= 0, perhaps by re-

ordering coordinates, we can get f1(0) 6= 0. Under this assumption, using

the ow of the system σ, we de�ne

α(ξ) = ϕξ1(0, ξ2, . . . , ξn),
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By the properties of the ow we have that α is smooth and α(0) = 0. The

derivative

Dα(ξ) =

[
∂α

∂ξ1
, . . . ,

∂α

∂ξn

]
(ξ)

=

[
∂ϕξ1(0, ξ2, . . . , ξn)

∂ξ1
, . . . ,

∂ϕξ1(0, ξ2, . . . , ξn)

∂ξn

]
.

Now, for ξ = 0 we get

Dα(0) = [f(0), e2, . . . , en],

where ei denotes the i-th basis vector in Rn. Due to the fact that f1(0) 6= 0,
the matrix Dα(0) has rank n, so, by virtue of the Inverse Function Theorem,

in a neighbourhood of 0 the function α is a di�eomorphism. In order to check

the equivalence condition, we compute

Dα(ξ)F(ξ) = Dα(ξ)e1 =
∂ϕξ1(0, ξ2, . . . , ξn)

∂ξ1
= f(α(ξ)),

that �nishes the proof. �

6.10 Problems and exercises

Exercise 6.1 Show that the dynamic system{
_x = −λy+ xy

_y = λx+ 1
2

(
x2 − y2

) ,

x,y ∈ R, λ > 0, is Hamiltonian. De�ne its Hamilton's function and draw a

phase portrait.

Exercise 6.2 Demonstrate that the dynamic system{
_x = x2 − y3

_y = 2x
(
x2 − y

) ,

x,y ∈ R, has the �rst integral.

Exercise 6.3 Find the �rst integral of the dynamic system{
_x = y

_y = x− 2x3
,

x,y ∈ R, and draw its phase portrait.
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Exercise 6.4 Find the �rst integral and draw a phase portrait of the Lotka-

Volterra's system {
_x = ax− bxy

_y = −cy+ bxy
,

x,y ∈ R, a,b, c > 0.

Exercise 6.5 Examine stability of the point (0, 0)T of the system{
_x = −y+ x

(
x2 + y2

)
sin
√
x2 + y2

_y = x+ y
(
x2 + y2

)
sin
√
x2 + y2

,

x,y ∈ R. Hint: Introduce the polar coordinates.{
x = r cosϕ

y = r sinϕ
.

6.11 Bibliographic remarks

Among most recommended texts on dynamic systems there are two mono-

graphs by Arnold, [Arn78, Arn83]. The concepts of equivalence of dynamic

systems as well the classi�cation theorems included in this chapter come

from [Arn83]; they are also the subject of chapter 3 of the book [L�ev09].

Topological equivalence of linear systems is dealt with in [Kui75]. The

Reader interested in invariant manifolds and bifurcation theory may like

the chapter 7 of the monograph [Sas99].
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Chapter 7

Frobenius Theorem

7.1 Vector fields, big adjoint operator

In this chapter we shall be busy with a pair of dynamic systems

_x = X(x(t)) and _y = Y(y(t)), x,y ∈ Rn,

de�ned by smooth vector �elds X, Y ∈ C∞(Rn,Rn), with ows ϕt(x) and

Φt(y). By de�nition, these ows obey the identities

dϕt(x)

dt
= X(ϕt(x)) and

dΦt(y)

dt
= Y(Φt(y)).

Consider the following action of the vector �eld X on the vector �eld Y.

Beginning from an initial state x we follow for the time t the trajectory

of the vector �eld X, up to the point ϕt(x). Next, at the point ϕt(x) we

take the vector �eld Y and move it for the time t along the trajectory of

the vector �eld X, but in the opposite direction. The vector at the point x

obtained in this way de�nes the big adjoint operator

AdtX Y(x) = Dϕ−t(ϕt(x))Y(ϕt(x)) = (Dϕ−tY) (ϕt(x)).

The de�nition of the operator AdtX Y(x) is illustrated in Figure 7.1. Observe

that for a �xed point x and varying t AdtX Y(x) becomes a curve in the space

Rn. The derivative of this curve determines the Lie bracket of vector �elds

X and Y,

[X, Y](x) = adX Y(x) =
d

dt

∣∣∣∣
t=0

AdtX Y(x).

We propose to use the name "the big adjoint operator" in order to distin-

guish Ad from "the small adjoint operator" ad that has been de�ned above.

The following properties of the operator Ad can be derived:

75
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x

ϕt(x)

Y(ϕt(x))

D
ϕ−
t
(ϕ
t
(x
))

AdtX Y(x)

Figure 7.1: De�nition of operator AdtX Y(x)

� Ad0X Y(x) = Y(x),

� Adt+sX Y(x) = AdtXAd
s
X Y(x),

�
d
dt Ad

t
X Y(x) = AdtX[X, Y](x).

Notice that the last formula implies that if two vector �elds X and Y com-

mute, i.e. their Lie bracket [X, Y](x) = 0 then AdtX Y(x) = Ad0X Y(x) = Y(x).

7.2 Lie bracket

One can show that the de�nition of the Lie bracket introduced in the previ-

ous section coincides with a more classic de�nition, stated using coordinates,

namely

[X, Y](x) = DY(x)X(x) −DX(x)Y(x).

The following properties of the Lie bracket are consequences of the de�ni-

tion:

� [X,X](x) = 0 { irreexivity,

� [Y,X](x) = −[X, Y](x) { antisymmetry,

� [[X, Y],Z](x) + [[Y,Z],X](x) + [[Z,X], Y](x) = 0 { Jacobi identity.

� for two numbers α,β ∈ R [αX + βY,Z](x) = α[X,Z](x) + β[Y,Z] {

bilinearity.
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It is easily observed that the Lie bracket assigns to a pair of vector �elds

another vector �eld, so it may be regarded as a sort of product of vector

�elds, resembling the cross product of vectors in R3. In this context the

Jacobi identity results in the non-associativity of the Lie bracket (similarly

to the non-associativity of the cross product). This is because

[[X, Y],Z] = [X, [Y,Z]] − [Z, [X, Y]] 6= [X, [Y,Z]].

As has been mentioned in subsection 1.2, smooth vector �elds V(Rn) form

a linear space over R and, together with the Lie bracket, constitute a Lie al-

gebra. Moreover, the vector �elds also form a module over the smooth func-

tions C∞(Rn,R), therefore, for any f,g ∈ C∞(Rn,R) the bracket [fX,gY] ∈
V∞(Rn). The computation of this bracket yields

[fX,gY](x) = f(x)g(x)[X, Y](x) + f(x)LXg(x)Y(x) − g(x)LYf(x)X(x),

where the symbol LXf denotes the Lie derivative of the function f with

respect to the vector �eld X de�ned as LXf(x) = df(x)X(x).

7.3 Lie bracket theorems

Additional properties of the Lie bracket will be speci�ed in the following

two theorems.

Theorem 7.3.1 (On Commutation) Vector �elds commute if and only if the

composition of their ows is commutative, i.e.

[X, Y](x) = 0⇐⇒ ϕt ◦Φs(x) = Φs ◦ϕt(x).

Theorem 7.3.2 Suppose that ϕ : Rn −→ Rn de�nes the Di�erential Equiv-

alence of dynamic systems determined by the vector �elds X1, Y1 and

X2, Y2, so that

Dϕ(x)X1(x) = Y1(ϕ(x)) and Dϕ(x)X2(x) = Y2(ϕ(x)).

Then, the Lie brackets of di�erentially equivalent vector �elds are also

di�erentially equivalent,

Dϕ(x)[X1,X2](x) = [Y1, Y2](ϕ(x)).
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7.4 Simultaneous Straightening Out Theorem

A generalisation of the Straightening Out Theorem proved in section 6 is

the Simultaneous Straightening Out Theorem that will be presented below.

This theorem �nds a direct application in the proof of the fundamental

Frobenius Theorem.

Theorem 7.4.1 (Simultaneous Straightening Out) Given a collection of k > 1
vector �elds X1,X2, . . . ,Xk ∈ V∞(Rn). We assume that these vector

�elds are independent at the point 0 ∈ Rn, i.e. rank[X1(0),X2(0), . . . ,

Xk(0)] = k, and that in a neighbourhood of zero they commute with

each other, [Xi,Xj] = 0, i, j = 1, 2, . . . ,k. This being so, there exists a

local di�eomorphism ξ = ψ(x), such that

Dψ(x)Xi(x) = ei(ψ(x)) = ei, i = 1, 2, . . . ,k,

where ei ∈ Rn denotes the i-th unit vector �eld. In other words, the

di�eomorphism ψ allows to straighten out all the k vector �elds simul-

taneously, establishing the equivalences

X1 ∼=
LDE

e1, X2 ∼=
LDE

e2, . . . ,Xk ∼=
LDE

ek.

7.5 Distribution and integral manifold

Given the module V∞(Rn) of vector �elds over C∞(Rn,R), its submodule

D = span
C∞(Rn,R)

{X1,X2, . . . ,Xk}

generated by a collection of vector �elds Xi ∈ V∞(Rn), independent at

any point x ∈ Rn, is called a (vector �eld) distribution. By de�nition,

at any point x, the distribution D de�nes a k-dimensional linear subspace

D(x) ⊂ Rn. Thus, we can speak of a �eld of subspaces

x 7→ D(x).

For k = 1, the distribution D = spanC∞(Rn,R){X1} generates in R
n straight

lines corresponding to the single vector �eld X1. The Theorem on Existence

and Uniqueness provides condition under which there exists a curve that

at every point is tangent to D(x). This is just the integral curve of the

vector �eld X1. For a k-dimensional distribution a natural generalisation
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of the integral curve is the concept of the integral manifold de�ned as a k-

dimensional submanifold of Rn that at any point is tangent to the subspace

D(x). Contrary to the one-dimensional distributions for which the condition

of existence of the integral curve are easily satis�ed, in the case of k > 2 the
integral manifold rarely exists. In the sequel, to avoid technical complica-

tions, by an (n−p)-dimensional smooth manifold (a submanifold of Rn) we

shall understand the subset of Rn de�ned by p independent equations, so

MD = {x ∈ Rn|f1(x) = 0, f2(x) = 0, . . . , fp(x) = 0},

where the functions fi are smooth. The independence of functions means

that rank
[
dfT1 (x),df

T
2 (x), . . . ,df

T
p(x)

]
(x) = p, i.e. their di�erentials need

to be independent for every x ∈ MD. A distribution that has an integral

manifold is referred to as integrable.

7.6 Frobenius Theorem

A necessary and su�cient condition for the existence of an integral manifold

is provided by the Frobenius Theorem. It is sometimes called the third

pillar of nonlinear analysis. Bellow we shall restrict to the formulation of

the su�cient condition.

Theorem 7.6.1 (Frobenius) Let D = spanC∞(Rn,R){X1,X2, . . . ,Xk} denote a k-

dimensional distribution de�ned in a neighbourhood of 0 ∈ Rn, so

rank[X1(0),X2(0), . . . ,Xk(0)] = k. We assume that this distribution is

involutive, i.e. X, Y ∈ D =⇒ [X, Y] ∈ D. Then, in a certain local coordi-

nate system

D = span
C∞(Rn,R)

{e1, e2, . . . , ek}.

Equivalently, there exist vector �elds Y1, Y2, . . . ,Yk generating the dis-

tribution, D = spanC∞(Rn,R){Y1, Y2, . . . ,Yk}, and a local di�eomorphism

ψ(x) = (ψ1(x),ψ2(x), . . . ,ψn(x)) straightening out these vector �elds si-

multaneously. Through any point in a neighbourhood of 0 ∈ Rn there

passes an integral manifold of the distribution D, of dimension k, de-

termined by the last n− k components of the di�eomorphism ψ,

MD = {x ∈ Rn|ψk+1(x) = 0,ψk+2(x) = 0, . . . ,ψn(x) = 0}.
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7.7 Proofs

7.7.1 Theorem on commutation

Proof: � Suppose that ϕt ◦Φs(x) = Φs ◦ϕt(x). By the di�erentiation

of both sides with respect to s we get

d

ds
ϕt ◦Φs(x) = Dϕt(Φs(x))

dΦs(x)

ds
=
d

ds
Φs ◦ϕt(x) = Y(Φs ◦ϕt(x)).

After a substitution of s = 0 and taking ϕ−t(x) instead of x the above

expression converts into

Dϕt(ϕ−t(x))Y(ϕ−t(x)) = Ad−tX Y(x) = Y(x),

implying that

d

dt

∣∣∣∣
t=0

Ad−tX Y(x) = [X, Y](x) = 0.

� Now, let [X, Y](x) = 0. In consequence, ddt Ad
t
X Y(x) = 0, i.e.

AdtX Y(x) = Dϕ−t(ϕt(x))Y(ϕt(x)) = Y(x).

After replacing x by ϕ−t(x) and then changing −t to t one obtains

Dϕt(x)Y(x) = Y(ϕt(x)).

Having substituted x for the ow Φs(x) of the vector �eld Y, we ar-

rive at

Dϕt(Φs(x))Y(Φs(x)) = Y(ϕt(Φs(x))),

that in turns yields

d

ds
ϕt ◦Φs(x) = Y(ϕt ◦Φs(x))).

However, by de�nition of the ow on the vector �eld Y, it follows that

d

ds
Φs ◦ϕt(x) = Y(Φs ◦ϕt(x)).

The last two identities indicate that ϕt ◦Φs(x) and Φs ◦ϕt(x) satisfy
the same di�erential equation with the same initial condition ϕt ◦
Φs(x)|s=0 = ϕt(x) = Φs ◦ ϕt(x)|s=0, therefore, by the Theorem on

Existence and Uniqueness it must be

ϕt ◦Φs(x) = Φs ◦ϕt(x),

what should be demonstrated.

�
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7.7.2 Simultaneous Straightening Out Theorem

Proof: For a proof we shall design a di�eomorphism x = α(ξ), such that

Dα(ξ)ei = Xi(α(ξ)) for i = 1, 2, . . . ,k. Our computations will be accom-

plished in a neighbourhood of 0 ∈ Rn. Without any loss of generality we may

assume that the rank condition rank[X1(0),X2(0), . . . ,Xk(0)] = k means in-

dependence of the �rst k rows of the matrix [X1(0),X2(0), . . . ,Xk(0)]. We

propose to use the following function

α(ξ) = ϕ1ξ1 ◦ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn).

By de�nition the function α is smooth and such that α(0) = 0. Let's

compute its derivative

Dα(ξ) =

[
d

dξ1
ϕ1ξ1(ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn)),

Dϕ1ξ1(ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn))
d

dξ2
(ϕ2ξ2(ϕ3ξ3 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn)), . . . ,

Dϕ1ξ1 ◦ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn)ek+1, . . . ,

Dϕ1ξ1 ◦ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn)en
]
.

An analysis of this expression allows us to conclude that

d

dξ1
ϕ1ξ1(ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn)) = X1(α(ξ)),

and

Dϕ1ξ1(ϕ2ξ2 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn))
d

dξ2
(ϕ2ξ2(ϕ3ξ3 ◦ · · · ◦ϕkξk(0, 0, . . . , ξk+1, . . . , ξn))

= Dϕ1ξ1(ϕ1−ξ1(α(ξ)))X2(ϕ1−ξ1(α(ξ))) = Ad−ξ1X1
X2(α(ξ)),

and similarly for further components. But, by virtue of the assumption the

vector �elds commute, so [X1,X2](x) = 0, yielding

Ad−ξ1X1
X2(α(ξ)) = X2(α(ξ)),

etc. In this way we have shown that

Dα(ξ) = [X1(α(ξ)),X2(α(ξ)), . . . ,Xk(α(ξ)), ∗, · · · , ∗] ,
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where asterisks stand for the entries that we do not have to know. At the

point 0 we have

Dα(0) = [X1(0),X2(0), . . . ,Xk(0), ek+1, . . . , en] .

