Scientific \& Engineering Programming

II Year Electronics and Computer Engineering, FoEPhaM, WUST

7 Mathematica Lab Class 7 - Repetere

7.1 The scope

To review the basic principles of Mathematica.

7.2 Prerequisites

Before the classes you should know, how to solve previous task lists.

7.3 Tasks

1. For matrices

$$
R_{1}=\left[\begin{array}{ccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\
0 & 0 & 1
\end{array}\right], R_{2}=\left[\begin{array}{ccc}
\cos \left(-\frac{\pi}{4}\right) & -\sin \left(-\frac{\pi}{4}\right) & 0 \\
\sin \left(-\frac{\pi}{4}\right) & \cos \left(-\frac{\pi}{4}\right) & 0 \\
0 & 0 & 1
\end{array}\right], I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

verify that
(a) $R_{1} \cdot R_{2}-I=0$
(b) $R_{1}^{T}=R_{1}^{-1}$
(c) $\operatorname{det} R_{1}=\operatorname{det} R_{2}=\operatorname{det}\left(R_{1} \cdot R_{2}\right)=1$
2. Let $p_{1}(s), p_{2}(s), p_{3}(s)$ be polynomials of the variable s with real coefficients such that

$$
p_{1}(s)=s^{3}+3 s+4, p_{2}(s)=s^{2}+1, p_{3}(s)=p_{1}(s) p_{2}(s)
$$

Compute the coefficients of $p_{3}(s)$. Determine the roots of $p_{s}(s)$ and next verify the correctness of the result.
3. Define the function $\operatorname{sum}(x)$ which for its argument being a list returns the sum of list elements.
4. Define the function sumPositive (x) which for its argument being a list returns the sum of list positive elements.
5. Define the function poly(c) which for its argument being a vector ($c_{0}, c_{1}, c_{2}, c_{3}, \ldots$) returns the polynomial of x with the vector elements taken as the polynomial coefficients: $c_{0}+c_{1} x+$ $c_{2} x^{2}+c_{3} x^{3}+\ldots$
6. Let $f(x)=(x+a)^{2}(x-b)^{3}$ where $a, b \in \mathbb{R}$. Find the extremes of this function.
7. Let $f(x)=\frac{x}{1+x^{4}}$. Plot $f(x), \frac{d f(x)}{d x}$, and $\int_{o}^{x} f(x) d x$ for $x \in[0,10]$.
8. Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x y$ and a curve K given in a parametric form

$$
K=\left\{(x, y)^{T} \in \mathbb{R} \mid x(t)=a \cos (t), y(t)=b \sin (t), 0 \leq t \leq \frac{\pi}{2}\right\}
$$

Plot $f(x, y)$ for $0 \leq x \leq 2$ and $0 \leq y \leq 2$. Plot K with $a=2$, and $b=1$. Compute $\int_{K} f(x, y) d t$, which, as it follows from calculus, can be expressed as

$$
\int_{t_{\min }}^{t_{\max }} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

9. Solve numerically (and optionally symbolically) the set of equations

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=x_{2} \\
\frac{d x_{2}}{d t}=-x_{1}-k x_{2}
\end{array}\right.
$$

Visualize the result with time plot and phase portrait (state space plot) and interpret the results for different initial conditions and values of the parameter k (large: $k \geq 2$ and small: $0 \leq k<2$).
10. Solve numerically the set of equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\sigma(y-x) \\
\frac{d y}{d t}=x(\rho-z)-y \\
\frac{d z}{d t}=x y-\beta z
\end{array} .\right.
$$

Visualize the results (time plot, state space plot, $x z$ plane) for different system parameters (start with $\sigma=10, \beta=8 / 3, \rho=28$). Examine the influence of initial conditions to the system trajectory (one may start with ($0,1,0$), what Lorenz considered :).

