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7 Mathematica Lab Class 7 – Repetere

7.1 The scope

To review the basic principles of Mathematica.

7.2 Prerequisites

Before the classes you should know, how to solve previous task lists.

7.3 Tasks

1. For matrices
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verify that

(a) R1 ·R2 − I = 0

(b) RT
1 = R−1
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(c) detR1 = detR2 = det(R1 ·R2) = 1

2. Let p1(s), p2(s), p3(s) be polynomials of the variable s with real coefficients such that

p1(s) = s3 + 3s+ 4, p2(s) = s2 + 1, p3(s) = p1(s)p2(s).

Compute the coefficients of p3(s). Determine the roots of ps(s) and next verify the correctness
of the result.

3. Define the function sum(x) which for its argument being a list returns the sum of list elements.

4. Define the function sumPositive(x) which for its argument being a list returns the sum of
list positive elements.

5. Define the function poly(c) which for its argument being a vector (c0, c1, c2, c3, . . .) returns
the polynomial of x with the vector elements taken as the polynomial coefficients: c0+ c1x+
c2x

2 + c3x
3 + . . .

6. Let f(x) = (x+ a)2(x− b)3 where a, b ∈ R. Find the extremes of this function.

7. Let f(x) = x
1+x4 . Plot f(x),

df(x)
dx , and

∫ x

o
f(x)dx for x ∈ [0, 10].
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8. Consider a function f : R2 → R such that f(x, y) = xy and a curve K given in a parametric
form

K =
{
(x, y)T ∈ R

∣∣∣ x(t) = a cos(t), y(t) = b sin(t), 0 ≤ t ≤ π

2

}
.

Plot f(x, y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. Plot K with a = 2, and b = 1. Compute∫
K
f(x, y)dt, which, as it follows from calculus, can be expressed as∫ tmax

tmin

f(x(t), y(t))
√

x′(t)2 + y′(t)2dt

9. Solve numerically (and optionally symbolically) the set of equations{
dx1

dt = x2

dx2

dt = −x1 − kx2

.

Visualize the result with time plot and phase portrait (state space plot) and interpret the
results for different initial conditions and values of the parameter k (large: k ≥ 2 and small:
0 ≤ k < 2).

10. Solve numerically the set of equations
dx
dt = σ(y − x)
dy
dt = x(ρ− z)− y
dz
dt = xy − βz

.

Visualize the results (time plot, state space plot, xz plane) for different system parameters
(start with σ = 10, β = 8/3, ρ = 28). Examine the influence of initial conditions to the
system trajectory (one may start with (0, 1, 0), what Lorenz considered :).
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