Because rankDα(0) = n, α is a local di�eomorphism around 0. Further-

more, for every i = 1, 2, . . . ,k, it follows that

Dα(ξ)ei = Xi(α(ξ)),

therefore the vector �elds X1,X2, . . . ,Xk have been straightened out simul-

taneously. �

7.7.3 Frobenius Theorem

Proof: Suppose that the upper k× k sub-matrix of the matrix

[X1(x),X2(x), . . . ,Xk(x)] =

[
P(x)

Q(x)

]
has rank k in a neighbourhood of 0 ∈ Rn. By de�nition, having multiplied

both sides of this identity by the matrix P−1(x), we obtain new generators

Y1, Y2, . . . ,Yk of the distribution D, of the form

Yi(x) =

(
ei
∗

)
,

where ei ∈ Rk is the i-th unit vector and ∗ symbolises the remaining n− k

components of the vector �eld. We shall show that these new generators

commute. To this objective we need to compute their Lie bracket

[Yi, Yj](x) = DYj(x)Yi(x) −DYi(x)Yj(x)

=

[
0

∗

](
ei
∗

)
−

[
0

∗

](
ej
∗

)
=

(
0

∗

)
.

But, by the involutivity of the distribution D, the bracket [Yi, Yj] ∈ D, what

means that

[Yi, Yj](x) =

k∑
r=1

αr(x)Yr(x) =

(
0

∗

)
,

i.e. all the coe�cient functions αi(x) = 0 as well as [Yi, Yj](x) = 0. We see

that he new generators commute. Invoking the Simultaneous Straightening
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Out Theorem we establish the existence of a local di�eomorphism ψ(x) =

(ψ1(x),ψ2(x), . . . , ψn(x))
T , such that

Dψ(x)Yj(x) = ej, j = 1, 2, . . . ,k.

What remains is to prove the existence of an integral manifold. Let

Xi(x) =

k∑
j=1

γij(x)Yj(x)

express the vector �eld Xi in terms of new generators. By multiplying both

sides by Dψ(x), and then exploiting the form of vector �elds Yj, we obtain

Dψ(x)Xi(x) =

k∑
j=1

γij(x)Dψ(x)Yj(x) =

k∑
j=1

γij(x)ej =

(
∗
0

)
,

where 0 refers to the last n− k coordinates. Since

Dψ(x)Xi(x) =



Dψ1(x)Xi(x)
...

Dψk(x)Xi(x)

Dψk+1(x)Xi(x)
...

Dψn(x)Xi(x)


,

it follows that

Dψk+1(x)Xi(x) = 0, . . . ,Dψn(x)Xi(x) = 0.

Concluding, the distribution D appears to be tangent to the manifold

MD = {x ∈ Rn|ψk+1(x) = 0, . . . ,ψn(x) = 0}

being its integral manifold. The theorem has been proved. �

7.8 Problems and exercises

Exercise 7.1 Derive the formula for the Lie bracket of vector �elds

[X, Y](x) =
d

dt

∣∣∣∣
t=0

AdtX Y(x) = DY(x)X(x) −DX(x)Y(x).
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Exercise 7.2 Prove the theorem 7.3.2. Hint: Show that the right hand side

is equal to the left hand side, and observe that DYi ◦ϕDϕ = D(Yi ◦ϕ).

Exercise 7.3 Show that for every function f ∈ C∞(Rn,R), there holds
L[X,Y]f = LX(LYf) − LY(LXf).

Exercise 7.4 Making use of the property [fX,gY] = fg[X, Y]+ fLXgY−gLYfX

show that the distribution D = spanC∞(Rn,R){X1(x),X2(x), . . . ,Xk(x)} is

involutive if and only if [Xi,Xj] ∈ D for i, j = 1, 2, . . . ,k.

Exercise 7.5 Check involutivity of the distributions:

a)

D1 = span
C∞(Rn,R)


 1x2
0

 ,

01
0


b)

D1 = span
C∞(Rn,R)


cos x3
sin x3
0

 ,

00
1


c)

D1 = span
C∞(Rn,R)




cos x3
sin x3
1

0

1

 ,


0

0

−1

1

0

 ,


− sin x3
cos x3
0

0

0

 ,


cos x3
sin x3
0

0

0




7.9 Bibliographical remarks

The concepts of vector �elds, Lie brackets, distributions as well the Frobe-

nius Theorem, etc. belong to the �eld of di�erential geometry. Necessary

basics the Reader can �nd in diverse monographs concerned with geometric

control theory, such as [Isi94, NvdS90, Blo03, Sas99, L�ev09]. An advanced

exposition of di�erential geometry is contained in the books [AMR83, Spi79].

The "dynamic" concept of the Lie bracket presented in this chapter has been

borrowed from the monograph [AMR83]; in the context of control the ad-

joint operators have appeared in the paper [Kre85]. The Straightening Out

Theorem is a classic result of theory of dynamic systems [Arn83, AMR83].

A generalisation of the Frobenius Theorem can be found in [Sus83].
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Chapter 8

Control systems

A control system is represented by a system of ordinary di�erential equations

dependent on a control variable{
_x = f(x(t),u(t))

y(t) = h(x(t))
, (8.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp denote, respectively, the state, the control,

and the output variable. We shall assume that the system is smooth, so

is the function f ∈ C∞(Rn × Rm,Rn) describing the system's dynamics as

well as the output function h ∈ C∞(Rn,Rp). Usually, we have m 6 n and

p 6 n. Notice that with �xed control u(t), the control system becomes a

time-dependent dynamic system of ordinary di�erential equations, of the

form {
_x = f(x(t),u(t)) = �f(x(t), t)

y(t) = h(x(t))
.

Taking into account the Existence and Uniqueness Theorem one derives the

following su�cient conditions under which the trajectory x(t) of the system

(8.1) exists

� the function �f(x, t) depends continuously on time t,

� the function �f(x, t) satis�es the Lipschitz condition with respect to x,

� the function �f(x0, t) is bounded with respect to t.

Observe that the Lipschitz property results from the smoothness of the func-

tion f(x,u), while the remaining conditions will follow from the continuity

and boundedness of control functions u(t). The control functions will be

86
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t

u(t)

Figure 8.1: Piecewise continuous controls

t

u(t)

Figure 8.2: Piecewise constant controls

simply referred to as controls. A basic requirement imposed on the admis-

sible control is to guarantee the existence and uniqueness of the trajectory

x(t). Therefore, a basic class of admissible control is the class of continuous

and bounded functions of time. For some practical, but also theoretic rea-

sons, bounded and piecewise continuous controls are also allowed, including

the piecewise constant controls. Examples have been shown in Figures 8.1

and 8.2.

8.1 Control affine and driftless systems

An important subclass of control systems is constituted by control a�ne

systems described by the following equations _x = f(x(t)) + g(x(t))u(t)) = f(x(t)) +

m∑
i=1

gi(x(t))ui(t)

y(t) = h(x(t))

. (8.2)

The columns of the matrix g(x) are formed by vector �elds g1(x), . . . ,gm(x).

All vector �elds appearing in (8.2) are assumed smooth. Since when the

controls are "switched o�", u = 0, the system's behaviour is determined
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by the vector �eld f(x), it is called a drift vector �eld or just a drift. The

signi�cance of control a�ne systems results from several reasons, like the

following:

� Many control systems, including those with Lagrangian dynamics, as-

sume the a�ne form.

� In case when the controls in the system (8.1) are di�erentiable, after

introducing a new state variable (x,u) ∈ Rn+m, one gets a control

a�ne system (
_x

_u

)
=

(
f(x(t),u(t))

0

)
+

[
0

Im

]
v(t),

whose control is v = _u.

� For u close to zero one can expand the right hand side of the system

(8.1) in the Taylor series

f(x,u) = f(x, 0) +
∂f(x, 0)

∂u
u+O

(
x,u2

)
,

what suggests that the control a�ne system (8.2) approximates the

system (8.1) for small values of controls.

� Linear control system {
_x = Ax(t) + Bu(t)

y(t) = Cx(t)

is control a�ne.

If in the control a�ne system the drift f(x) is absent, the equations (8.2)

take the form  _x = g(x(t))u(t)) =

m∑
i=1

gi(x(t))ui(t)

y(t) = h(x(t))

. (8.3)

The importance of driftless systems is a.o. a consequence of the fact that

they represent the kinematics of non-holonomic systems, like the wheeled

mobile robots.
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8.2 Differentiation of the end-point map

Consider the control system (8.1). Denote by

x(t) = ϕx,t(u),
dϕx,t(u)

dt
= f(ϕx,t(u),u(t)),

the trajectory of this system from the initial state x, subject to a control

u. Having �xed the �nal time T , we can de�ne a function endT : (x,u) 7→
x(T) = ϕx,T (u) called the end-point map of the system. Under appropriate

assumptions imposed on the control system it can be proved that the end-

point map is di�erentiable with respect to the initial state and the control

function. We want now to compute both these derivatives.

� For any t ∈ R, y ∈ Rn it is true that

∂ϕx,t(u)

∂x
y = ξ(t) =

d

dα

∣∣∣∣
α=0

ϕx+αy,t(u).

The time derivative

_ξ =
d

dt

d

dα

∣∣∣∣
α=0

ϕx+αy,t(u) =
d

dα

∣∣∣∣
α=0

d

dt
ϕx+αy,t(u)

=
d

dα

∣∣∣∣
α=0

f(ϕx+αy,t(u),u(t)) =
∂f(x(t),u(t))

∂x
ξ(t) = A(t)ξ(t).

After solving the equation _ξ = A(t)ξ(t) with the initial condition

ξ(0) = y one obtains

∂ endT (x,u)

∂x
y = ξ(T) = Φ(T , 0)y,

where Φ(t, s) is the fundamental matrix of the di�erential equation
_ξ = A(t)ξ(t).

� Analogously, when di�erentiating with respect to the control function,

for t ∈ R and an admissible control v, one computes

∂ϕx,t(u)

∂u
v = ζ(t) =

d

dα
|α=0ϕx,t(u+ αv).

Next, the time di�erentiation results in

_ζ =
d

dt

d

dα

∣∣∣∣
α=0

ϕx,t(u+ αv) =
d

dα

∣∣∣∣
α=0

d

dt
ϕx,t(u+ αv)

=
d

dα

∣∣∣∣
α=0

f(ϕx,t(u+ αv),u(t) + αv(t))

=
∂f(x(t),u(t))

∂x
ζ(t) +

∂f(x(t),u(t))

∂u
v(t) = A(t)ζ(t) + B(t)v(t).
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Finally, in order to �nd the derivative of the end-point map, we need

to solve the equation _ζ = A(t)ζ + B(t)v(t) with the initial condition

ζ(0) = 0, and then substitute

∂ endT (x,u)

∂u
v = ζ(T) =

∫T
0

Φ(T , t)B(t)v(t)dt.

8.3 Accessibility and controllability

Let σ denote a control a�ne system (8.2) with piecewise constant admissible

controls of the form

uk =
{(
u1, t1

)
,
(
u2, t2

)
, . . . ,

(
uk, tk

)}
,

for a certain k ∈ N and ui ∈ Rm. An application of such a control means

that over the time interval t1 the system is controlled by u1, next, for

the time t2 a constant control u2 will be applied, etc., �nally a constant

control uk acts on the system for the time tk. After the application of

such a control we get a system's trajectory that consists of a segment of

the trajectory of the vector �eld f(x) + g(x)u1 followed by a segment of the

trajectory of f(x) + g(x)u2 etc. We can say that the motion of the system

σ is determined by a family of associated vector �elds

Fσ = {f+ gu|u ∈ Rm} .

In summary, under the control uk, the motion of σ is de�ned by vector

�elds Xi(x) = f(x) + g(x)u
i acting over time intervals ti, for i = 1, 2, . . . ,k.

Suppose that ϕi,t(x) denotes the ow of the vector �eld Xi(x), and let x0 be

an initial state. Then, acted on by the piece-wise constant control uk, after

the time
∑k
i=1 ti, system σ will be transferred from x0 to the �nal state

x = ϕk,tk ◦ϕk−1,tk−1 ◦ · · ·ϕ1,t1(x0).

Choosing various piecewise constant controls uk, for various k, one obtains

a set of states reachable in the system σ from the state x0 at the time

instant t,

Rσ(x0, t) =

{
ϕk,tk ◦ϕk−1,tk−1 ◦ · · ·ϕ1,t1(x0)|ti > 0,

k∑
i=1

ti = t, k > 0

}
.

The reachable set from the state x0 at any time instant is the union

Rσ(x0) =
⋃
t>0

Rσ(x0, t).
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Rσ(x0)
x0

Rσ(x0)
x0

a) b)

Rσ
(x0

)

x0

c)

Figure 8.3: Accessibility property: a), b) yes, c) no

Rσ(x0)
x0

a)

Rσ(x0)
x0

b)

x0 /∈ intRσ(x0) x0 ∈ intRσ(x0)

Figure 8.4: Local controllability: a) no, b) yes

The reachable set serves to introduce several controllability-type concepts,

speci�ed below.

Definition 8.3.1 The system σ is called controllable from the point x0 if

Rσ(x0) = R
n, and controllable if Rσ(x0) = R

n for every x0.

Besides the concept of controllability a weaker concept of accessibility is

used.

Definition 8.3.2 The system σ has the accessibility property from the point

x0 if the reachable set from x0 has non-empty interior, intRσ(x0) 6= ∅.
The system has the accessibility property if intRσ(x0) 6= ∅ for every x0.

We recall that the interior of a set is the biggest open set contained in this

set. Figure 8.3 illustrates the concept of accessibility.

Intuitively, if a system has the accessibility property from a point x0,

then it is possible to pass from x0 to a point, from which the system could

move in any direction in the state space Rn. However, from the point

x0 itself such an omnidirectional motion may not be possible. The third

concept that applies to control a�ne system is the local controllability.

Definition 8.3.3 The system σ is locally controllable from the point x0 if

x0 ∈ intRσ(x0), and locally controllable if x0 ∈ intRσ(x0) for every x0
(see Figure 8.4).
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8.4 Controllability theorems

In order to formulate some controllability conditions, it is advantageous to

exploit the big adjoint operator AdtX Y(x) = Dϕ−t(ϕt(x))Y(ϕt(x)), and the

small adjoint operator adX Y(x) = [X, Y](x), de�ned in the previous chapter.

Relying on these operators, to the system σ we assign two distributions

Dσ = 〈AdFσ |Fσ〉 and dσ = 〈adFσ |Fσ〉 ,

de�ned as the smallest distributions containing the family Fσ of vector �elds

associated with the system σ, both closed with respect to the operators

Ad and ad. For Dσ the closeness means that Fσ ⊂ Dσ, and for every

X ∈ Fσ, Y ∈ Dσ, the vector �eld AdtX Y ∈ Dσ at any time instant t, and

analogously for dσ. It is easily noticed that dσ ⊂ Dσ. Two following results

on controllability can be stated in terms of the introduced distributions.

Theorem 8.4.1 (Chow-Sussmann-Krener) The control a�ne system σ has the

accessibility property if and only if

Dσ = V∞(Rn).
Theorem 8.4.2 (Chow-Lobry-Krener) If dσ = V∞(Rn) then the system σ has

the accessibility property.

In both these theorems the vector �elds Fσ can be replaced by Fσ =

{f,g1,g2, . . . ,gm}. The su�cient condition for the accessibility property

can be conveniently expressed as the so called Lie Algebra Rank Condi-

tion (LARC). To this aim, we need to de�ne the Lie algebra Lσ associated

with the system σ, as the smallest Lie algebra that contains the vector �elds

Fσ. Then, we have the following

Theorem 8.4.3 If at any point x ∈ Rn

dimLσ(x) = n

then the system σ has the accessibility property.

It follows that for driftless systems (8.3) the above theorems provide condi-

tions for controllability, namely

Theorem 8.4.4 � A driftless control system is controllable if and only

if Dσ = V∞(Rn).
� If dσ = V∞(Rn) then the driftless system is controllable.

� If dimLσ(x) = n then the driftless system is controllable.
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8.5 Checking controllability

A conclusion that may be drawn from the study of controllability of nonlin-

ear control systems accomplished above is that general necessary and suf-

�cient controllability conditions are not known. For control a�ne systems

much easily checkable (however much weaker) is the accessibility property.

Below we shall pay attention to a few speci�c cases, when controllability

can be established either directly or from the accessibility property.

� Let (u0, x0) denote the equilibrium point of the control system (8.1),

what means that f(x0,u0) = 0. We �nd the linear approximation of

the system at this point

f(x,u) = f(x0,u0) +
∂f(x0,u0)

∂x
(x− x0) +

∂f(x0,u0)

∂u
(u− u0)

+O((x− x0)
2, (u− u0)

2)

and let A =
∂f(x0,u0)
∂x and B =

∂f(x0,u0)
∂u , as well as ξ = x − x0,

v = u− u0. The following theorem holds.

Theorem 8.5.1 If the linear system

_ξ = Aξ(t) + Bv(t)

is controllable (satis�es the Kalman condition) then the nonlinear

system (8.1) is locally controllable from the point x0.

� The driftless system (8.3) that has the accessibility property is con-

trollable.

� If the drift vector �eld f(x) of a control a�ne system, with the ow

ϕt(x), is Poisson stable then the control a�ne system having the ac-

cessibility property is controllable. We recall that a vector �eld X(x)

is Poisson stable if there exists a dense subset D ⊂ Rn, such that

(∀x ∈ D)(∀D ⊃ U 3 x)(∀T > 0)(∃t1, t2 > T)
(ϕt1(x) ∈ U and ϕ−t2(x) ∈ U).

An example of a Poisson stable system is an oscillator.

For the local controllability there exists a su�cient condition established

by Sussmann. Below we state this condition in the form applicable to single-

input systems. Let a system

_x = f(x(t)) + g(x(t))u, x ∈ Rn, u ∈ R,
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be given, with the equilibrium point (0, x0). We introduce a family of dis-

tributions

S1(f,g) = span
C∞(Rn,R)

{
g, adf g, . . . , ad

i
f g, . . .

}
,

S2(f,g) = S1(f,g) + span
C∞(Rn,R)

{[
adi1f g, ad

i2
f g
]∣∣∣
i1,i2>0

}
,

...

Sk(f,g) = Sk−1(f,g)

+ spanC∞(Rn,R)

{[
adi1f g,

[
adi2f g, . . .

[
ad
ik−1
f g, adikf g

]
. . .
]]∣∣∣
i1,i2,...ik>0

}
,

where adi+1f g =
[
f, adif g

]
. It is easy to observe that a characteristic feature

of the distribution Si(f,g) is that the control vector �eld g appears in it

i times. In terms of these distributions the Sussmann's condition can be

stated in the following form

Theorem 8.5.2 (Sussmann’s Controllability Condition) Suppose that for a cer-

tain integer k

Sk(f,g)(x0) = R
n

and that, for any odd number j 6 k,

Sj(f,g)(x0) = Sj+1(f,g)(x0).

Then, the control a�ne system is locally controllable from the point x0.

The second condition in Theorem 8.5.2 means that the directions of motion

at the point x0 generated by the distribution Sk(f,g) that contain an even

number of appearances of the vector �eld g should be provided by an odd,

smaller by 1, number of appearances of g. The Lie brackets containing an

even number of the vector �eld g are called the "bad Lie brackets". It is

easily noticed that if the �rst condition of Theorem 8.5.2 holds for k = 1,

then the local controllability results from the controllability of the linear

approximation of the system.

8.6 Examples

Example 8.6.1 Let's examine the controllability of the control a�ne sys-

tem

σ :

{
_x1 = u

_x2 = 1
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x1

x2

t
Rσ(0, t)

Figure 8.5: Reachable sets Rσ(0, t) and Rσ(0)

with vector �elds f(x) = (0, 1)T and g(x) = (1, 0)T , u ∈ R, from the state

x0 = (0, 0)T . The system's equations yield that under constant controls

x2 =
1

u
x1.

The states reachable from x0 (see Figure 8.5) lie on the rays emanat-

ing from x0, located in the upper half-plane of the coordinate system,

whereas the motion along the x2-axis corresponds to zero control, u = 0,

and the motion along x1 is not possible at all. Therefore, we have

Rσ(x0) ⊂ R2+. By virtue of de�nition the system has the accessibility

property from x0, however it is neither controllable (the point in the

lower half-plane are not reachable at all), nor locally controllable from

x0 (x0 does not belong to the interior of the set Rσ(x0)).

Example 8.6.2 Consider a chained form system

σ :


_x1 = u1

_x2 = u2

_x3 = u1x2

.

The systems is driftless, with two vector �elds g1(x) = (1, 0, x2)
T and

g2(x) = (0, 1, 0)T . The equilibrium point is given as u0 = 0, x0 = 0. We

begin with computing the linear approximation

_ξ = Aξ(t) + Bv(t)

of the system σ at the equilibrium point. This gives A = 0 and B =

[g1(0),g2(0)] =
[
1 0
0 1
0 0

]
. It is obvious that the linear approximation does
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not satisfy the Kalman condition, therefore it is not controllable. It

follows that we cannot use the linear approximation to deduce con-

trollability of this system. More generally, it can be noticed that ev-

ery driftless control system with m < n has the linear approxima-

tion uncontrollable. Let us now check the Lie algebra rank condition.

We have Fσ = {g1,g2}, so, the Lie algebra of the system Lσ con-

tains the vector �elds g1,g2,g12 = [g1,g2], . . .. We compute g12(x) =

Dg2(x)g1(x) −Dg1(x)g2(x) =
∂g1(x)
∂x2

= (0, 0,−1)T . Thanks to

dimLσ(x) = rank

1 0 0

0 1 0

0 0 −1

 = 3,

the system σ is controllable.

Example 8.6.3 Now, consider the control a�ne system

σ :


_x1 = u1

_x2 = u2

_x3 = x1 + u1x2

,

that results from the previous system after adding the drift vector �eld

f(x) = (0, 0, x1)
T . The control vector �elds g1 and g2 remain unaltered.

The equilibrium point is at u0 = 0, x0 = 0. The linear approximation

at this point
_ξ = Aξ(t) + Bv(t),

is determined by matrices A = Df(0) =

0 0 0

0 0 0

1 0 0

 and B =

1 0

0 1

0 0

. The

Kalman matrix

Ω =
[
B,AB,A2B

]
= [I3, ∗]

has rank 3, therefore the linear approximation is controllable, and the

system σ is locally controllable from the equilibrium point. Let's check

other points using the LARC. We have Fσ = {f,g1,g2} ⊂ Lσ. The Lie al-

gebra also contains the vector �eld adfg1(x) = Dg1(x)f(x)−Df(x)g1(x) =

(0, 0,−1)T that makes the LARC to be satis�ed,

dimLσ(x) = rank

 1 0 0

0 1 0

x2 0 −1

 = 3,

therefore the system σ has the accessibility property.
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Example 8.6.4 As the subsequent example we shall study the control a�ne

system in the plane,

σ :

{
_x1 = x2

_x2 = −x1 +
(
1+ x21

)
u

with vector �elds f(x) = (x2, x1)
T and g(x) =

(
0, 1+ x21

)T
. Its equilibrium

point is u0 = 0 and x0 = 0, while its linear approximation is given as

_ξ = Aξ(t) + Bv(t),

where A =

[
0 1

−1 0

]
and B =

[
0

1

]
. The Kalman matrix Ω = [B,AB] =[

0 1

1 0

]
has rank 2, so the system σ is locally controllable from the

equilibrium point. The family of vector �elds Fσ = {f,g} ⊂ Lσ; be-

sides, the Lie algebra Lσ of the system also contains the vector �eld

adf g(x) =
(
−
(
1+ x21

)
, 2x1x2

)T
. The LARC

dimLσ(x) = rank

[
0 −

(
1+ x21

)
1+ x21 2x1x2

]
= 2,

holds, then the system σ has the accessibility property. Let us look more

carefully at the drift vector �eld f(x). The dynamic system de�ned by

this vector �eld assumes the form{
_x1 = x2

_x2 = −x1
.

It is not hard to see that this is an oscillating system whose orbits

are circles x21+ x
2
2 = C. This means that the drift vector �eld is Poison

stable, as illustrated in Figure 8.6. In this case the accessibility property

implies the controllability of the system σ.

Example 8.6.5 Eventually, we shall derive local controllability using the

Sussmann's condition. To this objective we take the control a�ne sys-

tem

σ :

{
_x1 = x

3
2

_x2 = u
,

whose vector �elds are f(x) =
(
x32, 0

)T
and g(x) = (0, 1)T . This system

has the equilibrium point for u = 0 and x0 = 0. First we compute the
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x2

x1

U
x

Figure 8.6: Poisson stability

distribution

S1(f,g) = span
{
g, adf g, . . . , ad

j
f g, . . .

}
.

Because adf g(x) =
(
−3x22, 0

)T
and for j > 2 adjf g(x) = 0, we get

S1(f,g)(0) = span

{(
0

1

)}
.

Next, we �nd

S2(f,g) = S1(f,g) + span

{[
adjf g, ad

k
f g
]∣∣∣
j,k>0

}
.

The bracket [g, adf g] (x) = (−6x2, 0)
T , whereas the remaining brackets,

in which the vector �eld g appears twice are equal to zero. This yields

S2(f,g)(0) = span

{(
0

1

)}
= S1(f,g)(0).

Continuing the computations we �nd the distribution

S3(f,g) = S2(f,g) + span

{[
adjf g,

[
adkf g, ad

l
f g
]]∣∣∣
j,k,l>0

}
.

Now, taking into consideration that [g, [g, adf g]] (x) = (−6, 0)T , we de-

duce

S3(f,g)(0) = span

{(
0

1

)
,

(
−6

0

)}
= R2.
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This observation as well as the fact that S2(f,g)(0) = S1(f,g)(0) al-

lows us to establish on the basis of the Sussmann's condition the local

controllability of the system σ from the point 0.

8.7 Problems and exercises

Exercise 8.1 For the linear control system

_x = Ax+ Bu,

x ∈ Rn, u ∈ Rm, show that the accessibility property implies controllability.

Exercise 8.2 For the control a�ne system{
_x1 = u

_x2 = x
2
1

de�ne the distribution dσ, and examine the accessibility property, control-

lability, and local controllability of the system at the point (0, 0)T .

Exercise 8.3 Examine the accessibility property of the controlled Euler equa-

tions (a,b, c,d - constant parameters)
_x1 = ax2x3 + bu

_x2 = −ax1x3 + cu

_x3 = du

.

Exercise 8.4 Making use of the result of the exercise 8.3 prove controllability

of the controlled Euler equations.

Exercise 8.5 Prove the controllability of the Brockett's integrator
_x1 = u1

_x2 = u2

_x3 = x1u2 − x2u1

.

8.8 Bibliographical remarks

A basic knowledge on control system can be gained from the monographs

[Isi94, NvdS90, Son98, Kha00, KKK95, Blo03, Sas99, L�ev09]. The formula
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for the derivative of the end-point map comes from [Son98]. Controllability

of nonlinear control systems has been addressed in the monographs men-

tioned above; our presentation agrees with subsection 4.2 of [L�ev09], and

takes advantage of the results described in the paper [Kre85]. The Sussmann

su�cient controllability condition is taken from [Sus83]; its generalisation

for multi-input control systems has been published in [Sus87].
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Chapter 9

Equivalence of control systems

9.1 State space and feedback equivalence

Let the following two control-a�ne systems be given

σ : _x = f(x(t)) + g(x(t))u(t) = f(x(t)) +
∑m
i=1 gi(x(t))ui(t),

σ ′ : _ξ = F(ξ(t)) +G(ξ(t))v(t) = F(ξ(t)) +
∑m
i=1Gi(x(t))vi(t),

where x, ξ ∈ Rn, u, v ∈ Rm, and all the vector �elds are smooth. Similarly

as in the case of dynamic systems, we shall de�ne an equivalence of control

systems. There are two concepts of such an equivalence: the state space

equivalence, called S-equivalence, and the feedback equivalence that will be

referred to as F-equivalence.

Definition 9.1.1 Suppose that u = v. The systems σ and σ ′ will be called

S-equivalent,

σ ∼=
S
σ ′ ⇐⇒ (∃ di�eomorphism ξ = ϕ(x))

(Dϕ(x)f(x) = F(ϕ(x)) and Dϕ(x)g(x) = G(ϕ(x))).

The last equality means that Dϕ(x)g(x) = Gi(ϕ(x)) for i = 1, 2, . . . ,m.

Observe that, as a matter of fact, the S-equivalence of control systems is

tantamount to the di�erential equivalence of the associated vector �elds.

We do not make any use here of the fact that these systems are control

systems. For this reason, a more adequate to control systems is the feedback

equivalence.

101
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Definition 9.1.2 The systems σ and σ ′ are named F-equivalent,

σ ∼=
F
σ ′ ⇐⇒ (∃ di�eomorphism ξ = ϕ(x) and feedback u = α(x) + β(x)v)

(Dϕ(x)(f(x) + g(x)α(x)) = F(ϕ(x)) and Dϕ(x)g(x)β(x) = G(ϕ(x))).

The function α(x) appearing in the feedback is smooth, while β(x) de-

notes a non-singular matrix of dimension m ×m smoothly depending

on x.

It is easily seen that the F-equivalence converts to the S-equivalence when

α(x) = 0 and β(x) = Im. Both these equivalences rely on an assumption

that trajectories of the equivalent systems are di�eomorphic, ξ(t) = ϕ(x(t)).

For the F-equivalence this means that

_ξ = Dϕ(x) _x = Dϕ(x)(f(x) + g(x)u) = Dϕ(x)(f(x) + g(x)(α(x) + β(x)v)

= Dϕ(x)(f(x) + g(x)α(x)) +Dϕ(x)g(x)β(x)v = F(ϕ(x)) +G(ϕ(x))v.

Obviously, if the di�eomorphism ϕ(x) is de�ned locally, we speak of the

local S- or F-equivalence, denoted, correspondingly, by the symbols ∼=LS
and ∼=LF. The introduced concepts of S- and F-equivalence specify to the

corresponding equivalences of linear control systems. Namely, for linear

systems
σL : _x = Ax(t) + Bu(t),

σ ′L : _ξ = Fξ(t) +Gv(t)

we get

σL ∼=
F
σ ′L ⇐⇒ (∃ P,Q,K)(P(A+ BK) = FP and PBQ = G),

for non-singular matrices P, Q of dimensions n× n and m×m, and for an

arbitrary matrix K of dimension m × n. It follows that for linear systems

ϕ(x) = Px, α(x) = Kx and β(x) = Q.

Remark 9.1.1 In order to establish the F-equivalence between the systems

σ and σ ′ one needs to �nd the functions ϕ(x), α(x) and β(x), for given

f(x), g(x), F(ξ) and G(ξ). This boils down to solving the equivalence

equations

Dϕ(x)(f(x) + g(x)α(x)) = F(ϕ(x)) and Dϕ(x)g(x)β(x) = G(ϕ(x))).
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Notice that the matrix Dϕ(x) =


∂ϕ1(x)
∂x1

··· ∂ϕ1(x)∂xn

... ···
...

∂ϕn(x)
∂x1

··· ∂ϕn(x)
∂xn

 contains partial deriva-

tives of unknown components of the di�eomorphism, so the equivalence

equations take the form of nonlinear partial di�erential equations. In what

follows, conditions for the existence of the feedback will be stated for very

speci�c "target" systems σ ′. From the viewpoint of control problems, the

most important case is when for the system σ ′ there exist well known con-

trol algorithms. Undoubtedly, the linear control systems σ ′ = σ ′L belong to

this class.

9.2 State space and feedback linearisation

Consider a control-a�ne system σ. We make the following de�nitions:

Definition 9.2.1 The system σ is called state space linearisable (linearis-

able by a change of coordinates in the state space), in short S-lineari-

sable, if

σ ∼=
S
σ ′L.

If the S-equivalence holds locally (σ ∼=LS σ
′
L) then the system σ is referred

to as locally S-linearisable.

Similarly, we state the next.

Definition 9.2.2 The system σ is called feedback linearisable, (F-linearisa-

ble), if

σ ∼=
F
σ ′L.

In the case of a local F-equivalence (σ ∼=LF σ
′
L), the system σ will be

referred to as locally F-linearisable.

Necessary and su�cient conditions for the linearisation will be provided

below. Assume that the system σ has in u = 0 ∈ Rm and x0 = 0 ∈ Rn an

equilibrium point (so f(0) = 0), and let the linear system σ ′L be controllable.

For the system σ we de�ne a family of distributions

D0 = span
{
gi|i=1,...,m

}
,

...

Dk = span
{
gi, adf gi, . . . , ad

k
f gi

∣∣
i=1,...,m

}
,

for k > 0, where adk+1f gi =
[
f, adkf gi

]
. Then we have
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Theorem 9.2.1 (Krener-Sussmann-Respondek) The system σ is locally S-line-

arisable around 0

σ ∼=
LS
σ ′L ⇐⇒ dimDn−1(0) = n and

[
adpf gi, ad

r
f gj
]
(x) = 0

in a certain neighbourhood of 0, for p, r > 0, p+ r 6 2n− 1.

Conditions for F-linearisation are included in the next theorem.

Theorem 9.2.2 (Jakubczyk-Respondek) The system σ jest is locally F-linea-

risable around 0,

σ ∼=
LF
σ ′L ⇐⇒ dimDn−1(0) = n and distributions Dk for k = 0, 1, . . . ,n−2

are in a certain neighbourhood of 0 of constant dimension and involu-

tive, i.e.

dimDk(x) = const,
[
Dk,Dk

]
⊂ Dk.

9.3 Equivalence equations

We shall study in more depth the S- and F-equivalences of control-a�ne

systems

σ : _x = f(x(t)) + g(x(t))u(t) = f(x(t)) +
∑m
i=1 gi(x(t))ui(t),

σ ′ : _ξ = F(ξ(t)) +G(ξ(t))v(t) = F(ξ(t)) +
∑m
i=1Gi(ξ(t))vi(t),

where x, ξ ∈ Rn, u, v ∈ Rm. From the viewpoint of the synthesis of control

algorithms, a fundamental problem consists in determining the transfor-

mations establishing the equivalence, i.e. a di�eomorphism ξ = ϕ(x) for

S-equivalence and a feedback transformations ξ = ϕ(x), u = α(x) + β(x)v

for the feedback equivalence. To this objective we need to solve a system

of partial di�erential equations called the equivalence equations. We shall

now state these equations.

� S-equivalence: Dϕ(x)f(x) = F(ϕ(x)), Dϕ(x)g(x) = G(ϕ(x)).

� F-equivalence: Dϕ(x)f(x) + g(x)α(x)) = F(ϕ(x)), Dϕ(x)g(x)β(x) =

G(ϕ(x)).

In the case when we study the linearisation problem, so when

σ ′ : _ξ = Fξ(t) +Gv(t),
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F and G { matrices, the equivalence equations get simpli�ed thanks to a

speci�c choice of the system σ ′. To this aim we assume that u = 0 and

x0 = 0 is an equilibrium point of the system σ. Then, in the problem of

S-linearisation the system σ ′ is taken as the linear approximation of the

system σ at the equilibrium point. This means that the matrix F =
∂f(0)
∂x ,

while the matrix G = g(0). Dealing with the problem of F-linearisation

we �rst �nd the linear approximation and check its controllability, then

compute its controllability indices κ = (κ1, κ2, . . . ,κm), and �nally de�ne

the corresponding Brunovsky canonical form. The matrices F and G need

to be chosen in the Brunovsky form. For the linearisation problem the

equivalence equations will take the following form:

� S-equivalence: Dϕ(x)f(x) = Fϕ(x), Dϕ(x)g(x) = G.

� F-equivalence: Dϕ(x)(f(x) + g(x)α(x)) = Fϕ(x), Dϕ(x)g(x)β(x) = G.

Solutions of example equivalence equations will be given below, in subsection

Examples.

9.4 Significance of linearisability for the synthesis of control

algorithms

Consider the control-a�ne system

σ : _x = f(x(t)) + g(x(t))u(t)

and the feedback equivalent linear system in the Brunovsky form

σ ′ : _ξ = Fξ(t) +Gv(t)

characterised by controllability indices (κ1, κ2, . . . ,κm). We assume that

ξ = ϕ(x), u = α(x)+β(x)v denote a feedback linearising the system σ. The

result of applying this feedback is shown in Figure 9.1.

Suppose that in the system σ we address the following state trajectory

tracking problem: Given a reference trajectory xd(t), �nd a control u(t)

in the system σ, such that the resulting trajectory x(t) → xd(t) for t →
+∞. The linearisability of the system σ will allow us to transform the

reference trajectory to the linear system, ξd(t) = ϕ(xd(t)), and to formulate

the tracking problem in the linear system: Find a control v(t), such that

the corresponding trajectory ξ(t) → ξd(t). Since the system σ ′ has the
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v ξ
β(x) σ = (f,g)

u
ϕ(x)

α(x)

x

σ ′ = (F,G)

Figure 9.1: Result of applying linearising feedback

Brunovsky form

_ξ1 = ξ2, _ξ2 = ξ3, . . . , _ξκ1 = v1
_ξκ1+1 = ξκ1+2, . . . ,

_ξκ1+κ2 = v2
...

_ξκ1+···+κm−1+1 = ξκ1+···+κm−1+2, . . . ,
_ξ∑m

i=1 κi=n
= vm

,

what means that ξ
(κ1)
1 = v1, ξ

(κ2)
κ1+1

= v2, . . . ,ξ
(κm)
κ1+···+κm−1+1

= vm, it is

not hard to verify that the tracking algorithm in the system σ ′ may take

the form

λ :



v1 = ξ
(κ1)
d1 − k1κ1−1(ξ1 − ξd1)

(κ1−1) − · · ·− k10(ξ1 − ξd1)
...

vm = ξ
(κm)
dκ1+···+κm−1+1

+

−kmκm−1
(ξκ1+···+κm−1+1 − ξ

(κm−1)
dκ1+···+κm−1+1

) − · · ·+
−km0(ξκ1+···+κm−1+1 − ξdκ1+···+κm−1+1)

. (9.1)

With notation ei = ξi − ξdi we derive the tracking error equations in the

linear system as follows
e
(κ1)
1 + k1κ1−1e

(κ1−1)
1 + · · ·+ k10e1 = 0

...

e
(κm)
κ1+···+κm−1+1

+ kmκm−1e
(κm−1)
κ1+···+κm−1+1

+· · ·+km0eκ1+···+κm−1+1 = 0

.

If the gains kij are selected in such a way that the characteristic polyno-

mial of each di�erential equation is Hurwitz then the tracking problem in
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ξd

σ ′
v ξ

e
λ

Figure 9.2: Trajectory tracking system

the linear system will be solved by the algorithm (9.1). Having applied the

control v(t) to the system σ ′ we �nd the trajectory ξ(t), then the trajec-

tory x(t) = ϕ−1(ξ(t)), and the control u(t) = α(x(t)) + β(x(t))v(t) in the

original system σ. This way of proceeding establishes a synthesis procedure

of the tracking control algorithm based on the feedback linearisation. The

algorithm is illustrated in Figure 9.2. Similar results can be obtained if, in-

stead of being the linear system, σ ′ will have another form for which there

exists a tracking control algorithm. One of such form will be described in

chapter 11.

9.5 Examples

Example 9.5.1 Let a control-a�ne system

σ :

{
_x1 = x2

(
1+ x21

)
_x2 = arctan x1 + u

be given, with vector �elds f(x) =
(
x2
(
1+ x21

)
, arctan x1

)T
, g(x) = (0, 1)T .

We have f(0) = 0. Assume that the system σ ′ is the linear approxima-

tion of the system σ at the equilibrium point. This means that

σ ′ :

{
_ξ1 = ξ2
_ξ2 = v

.

It is easily checked that the system σ ′ is controllable. We shall check

whether the system σ is S-linearisable. To this objective we compute

adf g(x) = [f,g](x) = −(1+ x21, 0)
T , hence D1 = span{g, adf g} and

dimD1(0) = 2.
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Next, we compute the Lie brackets [g, adf g], [g, ad
2
f g], [adf g, ad

2
f g] and

[g, ad3f g]. We have [g, adf g] = 0, and also ad2f g = [f, adf g] = g, what

implies [g, ad2f g] = [g,g] = 0, ad3f g = [f, ad2f g] = [f,g] = adf g as well as

g, ad3f g] = [g, adf g] = 0. Now, relying on the Theorem 9.2.1, we con-

clude that the system σ is locally S-linearisable around the equilibrium

point.

Example 9.5.2 Examine the control-a�ne system

σ :

{
_x1 = sin x2

_x2 = u
,

whose vector �elds are f(x) = (sin x2, 0)
T and g(x) = (0, 1)T . The vector

�eld f vanishes at 0. The linear approximation of the system σ has the

Brunovsky form, so it is controllable. The system σ ′ we also take in

the Brunovsky canonical form,{
_ξ1 = ξ2
_ξ2 = v

.

We compute the distributions D0 = span{g} and D1 = span{g, adf g}.

Because adf g(x) = [f,g](x) = −(cos x2, 0)
T , we get dimD1(0) = 2. The

distribution D0 has constant dimension equal to 1, and is trivially in-

volutive as a distribution generated by a single vector �eld. Therefore,

the conditions of Theorem (9.2.2) are ful�lled, what implies that in a

neighbourhood of the point 0 the system σ is F-linearisable.

Example 9.5.3 Now we shall �nd a di�eomorphism ξ = ϕ(x) that re-

alises S-linearisation of the system σ from Example 9.5.1. We begin

with recalling the linear approximation of the system at the point 0,

F =
∂f(0)
∂x =

[
0 1
1 0

]
and G = g(0) =

(
0
1

)
. We are looking for S-equivalence

between the system σ and the linear system σ ′ described by matrices

F,G. From Example 9.5.1 it follows that the linearising di�eomorphism

exists. Suppose that it has the form ϕ(x) = (ϕ1(x),ϕ2(x))
T . Its compo-

nents need to satisfy the equivalence equations

Dϕ(x)f(x) = Fϕ(x), Dϕ(x)g(x) = G,

that yield
dϕ1(x)f(x) = ϕ2(x), dϕ2(x)f(x) = ϕ1(x),

dϕ1(x)g(x) = 0, dϕ2(x)g(x) = 1.
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Due to the form of the vector �eld g(x) we get

∂ϕ1(x)

∂x2
= 0 and

∂ϕ2(x)

∂x2
= 1.

The former equality implies that ϕ1(x) does not depend on x2, so

ϕ1(x) = ϕ1(x1). The latter equality is ful�lled, a.o. by ϕ2(x) = x2.

Accepting this solution we compute ϕ1(x1) = dϕ1(x)f(x) = arctan x1. In

this way we have found the di�eomorphism ξ=(ξ1,ξ2)
T=(arctan x1,x2)

T .

The system equations in new coordinates are _ξ1 =
1

1+x21
_x1 = x2 = ξ2

_ξ2 = _x2 = arctan x1 + u = ξ1 + u
.

Example 9.5.4 In turn, let us establish a feedback that linearises the sys-

tem analysed in Example 9.5.2. We have already shown that such a

feedback exists. We assume that the system σ ′ has the Brunovsky form,

so F =
[
0 1
0 0

]
, G =

(
0
1

)
. Our objective is to �nd out a di�eomorphism

ξ = ϕ(x) = (ϕ1(x),ϕ2(x))
T and functions α(x), β(x) 6= 0 satisfying the

equivalence

dϕ1(x)(f(x) + g(x)α(x)) = ϕ2(x), dϕ2(x)(f(x) + g(x)α(x)) = 0,

dϕ1(x)g(x)β(x) = 0, dϕ2(x)g(x)β(x) = 1.

Using the fact that β(x) 6= 0, the last two equalities result in the iden-

tity
∂ϕ1(x)
∂x2

= 0, so ϕ1(x) = ϕ1(x1), and β(x) = 1
dϕ2(x)g(x)

. Tak-

ing into account two �rst equalities, we deduce ϕ2(x) = dϕ1(x)f(x)

and α(x) = −
dϕ2(x)f(x)
dϕ2(x)g(x)

. For the reason that ϕ1 depends only on

x1, we shall try the simplest solution ϕ1(x) = x1. With this assump-

tion we compute ϕ2(x) = sin x2. Having exploited the di�eomorphism

ϕ(x) = (x1, sin x2)
T , by suitable substitutions we determine the remain-

ing elements of the linearising feedback, α(x) = 0 and β(x) = 1
cosx2

. The

resulting feedback is well de�ned in the set R× (−π/2,π/2). In the new

coordinates, after applying the feedback, the system σ takes the form{
_ξ1 = _x1 = x2 = ξ2
_ξ2 = cos x2u = v

.

Our choice of the component ϕ1 of the di�eomorphism has been quite

arbitrary. This choice is by no means unique, as it is easily veri�ed

that the choice ϕ1(x) = sin x1 leads to ϕ2(x) = cos x1 sin x2, α(x) =
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sinx1 sinx2
cosx1 cosx2

, and β(x) = 1
cosx1 cosx2

. This feedback is well de�ned in the

square (−π/2,π/2)2, and yields the same linear system in the Brunovsky

form that the former feedback.

Example 9.5.5 Using the Brunovsky canonical form of the single-input

linear system we shall now investigate the equivalence equations for

a general control-a�ne system with singe input. Suppose that the sys-

tem

σ : _x = f(x) + g(x)u,

is given, where x ∈ Rn and u ∈ R. Let's take a linear system

σ ′ : _ξ = Fξ+Gv

in the Brunovsky form, so F =
[
0 In−1
0 0

]
and G =

[
0n−1
1

]
. We are looking

for a di�eomorphism ϕ(x) = (ϕ1(x),ϕ2(x), . . . ,ϕn(x))
T and functions

α(x), β(x) 6= 0. Under assumption that the system σ satis�es conditions

of Theorem 9.2.2, the equivalence equations

Dϕ(x)(f(x) + g(x)α(x)) = Fϕ(x) = (ϕ2(x), . . . ,ϕn(x), 0)
T ,

Dϕ(x)g(x)β(x) = G = (0, . . . , 0, 1)T
(9.2)

have a solution. It is not hard to notice that the latter group of these

equations is of the form

dϕ1(x)g(x)β(x) = · · · = dϕn−1(x)g(x)β(x) = 0, dϕn(x)g(x)β(x) = 1,

what results in

dϕ1(x)g(x) = · · · = dϕn−1(x)g(x) = 0, and β(x) =
1

dϕn(x)g(x)
.

Now, a substitution of the former group of the equivalence equations

(9.2) allows one to �nd the di�eomorphism ϕ(x), if only its �rst com-

ponent is known. Namely,

ϕ2(x) = dϕ1(x)f(x), ϕ3(x) = dϕ2(x)f(x), . . . ,ϕn(x) = dϕn−1(x)f(x).

We also obtain α(x) = −
dϕn(x)f(x)
dϕn(x)g(x)

. The total feedback is then de�ned by

the function ϕ1(x). A geometric meaning of the choice of this function

is revealed by the following reasoning, in which, for the sake of con-

ciseness, we shall denote the Lie derivative of a function with respect

to a vector �eld be L0fϕ1(x) = ϕ1(x) and Lk+1f ϕ1(x) = Lf
(
Lkfϕ1(x)

)
.
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Figure 9.3: Model of induction electric motor

We set Ladf gϕ1(x) = L[f,g]ϕ1(x) = LfLgϕ1(x) − LgLfϕ1(x). Under such

assumptions the equations (9.2) can be written down as

Lgϕ1(x) = Lgϕ2(x) = · · · = Lgϕn−1(x) = 0,
Lfϕ1(x) = ϕ2(x), Lfϕ2(x) = ϕ3(x), . . . ,Lfϕn−1(x) = ϕn(x).

(9.3)

Now, let us compute the Lie derivatives of the function ϕ1(x) with

respect to the vector �elds adf g, ad2f g, . . . , adn−1f g. The employment

of the relationships (9.3) leads to the following conclusion

Ladf gϕ1(x) = LfLgϕ1(x) − LgLfϕ1(x) = −Lgϕ2(x) = 0,

L
ad2f g

ϕ1(x) = LfLadf gϕ1(x) − Ladf gLfϕ1(x) = Lgϕ3(x) = 0,
...

L
adn−2f gϕ1(x) = 0, Ladn−1f gϕ1(x) = (−1)n−1Lgϕn(x) 6= 0.

(9.4)

Geometrically, the equations (9.4) say that the function ϕ1(x) needs to

be chosen so that at each point the di�erential dϕ1(x) be vertical to

n− 1 vectors g(x), adf g(x), . . . , adn−2f g(x), while dϕ1(x) ad
n−1
f (x) 6= 0.

Example 9.5.6 As a more practical example of a feedback linearisable sys-

tem we shall examine a model of the induction electric motor displayed

schematically in Figure 9.3. The electro-mechanical equations of the

motor working without any loading on its shaft can be formulated as

follows 
_δ = ω,

_ω = −kmJ ia sin δ+
km
J ib cos δ−

F
Jω,

_ia = −RL ia + km
L ω sin δ+ ua

L ,
_ib = −RL ib − km

L ω cos δ+ ub
L .

(9.5)
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The symbols appearing in these equations have the following mean-

ing: δ { rotation angle of the rotor, ω { angular velocity of the rotor,

ia, ib,ua,ub { currents of the stator and the supply voltages, F, J { me-

chanical parameters, L,R { electric parameters, km { electro-mechanical

constant. To simplify the notations we introduce new variables x1 = δ,

x2 = ω, x3 = ia, x4 = ib, km
J = a, F

J = b, R
L = c, km

L = d, ua
L = u1,

ub
L = u2. In new variables the system (9.5) becomes control-a�ne, with

the drift f(x) = (x2,ax3 sin x1+ax4 cos x1−bx2,−cx3+dx2 sin x1,−cx4−

dx2 cos x1)
T , and control vectors g1(x) = e3 and g2(x) = e4, where ei

stands for the i-th unit vector in R4. The system (9.5) has an equi-

librium point x0 = 0, and its linear approximation at this point is the

following

A =
∂f(0)

∂x
=


0 1 0 0

0 −b 0 a

0 0 −c 0

0 −d 0 −c

 , B = g(0) =


0 0

0 0

1 0

0 1

 .
By checking the Kalman condition rank

[
B,AB,A2B

]
= 4 we establish

that the linear approximation is controllable. For submatrices of the

Kalman matrix we get the indices ρ0 = rankB = 2, ρ1 = rank[B,AB] −

rankB = 1 and ρ2 = rank[B,AB,A2B] − rank[B,AB] = 1, so the con-

trollability indices of the linear approximation amount to κ1 = 3 and

κ2 = 1. In order to check the linearisability conditions of the system in

accordance with Theorem 9.2.2, we �nd the distributions

D0 = span{g1,g2} = span{e3, e4},

D1 = span{g1,g2, adf g1, adf g2} = span{e2, e3, e4},

D2 = span{g1,g2, adf g1, adf g2, ad
2
f g1, ad

2
f g2} = span{e1, e2, e3, e4}.

It is a direct consequence of the form of this distribution that the lin-

earisability conditions are satis�ed. The system (9.5) is F-equivalent to

the linear system 
_ξ1 = ξ2
_ξ2 = ξ3
_ξ3 = v1
_ξ4 = v2

.

9.6 Problems and exercises

Exercise 9.1 Examine S-linearisability of the following control systems:
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a) {
_x1 = e

−x1x2

_x2 = e
x1 − 1+ u

,

b) {
_x1 = x2 cos

2 x1

_x2 = tan x1 + u
.

Exercise 9.2 Check F-linearisability of the control systems:

a)  _x1 =
x2

cos x1
_x2 = sin x1 + u

,

b) {
_x1 = x2 + x

2
2u

_x2 = u
,

c) 
_x1 = x2 + e

x2x3 − e
x2x32

_x2 = x3 − x
3
2

_x3 = 2x
2
2x3 − 5x

5
2 + u

,

d) 
_x1 = x2 + e

−x3x2

_x2 = x3

_x3 = u

.

Exercise 9.3 Show that the control system
_x1 = x2

_x2 = x1x
2
4 + sin x3

_x3 = x4

_x4 = u

representing the dynamics of a controlled ball and beam system is not F-

linearisable.
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Exercise 9.4 For the control system

_x1 = sin x2

_x2 = sin x3

_x3 = x
3
4 + u1

_x4 = x5 + x
3
4 − x

10
1

_x5 = u2

write the equivalence equations involving a suitable Brunovsky canonical

form, and solve them.

9.7 Bibliographical remarks

The concept of equivalence of control systems has been studied, a.o. in the

publications [Kre73, JR80, Sus83, Res85, Jak90], speci�cally in the context

of linearisation. The conditions of S-linearisation come from [Kre73, Res85,

Sus83]. Fundamental results concerned with the feedback linearisation can

be found in [JR80, HSM83]. An overview of these results is contained,

e.g. in chapter 9 of the monograph [Sas99], in chapter 6 book [NvdS90] as

well as in chapters 4 and 5 of the monograph [Isi94]. Genericity, or more

adequately, non-genericity of linearisability and other properties of nonlinear

control system is dealt with in [Tch86]. The linearisation of the model of

the induction motor analysed in Example 9.5.6 is shown in [LU89].
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Chapter 10

Input-output decoupling and
linearisation

10.1 Differential degree

We shall deal with a control a�ne system with output

σ :

 _x = f(x(t)) + g(x(t))u(t) = f(x(t)) +

m∑
i=1

gi(x(t))ui(t)

y = h(x) = (h1(x),h2(x), . . . ,hp(x))
T

, (10.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. Assume that the number of control

inputs is equal to the number of outputs, m = p. We are interested in the

dependence between the j-th output of the system and the control. From

the de�nition of the output function it follows that the control does not

inuence the output yj directly. To reveal this inuence we di�erentiate

this output with respect to time along the system's trajectory x(t). For the

sake of the simpli�cation of notation, we shall use the symbol of the Lie

derivative of a function dhj(x)f(x) = Lfhj(x), as well as to hide the time

argument t,

_yj = dhj(x) _x = dhj(x)(f(x) + g(x)u) = Lfhj(x) + Lghj(x)u,

where Lghj(x) =
(
Lg1hj(x),Lg2hj(x), . . . ,Lgmhj(x)

)T
. Now, if in a cer-

tain neighbourhood of the point x the vector Lghj(x) is non-zero, a direct

inuence of the control on the output yj has been discovered. Suppose,

however, that around x we have Lghj(x) = 0, what mean that _yj = Lfhj(x).

A subsequent di�erentiation leads to

�yj = _Lfhj = dLfhj(x) _x = L
2
fhj(x) + LgLfhj(x)u.

116
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Again a neighbourhood of the point x, it may happen that there holds

LgLfhj(x) 6= 0. If this is the case, the control inuences the second or-

der derivative of the output yj. But let that around the point x we have

LgLfhj(x) = 0. If so, we get �yj = L2fhj(x), and the di�erentiation may be

continued. Finally, suppose that there exist an integer ρj, such that all the

Lie derivatives LgL
r
fhj(x) = 0, for r = 0, 1, . . . , ρj−2, but LgL

ρj−1
f hj(x) 6= 0.

This being so, the dependence between the control u and the output yj ap-

pears to be the following

yj = hj(x)

_yj = Lfhj(x)
...

y
(ρj−1)
j = L

ρj−1
f hj(x)

y
(ρj)
j = Lρjhj(x) + LgL

ρj−1
f hj(x)u

. (10.2)

The integer ρj will be called the di�erential degree or the relative degree

of the output yj. Repeating this procedure for all outputs we arrive at

a collection of di�erential degrees ρ = (ρ1, ρ2, . . . , ρm). One may expect

that these di�erential degrees, if exist, are �nite; otherwise certain system's

output would not be inuenced by any control, what could have indicated

a sort of dysfunctionality of the system.

10.2 Decoupling

Given the di�erential degrees ρj, for all the outputs, and using the nota-

tion yρ =
(
y
(ρ1)
1 ,y

(ρ2)
2 , . . . ,y

(ρm)
m

)T
, we can write down the input-output

relationship in the system as

yρ = Lρfh(x) + LgL
ρ−1
f h(x)u = P(x) +D(x)u, (10.3)

where

P(x) =
(
L
ρ1
f h1(x),L

ρ2
f h2(x), . . . ,L

ρm
f hm(x)

)T
(10.4)

and

D(x) =

 Lg1L
ρ1−1
f h1(x) . . . LgmL

ρ1−1
f h1(x)

...
...

Lg1L
ρm−1
f hm(x) . . . LgmL

ρm−1
f hm(x)

 . (10.5)

The matrix D(x) will be referred to as the decoupling matrix. If for a control

a�ne system there exist the di�erential degree, and the decoupling matrix
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v1 . . .

...

...

. . .vm

y
(ρ1−1)
1

y
(ρm−1)
m

y1

ym

∫
∫ ∫

∫_y1

_ym

Figure 10.1: Structure of the input-output relationship

is non-singular then, by means of a feedback

u = α(x) + β(x)v = −D−1(x)P(x) +D−1(x)v

the system can be converted to the decoupled form

y
(ρj)
j = vj, j = 1, 2, . . . ,m. (10.6)

As can be easily seen, in the system (10.6) the control number j a�ects solely

the jth output. The structure of the input-output relationship is shown in

Figure 10.1.

Summarising, if a system has di�erential degrees (ρ1, ρ2, . . . , ρm), and

a non-singular decoupling matrix D(x) then the tracking control problem of

an output trajectory yd(t) in such a system has a natural solution
v1 = y

(ρ1)
d1 − k1ρ1−1(y1 − yd1)

(ρ1−1) + · · ·+ k10(y1 − yd1)
...

vm = y
(ρm)
dm − kmρm−1(ym − ydm)(ρm−1) + · · ·+ km0(ym − ydm)

.

It easy to check that, if ej = yj − ydj denotes the tracking error of the jth

output then the error equations of the whole system can be represented in

the form

e
(ρj)
j + kjρj−1e

(ρj−1)
j + · · ·+ kj0ej = 0, j = 1, 2, . . . ,m.

In order to guarantee the asymptotic stability of the error system the char-

acteristic polynomial of each component error equation needs to be Hurwitz.

10.3 Dynamics of the decoupled system

Let the integers (ρ1, ρ2, . . . , ρm) denote di�erential degrees of the control

system (10.1) that is input-output decouplable. Assume that the sum of the
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di�erential degrees
∑m
j=1 ρj = s, s 6 n. The feedback

u = −D−1(x)P(x) +D−1(x)v,

that has enabled to decouple the system transform its dynamics to the

following form{
_x = f(x(t)) + g(x(t))D−1(x)P(x) + g(x)D−1(x)v = F(x) +G(x)v

y = h(x)
.

In order to better understand the structure of the dynamic part of the

system subject to the decoupling feedback, we introduce new coordinates

ξ = ϕ(x) =



h1(x)

Lfh1(x)
...

L
ρ1−1
f h1(x)

h2(x)

Lfh2(x)
...

L
ρ2−1
f h2(x)

...

hm(x)

Lfhm(x)
...

L
ρm−1
f hm(x)

xn−s



,

where the �rst s components have been de�ned by using the dependences

between the inputs and the derivatives of the output of the order ranging

from 0 to ρj − 1, and the remaining coordinates, denoted as ξn−s = xn−s,

have been chosen from among (x1, x2, . . . , xn) in such a way that ϕ(x) be

a local di�eomorphism. The independence of the �rst s coordinates can be

proved on the basis of the de�nition of di�erential degrees.We observe that

after applying the feedback (ϕ(x),α(x),β(x)) the system's equations take
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v1 . . .

...

...

. . .

∫
∫ ∫vm

ξρ1

ξs

y1

ym

ξ1

ξρ1+···+ρm−1+1

∫

(
Fn−s

(
ϕ−1(ξ)

)
,Gn−s

(
ϕ−1(ξ)

)).
.
.

Figure 10.2: Structure of control system (10.7)

the following form

_ξ1 = ξ2, _ξ2 = ξ3, . . . , _ξρ1 = v1
...

_ξρ1+···+ρm−1+1 = ξρ1+···+ρm−1+2, . . . ,
_ξs = vm

_ξn−s = Fn−s
(
ϕ−1(ξ)

)
+Gn−s

(
ϕ−1(ξ)

)
v

y1 = ξ1

y2 = ξρ1+1
...

ym = ξρ1+···+ρm−1+1

. (10.7)

Hereabout, by Fn−s(x) and Gn−s(x) we mean those components of the

vector �elds F(x) and G(x) that correspond to the coordinates xn−s. The

structure of the system (10.7) is presented in Figure 10.2. It turns out that

the s-dimensional subsystem of the system (10.7) has been decoupled and

linearised. Also, it can be seen that there exists a subsystem described by

the coordinates ξn−s that is controlled by v, but that does not have any

inuence on the system's output. The evolution of this subsystem should

remain under control, and its trajectories be bounded. Suppose that at

any time all the outputs of the system (10.7) are equal to zero. Then it

follows that all the coordinates ξ1, . . . , ξs = 0, and also v = 0. Under such

an assumption the dynamics of the coordinates ξn−s are described by the

dynamic system

_ξn−s = Fn−s
(
ϕ−1(0, ξn−s)

)
= �F

(
ξn−s

)
.



Chapter 10. Input-output decoupling and linearisation 121

These dynamics are named the zero dynamics of the system (10.7). Now, in

order to e�ciently apply a control algorithm based on the decoupling, the

zero dynamics must be stable (Lyapunov stable or asymptotically stable),

at least locally. A system with asymptotically stable zero dynamics is called

minimal phase. Obviously, if s = n then the zero dynamics are absent, and

the method of decoupling provides us with a linearising feedback without

solving any equivalence equations. In this context we formulate the following

observation.

Remark 10.3.1 If the di�erential degrees of the system σ sum up to the

the dimension of the state space then the system is feedback linearisable

by the feedback of the form

ϕ(x) =
(
h1(x), . . . ,L

ρ1−1
f h1(x), . . . ,hm(x), . . . ,Lρm−1

f hm(x)
)T

,

α(x) = −D(x)−1P(x),

β(x) = D−1(x),

where P(x) and D(x) are de�ned by the expressions (10.4) and (10.5).

10.4 Examples

Example 10.4.1 Consider the dynamics equations of a non-redundant ro-

botic manipulator with n degrees of freedom, described by the coordinate

vector q ∈ Rn, control vector u ∈ Rn, and the vector of task space

coordinates y ∈ Rn,

Q(q)�q+ B(q, _q) = u,

where Q(q) is the inertia matrix, and B(q, _q) denotes the vector of

Coriolis, centripetal, and gravitational forces, with the kinematics

y = k(q).

To express these equations in the form of a control-a�ne system, we

make the substitutions x = q and ξ = _q. It is easily checked that the

dynamics will be characterised by the following control-a�ne system

with output 
_x = ξ,
_ξ = −Q−1(x)B(x, ξ) +Q−1(x)u,

y = k(x).
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Apparently, the di�erential degrees of all outputs are the same, so to

determine them we can di�erentiate the whole output vector simulta-

neously

_y = Dk(x) _x = J(x)ξ,

�y = _J(x)ξ+ J(x) _ξ = _J(x)ξ− J(x)Q−1(x)B(x, ξ)︸ ︷︷ ︸
P(x,ξ)

+ J(x)Q−1(x)︸ ︷︷ ︸
D(x)

u.

As a result we have obtained di�erential degrees ρj = 2, and the de-

coupling matrix D(x) that is non-singular outside the singular con�g-

urations of the manipulator. Furthermore, the sum of the di�erential

degrees s = 2n is equal to the state space dimension, hence the model of

dynamics of the manipulator can be decoupled and linearised by feed-

back. While doing this, we do not need to use any coordinate change.

After the application of the feedback

u = −D−1(x)P(x, ξ) +D−1(x)v,

the input-output relationship takes the simple form

�y = v.

To solve the tracking problem of a task space trajectory yd(t), it is

natural to exploit the PD algorithm with a feedforward term

v = �yd − K1( _y− _yd) − K0(y− yd),

containing diagonal gain matrices K0, K1 with positive entries. The

resulting tracking algorithm

u = −D−1(x)P(x, ξ) +D−1(x)(�yd − K1( _y− _yd) − K0(y− yd))

is well known in robotics, under the name of the Freund's algorithm.

Example 10.4.2 Consider a single-input, single-output control system
_x1 = x3 − x

3
2

_x2 = −x2 − u

_x3 = x
2
1 − x3 + u

,

with the output function

y = h(x) = x1.
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The time di�erentiation of the output yields

_y = _x1 = x3 − x
3
2

�y = x21 − x3 + 3x
3
2︸ ︷︷ ︸

P(x)

+(1+ 3x22)︸ ︷︷ ︸
D(x)

u.

Thus we have found the di�erential degree ρ1 = 2 and the decoupling

matrix (more appropriately: the coe�cient) D(x) 6= 0. The feedback

u = −
P(x)
D(x) +

1
D(x)v leads to the decoupled input-output relationship �y =

v. For the reason that s = 2 < n = 3, the zero dynamics appear. In

order to determine the zero dynamics we choose new coordinates
ξ1 = h(x) = x1

ξ2 = Lfh(x) = x3 − x
3
2

ξ3 = x2

.

It is easily found that in a neighbourhood of the point 0 ∈ R3 the function

ξ = ϕ(x) is a di�eomorphism. The system's equations in these new

coordinates become
_ξ1 = ξ2
_ξ2 = v

_ξ3 = −x2 − u = −ξ3 +
1

1+3ξ23
v− 1

1+3ξ23

(
ξ21 − ξ2 + 2ξ

3
3

)
.

Setting y = 0 we get the zero dynamics

_ξ3 = −ξ3 −
2ξ33

1+ 3ξ23
= −ξ3k(ξ3),

where k(ξ3) > 1. Now, for x = ξ3, let us choose the function V(x) =
1/2x

2. Then we obtain _V = x _x = −x2k(x) 6 −x2 = −2V. As a result,

V(t) 6 V(0)e−2t, that implies |ξ3(t)| 6 |ξ30|e
−t, hence the zero dynamics

are globally asymptotically stable.

10.5 Problems and exercises

Exercise 10.1 For a non-redundant rigid manipulator described by the equa-

tions {
Q(q)�q+ B(q, _q) = u

y = k(q)
,

q,u,y ∈ Rn, relying on the input-output linearisation, derive a tracking

algorithm of the trajectory yd(t) in the task space.
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Figure 10.3: Vertical rolling wheel

Exercise 10.2 For the vertical rolling wheel in the plane, shown in Figure 10.3,

described as a control-a�ne system with output

_x = η1 cosϕ

_y = η1 sinϕ

_ϕ = η2
_θ = η1

_η1 = u1

_η2 = u2

y1 = x

y2 = y

,

using the input-output linearisation devise a tracking algorithm of the tra-

jectory yd(t) = (yd1(t),yd2(t))
T . Introduce new coordinates and examine

the zero dynamics o the system.

Exercise 10.3 Given a control system of the form
_x1 = x2

_x2 = sin x3

_x3 = x4

_x4 = u

.

Invoking the Jakubczyk-Respondek Theorem, and using the input-output

linearisation with the output function y = x1, demonstrate that this system

is feedback linearisable in a neighborhood of the point 0 ∈ R4
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10.6 Bibliographical remarks

The concept of the input-output decoupling and the related notions of the

di�erential degree and the zero dynamics have been described in the mono-

graphs [NvdS90, Isi94]. A concise and accessible overview of these issues is

also contained in chapter 9 of the book [Sas99]. Robotics aspects are dealt

with in the monograph [MZS94].
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Chapter 11

Chained form systems

The meaning of feedback for the synthesis of control systems results from

the fact that it allows to transform a control problem from a system that is

"hard" to analysis to an "easy" system in the normal form, with well known

control algorithms. This has been demonstrated in the previous chapter

by the example of the feedback linearisation. In this chapter we shall go

further in this direction and show another normal form system along with

a dedicated control method. The system we think of is the chained form

control system.

11.1 Chained form

We shall study a driftless control system with two inputs

σ : _x = g(x(t))u(t) = g1(x(t))u1(t) + g2(x(t))u2(t), x ∈ Rn. (11.1)

The control distribution of this system D = spanC∞(Rn,R){g1,g2}. A control

a�ne system

σ ′ : _ξ = G(ξ(t))v = G1(ξ(t))v1(t) +G2(ξ(t))v2(t)

is referred to as the chained form control system if it has either of the

following two forms

σ ′1 :
_ξ1 = v1, _ξ2 = v2, _ξ3 = ξ2v1, . . . , _ξn = ξn−1v1

σ ′2 :
_ξ1 = v1, _ξ2 = ξ3v1, _ξ3 = ξ4v1, . . . , _ξn−1 = ξnv1, _ξn = v2.

(11.2)

We look for a feedback ξ = ϕ(x), u = β(x)v, that establishes the F-equiva-

lence of systems σ and σ ′. If such a feedback exists, it needs to satisfy the

following equivalence equations

Dϕ(x)g(x)β(x) = G(ϕ(x)).

126
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11.2 Murray’s Theorem

Given the system (11.1), we de�ne two families of distributions, for k =

0, 1, . . . ,n− 2

D0 = D, Dk+1 = Dk + [D0,Dk]

and

D0 = D, Dk+1 = Dk +
[
Dk,Dk

]
.

The former family is called the small ag, the latter { the big ag of the

distribution. The component{distributions of the small and the big ag are

nested, i.e. Dk ⊂ Dk+1, D
k ⊂ Dk+1, we also have

D0 = D0, D1 = D1, Dk ⊂ Dk

for k > 2. The last dependence explains the terminology "small" and

"big" ag. The following necessary and su�cient condition for a local F-

equivalence of systems σ and σ ′ has been formulated in the language of

ags.

Theorem 11.2.1

σ ∼=
LF
σ ′ ⇐⇒ dimDk(x) = dimDk(x) = k+ 2

for x in a certain open set, and k = 0, 1, . . . ,n− 2.

11.3 Integrator backstepping

A control method applicable to the chained form systems is the integrator

backstepping method. The idea of this method will be explained below, by

the example of a single-input control a�ne system, of the form{
_x = f(x(t)) + g(x(t))ξ(t),
_ξ = u(t),

(11.3)

having the equilibrium point u = 0, x = 0, ξ = 0, where x ∈ Rn, ξ,u ∈ R.
The system (11.3) can represent the error dynamics of a control system.

We want to solve the problem of error stabilisation, i.e. to �nd a control

u(t), such that for t → +∞ the trajectory (x(t), ξ(t)) → 0. The control

algorithm will be de�ned in the form of a state feedback, u = u(x, ξ). To

this objective we proceed as follows:
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� Consider the subsystem _x = f(x(t)) + g(x(t))ξ(t), and let us treat the

variable ξ as a temporary control. We assume that there exists for this

system a stabilising feedback, i.e. a function ξ = φ(x), φ(0) = 0, and

functions α1(||x||) 6 V1(x) 6 α2(||x||), W1(x) > 0, where α1,α2 are

of class K, such that along the trajectory of the system with feedback

_x = f(x(t)) + g(x(t))φ(x) there holds

_V1(x) = dV(x)(f(x) + g(x)φ(x)) 6 −W1(x) 6 0.

� Introduce a new variable z = ξ − φ(x) and write down the system

(11.3) in the form
_x = f(x(t)) + g(x(t))φ(x(t))︸ ︷︷ ︸

stable

+g(x(t))z(t),

_z = u(t) − _φ(x(t)) = v(t),

(11.4)

where _φ(x(t)) symbolises the time di�erentiation, while v denotes a

new control. Now we are looking for a stabilising feedback control for

the whole system (11.4). To this aim we choose the function

V2(x, z) = V1(x) +
1

2
z2 > 0,

and compute

_V2(x, z) = _V1(x) + z _z 6 −W1(x) + dV1(x)g(x)z+ zv =

−W1(x) + (dV1(x)g(x) + v)z.

Notice that after taking

dV1(x)g(x) + v = −kz

for a certain k > 0, we obtain

_V2(x, z) 6 −W1(x) − kz
z,

that results in the stability of the system (11.4) with the control

v = −kz− dV1(x)g(x).

If we assumed that the function W1(x) > α3(||x||), for a K-class func-

tion α3 then we would get the asymptotic stability of the system

(11.4). Since ξ = z−φ(x) and φ(0) = 0, the convergence of (x(t), z(t))

to 0 implies that ξ(t) also converges to 0. The stabilising control for

the system (11.3) has therefore the form

u(x, ξ) = −k(ξ− φ(x)) − dV1(x)g(x) + dφ(x)(f(x) + g(x)ξ).
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Figure 11.1: Kinematic car

The presented procedure generalises to control systems containing many

integrations, 

_x = f(x(t)) + g(x(t))ξ1(t),
_ξ1 = ξ2(t)
...
_ξk−1 = ξk(t),
_ξk = u.

11.4 Examples

Example 11.4.1 The subject of our analysis will be the kinematic car

shown in Figure 11.1. Let q = (x,y, θ,ϕ)T denote the coordinate vector

describing the car (see the �gure). Under assumption that the lateral

slip of the front and the rear wheels is not permitted, the model of

kinematics of the car assumes the form of a driftless control system
_x = u1 cos θ cosϕ

_y = u1 sin θ cosϕ

_θ = u1 sinϕ

_ϕ = u2

. (11.5)

We shall demonstrate that this system is locally F-equivalent to a chain-

ed form system, and more speci�cally to the system σ ′2 that has appeared

in the formula (11.2). Suppose that the coordinates θ and ϕ of the

system are bounded to the range ±π/2, therefore |θ|, |ϕ| < π/2. With
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such an assumption we can de�ne a preliminary feedback

w =

[
cos θ cosϕ 0

0 1

]
u,

that will allow us to write down the system (11.5) as

_x = w1

_y = w1 tan θ

_θ = w1
tanϕ

cos θ
_ϕ = w2

. (11.6)

The system (11.6) is described by two control vector �elds

g1(q) =


1

tan θ
tanϕ

cos θ
0

 , g2(q) =


0

0

0

1

 ,

so the distribution D = span{g1,g2}. Now we �nd the small and the big

ag. It follows from the Theorem 11.2.1 that it is enough to compute

the following distributions:

D0 = D0 = D 3 g1,g2
D1 = D1 = D0 + [D0,D0] 3 g1,g2,g12 = [g1,g2],

D2 = D1 + [D0,D1]=D2 3 g1,g2,g12,g112=[g1,g12],g212=[g2,g12].

In our case we also have the identity of distributions D2 = D2; this

feature is not general, but results from the fact that the distribution D

has two generators. A computation of Lie brackets gives

g12(q) =


0

0

−
1

cos θ cos2ϕ
0

 , g112(q) =


0
1

cos3 θ cos2ϕ
0

0

 .

Now it is easily checked that the distribution D1 = span{g1,g2,g12},

while the distribution D2 = span{g1,g2,g12,g112}, thus at every point

q ∈ R× R× (−π/2,+π/2)2 the following conditions hold

dimD0(q) = dimD0(q) = 2, dimD1(q) = dimD1(q) = 3,

dimD2(q) = dimD2(q) = 4.
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Theorem 11.2.1 yields that the system (11.6) is locally F-equivalent

to the chained form system, and for the reason that the system (11.5)

is F-equivalent to (11.6) the kinematics of the kinematic car is locally

feedback equivalent to the chained form system.

Example 11.4.2 As an illustration of the integrator backstepping method

we shall derive a stabilisation algorithm of the equilibrium point 0 ∈ R2
in the following system {

_x1 = x
2
1 − x

3
1 + x2

_x2 = u
.

In accordance with the scheme of the method we shall �rst treat the

variable x2 as a control, and �nd a stabilising feedback x2 = φ(x1). For

this purpose we pick a function V1(x1) = 1/2x
2
1, and compute

_V1(x1) = x1 _x1 = x
3
1 − x

4
1 + x1φ(x1) 6 x

3
1 + x1φ(x1) = x1

(
x21 + φ(x1)

)
.

It is easy to observe that the choice φ(x1) = −k1x1−x
2
1 for k1 > 0 yields

_V1(x1) 6 −k1x
2
1 = −W1(x1), that in turn gives the asymptotic stability

of the dynamics of the variable x1. Next, we introduce the variable

z = x2 − φ(x1) and re-write the equations of the whole system in the

form {
_x1 = x

2
1 − x

3
1 + φ(x1) + z

_z = u− _φ(x1) = v
.

For this last system we take the function V2(x1, z) = V1(x1) + 1/2z
2. Its

derivative along the trajectory amounts to

_V2(x1, z) = _V1 + z _z 6 −W1(x1) +

(
dV1(x1)

dx1
+ v

)
z.

Now if
dV1(x1)
dx1

+ v = −k2z then the control v = −k2z−
dV1(x1)
dx1

leads to

_V2(x1, z) 6 −W1(x1) − k2z
z = −k1x

2
1 − k2z

2,

so stabilises the system described by the variables (x1, z), ensuring a

convergence of the trajectory (x1(t), z(t)) to zero. Because φ(0) = 0, this

implies the convergence to zero of the original trajectory (x1(t), x2(t)).

Finally, the stabilising control for the system (x1, x2) is equal to

u(x1, x2) = v+ _φ(x1) = −k2(x2−φ(x1))−
dV1(x1)

dx1
+
dφ(x1)

dx1
(x21−x

3
1+x2),

where V1(x1) = 1/2x
2
1 and φ(x1) = −k1x1 − x

2
1.
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Figure 11.2: Unicycle

Example 11.4.3 As the next example of the application of the integrator

backstepping method we shall consider a kinematics model of the uni-

cycle mobile robot, described in coordinates q = (x,y, θ)T , presented in

Figure 11.2. The kinematics equation of the unicycle are the following
_x = v cos θ(t)

_y = v sin θ(t)

_θ = w

.

Assume that the control problem of the unicycle consists in the track-

ing of the reference trajectory (xd(t),yd(t)). Let this trajectory be re-

alisable by the unicycle (admissible), what means that there exist a

reference control (vd(t),wd(t)), such that _xd = vd(t) cos θd(t), _yd =

vd(t) sin θd(t), _θd = wd(t). We de�ne the tracking errors as �xe = xd−x,

�ye = yd − y, �θe = θd − θ and transform this error to the formxeye
θe

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

�xe
�ye
�θe

 .

With this de�nition of the error, the error dynamics can be expressed

by a time-dependent system
_xe = w(t)ye(t) − v(t) + vd(t) cos θe(t),

_ye = −w(t)xe(t) + vd(t) sin θe(t),
_θe = wd(t) −w(t).

(11.7)

The synthesis procedure of a control algorithm based on the integrator

backstepping method consists of the following steps:
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� Suppose temporarily that in the second equation of the analysed

system (11.7) we have xe = 0, and try to stabilise the variable

ye. To this objective we take θe = −ϕ(yevd)
∗, where ϕ(z) denotes

a function having the following properties: ϕ(0) = 0, zϕ(z) > 0

for z 6= 0, and the derivative ϕ ′(z) is bounded. An example of

a function that satis�es these requirements is ϕ(z) = σz
1+z2

, for

a certain σ > 0.

� Compute _ye = −vd(t) sinϕ(ye(t)vd(t)). Taking V1(ye) = 1/2y
2
e,

and using the properties of the function ϕ, for small values of the

function ϕ(yevd) we get the time derivative _V1(ye) = −yevd sinϕ(yevd) <

0. This yields the uniform asymptotic stability of the variable ye.

� De�ne the variable z = θe+ϕ(yevd), and compute its time deriva-

tive

_z = _θe +ϕ
′(yevd)( _yevd + ye _vd)

= wd −w+ϕ ′(yevd)(−wxevd + v2d sin θe + ye _vd).

� Take the function

V2(t, xe,ye, z) =
1

2
x2e +

1

2
y2e +

1

2γ
z2,

for some γ > 0. The di�erentiation of V2 along the trajectory of

the error system (11.7) results in

_V2 = xe _xe + ye _ye +
1

γ
z _z = xe(−v+ vd cos θe) + yevd sin θe

+
1

γ
z
(
wd −w+ϕ ′(yevd)

(
−wxevd + v2d sin θe + ye _vd

))
.

� Invoke the Hadamard's Lemma presented in subsection 3.3, in the

form

f(x+x0)=f(x0)=

∫1
0

df(s(x+x0)+(1−s)x0)=f(x0)+x

∫1
0

f ′(sx+x0)ds.

We have z = θe +ϕ(yevd), therefore

sin θe=sin(z−ϕ(yevd))=sin(−ϕ(yevd))+z

∫1
0

cos(sz−ϕ(yevd))ds︸ ︷︷ ︸
η

.

∗the argument of ϕ is the product of ye and vd
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� Utilising the above, compute

_V2 = xe(−v+ vd cos θe) − yevd sinφ(yevd) + yezηvd

+
1

γ
z
(
wd −w+ϕ ′(yevd)

(
−wxevd + v2d sin θe + ye _vd

))
= xe(−v+ vd cos θe) − yevd sinφ(yevd) +

1

γ
z
(
γyeηvd

+wd −
(
1+ϕ ′(yevd)xevd

)
w+ϕ ′

(
v2d sin θe + ye _vd

))
.

� In order to get the derivative _V2 negative, choose the controls v

and w in such a way that satisfy the dependences
−v+ vd cos θe = −c1xe

−(1+ϕ ′(yevd)xevd)w+ γyeηvd +wd

+ϕ ′
(
v2d sin θe + ye _vd

)
= −c2z

,

for positive coe�cients c1 and c2. Having made them explicit we

obtain{
v = c1xe + vd cos θe

w = 1
1+ϕ ′(yevd)xevd

(
c2z+ γyeηvd +wd +ϕ ′

(
v2d sin θe + ye _vd

))
as well as

_V2 = −c1x
2
e − yevd sinφ(yevd)︸ ︷︷ ︸

>0

−c2z
2 < 0.

To �nalise our analysis we notice that the inequality _V2 < 0 implies

a boundedness of the function V2, so also of the variables xe, ye and

z. Furthermore, if the reference trajectory (vd(t),wd(t)) is bounded

together with its �rst order derivative then the controls v(t), w(t) as

well as the derivatives _xe, _ye and _θe stay bounded. We then conclude

that the second order derivative �V2 is bounded. Since the function V2
has a limit, and the function �V2 is bounded, we obtain from Barbalat's

Lemma that _V2 → 0, i.e. (xe(t),ye(t)vd(t) sinφ(ye(t)vd(t)), θe(t)) → 0.

Under suitable assumptions imposed on the reference trajectory this

allows us to show that also ye(t)→ 0.
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11.5 Bibliographical remarks

The chained form systems play in control theory a particular role, both

for purely theoretical reasons (the so called Goursat normal form) as well

as with respect to the existence form them control algorithms, see [JN99,

MZS94], chapter 8, [Kha00], chapter 14 or [Sas99], chapter 12. The Murray's

Theorem can be found in the chapter 8 mentioned above or in chapter 9

of [Sas99]. Example 11.4.1 comes from [MLS94], the Example 11.4.2 has

been borrowed from the monograph [Kha00], whereas the Example 11.4.3

is a reconstruction based on [JN97]. To a Reader interested in a more in

depth study of the method of backstepping we recommend the monograph

[KKK95].
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Chapter 12

Dynamic feedback, linearisation

12.1 Motivation

Let us look again at the kinematics of the unicycle
_x = u1 cos θ

_y = u1 sin θ

_θ = u2

.

described by the coordinates q = (x,y, θ)T . Assume that we want to control

the end position of the shaft of length d �xed to the unicycle as shown in

Figure 12.1. The output function of this system takes the form{
y1 = x+ d cos θ

y2 = y+ d sin θ
.

X

Y

x

y
θ

d

Figure 12.1: Unicycle with shaft

136
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First, let us check, if the system is input-output decouplable. To this aim

we di�erentiate{
_y1 = _x− d _θ sin θ = u1 cos θ− u2d sin θ,

_y2 = _y+ d _θ cos θ = u1 sin θ+ u2d cos θ,

i.e. (
_y1
_y2

)
=

[
cos θ −d sin θ

sin θ d cos θ

](
u1
u2

)
= D(q)u = v =

(
v1
v2

)
.

The di�erential degrees of both outputs are identical, ρ1 = ρ2 = 1, and if

detD(q) = d 6= 0 then the system is decouplable. Since ρ1 + ρ2 = 2 < 3,

there appear the zero dynamics. To describe them, we shall introduce new

coordinates 
ξ1 = y1

ξ2 = y2

ξ3 = θ

.

In these coordinates the system's equations look as the following
_ξ1 = _y1 = v1
_ξ2 = _y2 = v2
_ξ3 = _θ = u2 = − 1dv1 sin θ+

1
dv2 cos θ

.

The assumption that y1(t) = 0 and y2(t) = 0 requires zeroing the coor-

dinates ξ1, ξ2, as well as the inputs v1 and v2. In consequence, the zero

dynamics become
_ξ3 = 0,

thus they are bounded. If the control problem consists in the tracking of

a prescribed trajectory (xd(t),yd(t)) the tracking control algorithm may

have the form of a proportional (P) regulator with a feedforward term, i.e.{
v1 = _xd − k1(x− xd)

v2 = _yd − k2(y− yd)
.

As can be seen, the procedure of feedback decoupling and (partial) lineari-

sation of the model of unicycle has been successful, on condition that we

want to control a point located at the end of the shaft, in some distance d

from the middle point of the rear axle. Now we shall examine in more detail

the case of d = 0, so of the output function{
y1 = x

y2 = y
.
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In this case we have {
_y1 = u1 cos θ

_y2 = u1 sin θ
,

thus the decoupling matrix is singular and the decoupling procedure is not

applicable. Not discouraged too much by this fact, we shall di�erentiate the

output function once again under assumption that the controls are di�eren-

tiable, {
�y1 = _u1 cos θ− u1 _θ sin θ = _u1 cos θ− u1u2 sin θ

�y2 = _u1 sin θ+ u1 _θ cos θ = _u1 sin θ+ u1u2 cos θ
.

Now, let us assume that in the formulas given above u1 does not denote

a control any more, but an extra state variable. Instead, as the control we

shall take w1 = _u1 and w2 = u2. This being so, we get(
�y1
�y2

)
=

[
cos θ −u1 sin θ

sin θ u1 cos θ

]
w = D(q,u1)w.

On condition that u1 6= 0 the matrix D(q,u1) becomes a decoupling matrix.

Having applied the feedback v = D(q,u1)w we arrive at a decoupled input-

output relationship {
�y1 = v1

�y2 = v2
.

It turns out that, after extending the state space of the unicycle by the

variable u1 and adding to the unicycle's equations the identity _u1 = w1,

the system 
_x = u1 cos θ

_y = u1 sin θ

_θ = w2

_u1 = w1

with output {
y1 = x

y2 = y
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is decouplable and linearisable by the feedback ξ = ϕ(x) = (y1, _y1,y2, _y2)
T ,

v = D−1(q,u1)w, under which it takes the form
_ξ1 = ξ1
_ξ2 = v1
_ξ3 = ξ4
_ξ4 = v2

,

valid in the region R3 × R − {0}. The feedback based on an extension of

a system by an extra dynamic part is called dynamic. The feedback without

such an extension, discussed in section 9.2, is referred to as static. Therefore,

the kinematic equations of a moving unicycle (u1 6= 0) with the zero length

of the shaft d = 0, are dynamic feedback linearisable, but they are not

static feedback linearisable. This shows that the dynamic feedback is a more

powerful tool than the static one. In the next section we shall de�ne the

concept of the dynamic feedback in a formal way.

12.2 Dynamic feedback

Let a control-a�ne system

σ : _x = f(x(t)) + g(x(t))u(t) = f(x(t)) +

m∑
i=1

gi(x(t))ui(t) (12.1)

be given, where x ∈ Rn, u ∈ Rm. To this system we add a dynamic

compensator

κ :

{
_z = F(x(t)), z(t)) +G(x(t), z(t))w

u = H(x, z) + K(x, z)w
, (12.2)

z ∈ Rq, w ∈ Rm. The variable z is the state variable of the compensator;

the dimension of the compensator's state space equals q. A coupling of the

system (12.1) and the compensator (12.2) gives the control system

(σ+ κ) :

(
_x

_z

)
=

(
f(x(t)) + g(x(t))H(x(t), z(t))

F(x(t), z(t))

)
+

[
g(x(t))K(x(t), z(t))

G(x(t), z(t))

]
w = Φ(x(t), z(t)) + Ψ(x(t), z(t))w. (12.3)
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For a control system

σ ′ : _ξ = F(ξ(t)) +G(ξ(t))v.

we introduce the following de�nition of the dynamic feedback equivalence.

Definition 12.2.1 The system σ is dynamic feedback equivalent to the sys-

tem σ ′, σ ∼=DF σ
′ if there exists a dynamic compensator κ and a static

feedback {
ξ = ϕ(x, z)

w = α(x, z) + β(x, z)v
,

such that

(σ+ κ) ∼=
F
σ ′.

If the di�eomorphism ϕ(x, z) is local, we speak of the local dynamic

feedback equivalence.

The system σ is named dynamically feedback linearisable (dynamically lin-

earisable) if σ ′ is a linear system, and there holds σ ∼=DF σ
′.

12.3 Theorems on dynamic linearisation

Intuitively, after the analysis of our examples of decoupling and linearisation

with extra integrators employed in the control loop, we may believe that

the essence of the dynamic feedback consists in a "mutual shifting" of the

controls acting on the system. We can assume that such a shifting is achieved

by the integration of controls. Therefore, if there is only one input, the

dynamic feedback should not be e�ective. It is indeed the case, as it follows

from the next theorem.

Theorem 12.3.1 A single-input system is dynamic feedback linearisable if

and only if it is static feedback linearisable.

The next result presents a necessary condition for dynamic linearisation.

Since a statically linearisable system is a fortiori dynamically linearisable,

obviously this is also a necessary condition for static linearisation.

Theorem 12.3.2 If a system is dynamic feedback linearisable in a neigh-

bourhood of an equilibrium point then its linear approximation at this

point is controllable.
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Figure 12.2: Brunovsky compensator

12.3.1 Brunovsky compensator

A glance at the dynamic linearisation problem allows one to expect that the

problem is much harder than that of the static linearisation for the reason

that in dynamic linearisation we need to design a compensator and then

to linearise the system together with the compensator. It turns out that

the choice and the linearisation of the compensator can be accomplished in

a quite arbitrary manner, by using a linear compensator in the Brunovsky

canonical form. This is done in the following way. For the system (12.1)

we choose a collection of integers 0 6 µ1 6 µ2 6 · · · 6 µm. Their sum

de�nes the state space dimension of the compensator, q =
∑m
i=1 µi. The

Brunovsky compensator is a speci�c instance of the system (12.2), de�ned

in the following way (see Figure 12.2):
_z11 = z12, _z12 = z13, . . . , _z1µ1 = w1, u1 = z11,

_z21 = z22, _z22 = z23, . . . , _z2,µ2 = w2, u2 = z21,
...

_zm1 = zm2, _zm2 = zm3, . . . , _zmµm = wm, um = zm1.

By the de�nition of the Brunovsky compensator it follows that u
(µ1)
1 = w1,

u
(µ2)
2 = w2,. . . , u

(µm)
m = wm, so the new controls need to be integrated,

respectively, µ1, µ2,. . . , µm times. We also observe that the dynamics of the

Brunovsky compensator do not depend on the state variables of the system

(12.1), what makes the compensator a sort of universal. The numbers µi
are ordered increasingly; thus if a certain µj = 0, then all the µi preceding

µj are also equal to zero. µj = 0 means that the control input wj will not

be integrated, i.e. uj = wj. Now, let us take the system (12.1), and choose

the Brunovsky compensator described by the integers (µ1,µ2, . . . ,µm). We

de�ne a collection of distributions

∆0 = span
C∞(Rn,R)

{gk|µk = 0}, ∆i+1 = ∆i + adf∆i + span
C∞(Rn,R){gk|µk = i+ 1}.
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Su�cient conditions for the dynamic linearisation (the linearisation employ-

ing the Brunovsky compensator) are included in the following theorem.

Theorem 12.3.3 (Charlet-Lévine-Marino) The system

σ : _x = f(x(t)) + g(x(t))u(t) = f(x(t)) +

m∑
i=1

gi(x(t))ui(t),

x ∈ Rn, u ∈ Rm, is dynamic feedback linearisable in a neighbourhood of

the equilibrium point x0 = 0, if

1. dim∆n+µm−1(0) = n,

2. the distributions ∆i, i = 0, 1, . . . ,n+µm−2 have around 0 constant

dimension and are involutive,

3. in a certain neighbourhood of zero there holds [gj,∆i] ⊂ ∆i+1, for

j = 1, 2, . . . ,m, µj > 1, i = 0, 1, . . . ,n+ µm − 2.

In the case when i > µm, the last component of the distribution ∆i+1 is

equal to zero. Notice that if µm = 0 (therefore all µj = 0), the condition

for the dynamic linearisability coincides with the condition for the static

linearisability presented in Theorem 9.2.2.

12.4 Differential flatness

In the chapter devoted to the input-output decoupling and linearisation we

have noticed (Remark 10.3.1) that if the di�erential degrees of the outputs

sum up to the dimension of the system's state space then there exists a

feedback (ϕ,α,β) depending exclusively on the derivatives of the outputs

with respect to time, that linearises the system. One can say that both the

state variables as well as the controls in the new system depend only on the

jets of the outputs. This observation supports the concept of a di�erentially

at system tat will be de�ned in the following way.

Definition 12.4.1 The control-a�ne system

σ : _x = f(x(t)) + g(x(t))u = f(x(t)) +

m∑
i=1

gi(x(t))ui(t),

where x ∈ Rn, u ∈ Rm, is called di�erentially at if there exist functions

yi = hi(x), i = 1, 2, . . . ,m,
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referred to as the at outputs, such that almost everywhere, perhaps

except at some singular points, the state variables as well as the controls

of the system σ can be expressed as some functions of the at outputs

and their time derivatives, i.e.

xi = xi
(
y, _y, . . . ,y(ri)

)
, i = 1, 2, . . . ,n

uj = uj
(
y, _y, . . . ,y(sj)

)
, j = 1, 2, . . . ,m.

A fundamental feature of di�erentially at systems is that they are almost

everywhere dynamically feedback linearisable. Because we do not have

checkable necessary and su�cient conditions for di�erential atness, in or-

der to establish the atness we usually need to resort to the de�nition. It

is known that the kinematics of mobile robots like the unicycle, kinematic

car and the tractor pulling trailers are di�erentially at. Similarly, we can

prove the atness of the chained form systems. Suppose that we have the

chained form system

_x1 = u1, _x2 = u2, _x3 = x2u1, . . . , _xn = xn−1u1.

As the at outputs let us choose y1 = x1 and y2 = xn, and then compute

x1 = y1, xn = y2, u1 = _x1 = _y1, xn−1 =
_xn
u1

=
_y2
_y1
,

xn−2 =
_xn−1
u1

=
�y2 _y1 − _y2�y1

_y31
, . . . ,u2 = _x2.

It follows that the chained form system is di�erentially at on condition

that _y1 = u1 6= 0. An example system that is not di�erentially at is

the kinematics of the rolling ball. We want to conclude with an observa-

tion that, after showing the di�erential atness of a system, the design of

the linearising dynamic feedback is quite natural. We shall see this when

studying Examples 12.5.2 and 12.5.3.

12.5 Examples

Example 12.5.1 Consider the following control-a�ne system

σ :


_x1 = x2

_x2 = u2

_x3 = u1

_x4 = x3 − x3u2

.
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This system is described by three vector �elds: f(x) = (x2, 0, 0, x3)
T ,

g1(x) = e3, and g2(x) = e2− x3e4; ei denotes the i-th unit vector in R4.

We shall verify a possibility of linearising this system by either static

or dynamic feedback. For completeness we shall begin with checking the

necessary condition for the feedback linearisability. It is easily noticed

that the point u = 0, x0 = 0 is an equilibrium point of the σ. The linear

approximation

A =
∂f(0)

∂x
=


0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 , B = [g1(0),g2(0)] =


0 0

0 1

1 0

0 0

 .
As can be checked, the rank of the Kalman matrix

rank
[
B,AB,A2B,A3B

]
= rank[B,AB] = 4,

so the linear approximation is controllable, and the necessary condi-

tion holds. Now we ask the question of the linearisability by the static

feedback. We compute

D0 = span
C∞(Rn,R)

{g1,g2} = span
C∞(Rn,R)

{e3, e2 − x3e4}, dimD0(x) = 2.

The distribution D0 has constant dimension at any point x ∈ R4. Let's

�nd the Lie bracket

g12(x) = [g1,g2](x) = Dg2(x)g1(x) −Dg1(x)g2(x) = −e4 /∈ D0.

Since the distribution D0 is not involutive, the system σ is not static

feedback linearisable, and we shall try to achieve the dynamic feedback

linearisation. Our �rst step will be the choice of a Brunovsky compen-

sator. Suppose that µ1 = 0 and µ2 = 1. Then we have q = 1 and n = 4.

We compute the distributions

∆0 = span
C∞(Rn,R)

{g1} = span
C∞(Rn,R)

{e3}.

Obviously, the distribution ∆0 has constant dimension = 1 and is invo-

lutive. Next, we �nd

∆1 = ∆0 + adf∆0 + span
C∞(Rn,R){g2}.



Chapter 12. Dynamic feedback, linearisation 145
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Figure 12.3: Unicycle

Because ∆1 = spanC∞(Rn,R){e3, e4, e2 − x3e4} = spanC∞(Rn,R){e2, e3, e4},

the distribution ∆1 is also constant dimensional (of dimension 3) and

involutive. In the next step we compute

∆2 = ∆1 + adf∆1 = span
C∞(Rn,R)

{e1, e2, e3, e4}.

The distribution ∆2 has constant dimension 4 that is equal to the di-

mension of the state space. This implies that the distributions ∆4 =

∆3 = ∆2, so the conditions number 1 and 2 of the Theorem 12.3.3 are

ful�lled. We are left with checking the condition number 3, i.e. showing

that

[g2,∆0] ⊂ ∆1, [g2,∆1] ⊂ ∆2, [g2,∆2] ⊂ ∆3.

As a matter of fact, it su�ces to check only the �rst from among these

conditions, what follows from the fact that [g2,g1] = e4 ∈ ∆1. Sum-

marising, for all the conditions for the dynamic feedback linearisation

are satis�ed, the system σ is dynamic feedback linearisable. This exam-

ple reveals that the class of dynamically linearisable systems is larger

than the class of systems that can be linearised by means of the static

feedback.

Example 12.5.2 Let us examine the di�erential atness of the kinematics

model of the unicycle characterised by coordinates q = (x,y, θ)T , see

Figure 12.3, 
_x = u1 cos θ

_y = u1 sin θ

_θ = u2

.
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To this aim we choose as the (candidate) at outputs y1 = x, y2 = y,

and compute

x = y1, y = y2, θ=arctan
_y2
_y1
, u1=±

√
_y21 + _y22, u2 =

_θ =
�y2 _y1 − _y2�y1

_y21 + _y22
,

that proves the atness of the unicycle outside the singular point u1 = 0.

In order to design the linearising feedback, let us observe that the state

coordinates of the unicycle have been expressed in terms of the at

outputs and their �rst order time derivatives. For this reason the new

coordinates can be de�nes as
ξ1 = y1

ξ2 = _y1

ξ3 = y2

ξ4 = _y2

.

The unicycle's kinematic equations in these coordinates take the form
_ξ1 = ξ2
_ξ2 = �y1 = _u1 cos θ− u1u2 sin θ = w1 cos θ− u1w2 sin θ

_ξ3 = ξ4
_ξ4 = �y2 = _u1 sin θ+ u1u2 cos θ = w1 sin θ+ u1w2 cos θ

.

It follows that to the equations of the unicycle one needs to add the

dynamic compensator {
_u1 = w1

u2 = w2

and apply the feedback{
v1 = w1 cos θ− u1w2 sin θ

v2 = w1 sin θ+ u1w2 cos θ
,

that converts the kinematic model of the unicycle to the linear system
_ξ1 = ξ2
_ξ2 = v1
_ξ3 = ξ4
_ξ4 = v2

.
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Figure 12.4: Kinematic car

These feedback transformations are well de�ned in the set of states of

the system with compensator (q,u1) ∈ R3 × R − {0}. The state space

di�eomorphism assumes the form

ξ = ϕ(q,u1) =


x

u1 cos θ

y

u1 sin θ

 .

Example 12.5.3 A slightly more involved is the kinematics model of the

kinematic car shown in Figure 12.4. The coordinate vector of the kine-

matic car q = (x,y, θ,ϕ)T . The kinematics model will be taken in the

following form 
_x = u1

_y = u1 tan θ

_θ = u1
tanϕ
cosθ

_ϕ = u2

,

that is valid under the condition |θ|, |ϕ| < π/2. As in the previous sec-

tion, we choose the at outputs as{
y1 = x

y2 = y
.

We compute

x = y1, y = y2, u1 = _y1, θ = arctan
_y2
_y1
, _θ =

�y2 _y1 − _y2�y1
_y21 + _y22

= _y1
tanϕ

cos θ
,

ϕ = arctan
�y2 _y1 − _y2�y1

_y1
(
_y21 + _y22

) cos θ( _y1, _y2), u2 = _ϕ( _y1, �y1,y
(3)
1 , _y2, �y2,y

(3)
2 ).
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The results of these computations imply that for u1 6= 0 the kinemat-

ics of the car is di�erentially at. Now we shall derive the linearising

dynamic feedback. Since q = q(y1, _y1, �y1,y2, _y2, �y2), we pick new coor-

dinates as 

ξ1 = y1

ξ2 = _y1 = u1

ξ3 = �y1 = _u1

ξ4 = y2

ξ5 = _y2 = u1 tan θ

ξ6 = �y2 = _u1 tan θ+ u
2
1

tanϕ

cos3 θ

.

In these new coordinates the equations of the kinematic car are the

following:

_ξ1 = ξ2
_ξ2 = ξ3
_ξ3 = �u1
_ξ4 = ξ5
_ξ5 = ξ6

_ξ6 = �u1 tan θ+ _u1
u1 tanϕ
cos3 θ

+

(
2 _u1u1 tanϕ+u2

u2
1

cos2 ϕ

)
cos3 θ+ 3

2u
3
1 sin2θ tan2ϕ

cos6 θ

.

This being so, we introduce a two-dimensional dynamic compensator
_u1 = η

_η = w1

u2 = w2

,

and the feedback{
v1 = w1

v2 = η
u1 tanϕ
cos3 θ

+
2ηu1 tanϕ cos3 θ+ 3

2u
3
1 sin2θ tan2ϕ

cos3 θ
+w1 tan θ+w2

u21
cos2ϕ cos3 θ

.

Subject to the dynamic linearisation the car's kinematics assume the
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form of a linear control system

_ξ1 = ξ2
_ξ2 = ξ3
_ξ3 = v1
_ξ4 = ξ5
_ξ5 = ξ6
_ξ6 = v2

.

This linearisation is justi�ed in the region of state variables of the

system with the compensator, given by (q,u1,η) ∈ R2 ×
(
−π2 ,+

π
2

)2 ×
(R− {0})× R. The state space di�eomorphism is de�ned by the formula

ξ = ϕ(q,u1,η) =



x

u1
η

y

u1 tan θ

η tan θ+
u21 tanϕ

cos3 θ


.

12.6 Bibliographical remarks

Conditions of dynamic feedback linearisability by means of the Brunovsky

compensator, and Example 12.5.1 come from the paper [CLM91]. Non-

genericity of this kind of linearisation was examined in [Tch94]. The dy-

namic feedback linearisation of a model of induction motor taking into ac-

count the magnetic ow has been described in [Chi93]. The concept of

di�erential atness is discusses exhaustingly in the paper [FLR95]. The

development of the theory and applications of di�erentially at systems,

mainly in the context of dynamic linearisation, has been described in mono-

graphs [SRA04, L�ev09].
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Chapter 13

Limitations of feedback

In the last chapter of these notes we shall deal with certain limitations of

applicability of the feedback to the synthesis of control algorithms for non-

linear systems. As usual, the linear control systems will serve us as a point

of reference.

13.1 Linear systems

Let a linear system

σ : _x = Ax+ Bu, (13.1)

be given, with m control inputs and n-dimensional state space. We recall

that the system σ is feedback stabilisable if there exists a linear function

u = Kx, such that the linear dynamic system

_x = (A+ BK)x

has an asymptotically equilibrium point x0 = 0. In chapter 0.2.3 we have

stated the Remark 0.2.1, saying that a su�cient condition for stabilisability

of a linear system is its controllability. Also, we have shown that this prop-

erty results from a more general Pole Placement Theorem 0.2.4. Therefore,

the controllability of a linear control system guarantees its stabilisability.

Apparently, this feature does not generalise to non-linear control systems.

13.2 Brockett’s Theorem

Consider a smooth control system

_x = f(x,u), (13.2)

151
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and let u = 0, x = x0 denote its equilibrium point, i.e. f(x0, 0) = 0. The

system (13.2) is called feedback stabilisable if there exists a smooth function

u = α(x), α(x0) = 0, such that the point x0 is an asymptotically stable

equilibrium point of the dynamic system

_x = f(x,α(x)).

The following theorem establishes a necessary condition for stabilisability

of the system (13.2).

Theorem 13.2.1 (Brockett) Suppose that the system (13.2) is stabilisable,

and let A denote a neighbourhood of x0. Then, the image of the function

γ : A× Rm −→ Rn, γ(x,u) = f(x,u),

is a certain open neighbourhood of the point 0 ∈ Rn.

We often say the the Brockett's Theorem de�nes an obstruction to stabilis-

ability of a non-linear control system. For illustration, take a system (13.2)

in the chained form 
_x1 = u1

_x2 = u2

_x3 = x2u1

.

We choose A = R3 and γ(u, x) = f(u, x) = (u1,u2, x2u1). In order to get

the point 0 ∈ R3, we need to assume that u1 = u2 = 0. Notice, however,

that a point arbitrarily close to zero, of the form (0, 0, ε) ∈ R3 does not

belong to the image of the function f. This means that the chained form

system is not feedback stabilisable. Also observe that the chained form

system is controllable, and despite that, not feedback stabilisable. A similar

conclusion holds for any driftless system, either controllable or not. To this

objective, consider the system

_x = g(x)u =

m∑
i=1

gi(x)ui

with control vector �elds independent at the point x0. Without any loss of

generality we may assume that the matrix g(x) takes the form[
~g1(x)

~g2(x)

]
,
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such that around the point x0 rank ~g1(x) = m. Let

A = {x ∈ Rn| rank ~g1(x) = m}.

On the set A there exists the feedback u = ~g−1(x)v transforming the drift-

less system to the feedback equivalent form

_x =

[
Im
h(x)

]
v.

We have γ(v, x) = (v,h(x)v). In order to reach the point 0 ∈ Rn, we need

to set v = 0. However, as far as m < n, no point of the form (0m, εei),

ei a unit vector in Rn−m, belongs to the image of the function γ. Thus,

a driftless control system satisfying the condition m < n is not feedback

stabilisable. An analogous reasoning results with a conclusion that for a

control a�ne system

_x = f(x) +

m∑
i=1

gi(x)ui

whose drift vector �eld belongs to the distribution spanned by the control

vector �elds, and the number of controls is less than the dimension of the

state space, m < n, a stabilising feedback does not exist either. The condi-

tion provided by the Theorem 13.2.1 is valid also when instead of a smooth

one takes a continuous feedback u = α(x).

The Brockett's condition appeared to be one of the milestones in control

theory, and initiated an advancement of research on the feedback control

methods that would not be impaired by this condition, such as a feedback

depending on the state and time or a discontinuous feedback, as well as

on the methods of practical stabilisation where instead of the asymptotic

error convergence one requires that the system's trajectory approached the

equilibrium point in some controlled manner.

13.3 Theorem of Lizárraga

In this section we shall study a result that plays the role of a counterpart of

the Brockett's Theorem that applies to the problem of trajectory tracking.

In order to state this result, consider a control system of the form

_x = f(x,u), (13.3)

containing a continuous function f : Rn × Rm −→ Rn such that, for a

�xed u ∈ Rm the vector �eld fu(x) = f(x,u) is smooth. We assume that
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admissible control functions u(·) ∈ U are piece-wise continuous, and that for

every control function u(·) and every initial state x0 there exists a trajectory

xu(t) = Φt(x0,u(·)) of the system (13.3). By a reference trajectory for

the system (13.3) we shall mean a trajectory yv(t) ful�lling the equation

_yv = f(yv, v) for a certain control function v(·) ∈ U. We say that the system

(13.3) has a continuous stabiliser if there exists a continuous function

u = α(x,y, v, t),

that satis�es the identity α(y,y, v, t) = v, and is such that for the trajectory

xα(t) of the time-dependent dynamic system{
_xα = f(xα,α(xα,yv, v, t))

_yv = f(yv, v)

it holds that xα(t) −→t→+∞ yv(t). The theorem presented below estab-

lishes a su�cient condition for the non-existence of a continuous stabiliser.

Theorem 13.3.1 (Lizárraga) For the decomposition of the control space into

a direct sum of two subspaces

Rm = E1 ⊕ E2

let us de�ne two collections of vector �elds

Bi = {fu : Rn −→ Rn|u ∈ Ei}, i = 1, 2,

and let B̂i(·) denote the smallest Lie algebra of vector �elds containing

Bi. Suppose that for the introduced decomposition there exist submani-

folds S1,S2 ∈ Rn satisfying the conditions:

1. Si is invariant with respect to B̂i(·), what means that trajectories

of vector �elds belonging to the Lie algebra B̂i(·), initialised in Si
stay within Si,

2. dimensions dim B̂i(p) of the spaces spanned by the vector �elds

from the Lie algebras B̂i(·) are constant at any point p ∈ Si,

3. there exists a point q ∈ S1 ∩ S2, such that the sum of subspaces

spanned by the Lie algebras B̂i(·) at this point is equal to the direct

sum of these subspaces, and is contained but not equal to the sum

of tangent spaces to the submanifolds Si

B̂1(q) + B̂2(q) = B̂1(q)⊕ B̂2(q) ( TqS1 + TqS2.
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Then, there is no continuous stabiliser for the system (13.3).

A consequence of the Theorem of Liz�arraga is that not every admissible

reference trajectory in a non-linear control system can be tracked by means

of a continuous feedback depending on the system's state, the reference

trajectory, and time. For illustration, take the chained form system
_x1 = u1

_x2 = u2

_x3 = x2u1

studied previously. The control space R2 of this system can be decomposed

into a direct sum R2 = E1 ⊕ E2, where Ei = spanR{ei}, i = 1, 2. We have

B1 =


 10
x2

 v|v ∈ R
 , B2 =


01
0

w|w ∈ R
 = E2

and, obviously, B̂i(·) = Bi. Let's choose the submanifolds S1 = S2 =

R3. Then the invariance condition is satis�ed trivially. Both the subspaces

B̂i(p), i = 1, 2 are 1-dimensional, what implies that the dimension condition

holds. Eventually, for the point q = 0 ∈ S1 ∩ S2 we have

B̂1(0) + B̂2(0) = B̂1(0)⊕ B̂2(0) = R2 × {0} ( T0S1 + T0S2 = R3.

Since all conditions of the Theorem 13.3.1 are ful�lled, the chained form

system does not have a continuous stabiliser.

13.4 Bibliographical remarks

The Brockett's condition has been formulated in [Bro83]. For tens of years

it has played a role of the spiritus movens of non-linear control theory. The

theorem of Liz�arraga comes from the paper [Liz04].
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