Scientific & Engineering Programming

II Year Electronics and Computer Engineering, FoE, WUST

Laboratory Class 1 – Mathematica basics

The scope

To get familiar with Mathematica interfaces, to perform basic calculations with vectors and matrices.

Prerequisites

Before the classes you should know, how to:

- define vectors and matrices manually,
- generate vectors and matrices with use of Mathematica functions (Table, Do, For)
- multiply vectors by scalars and vectors,
- multiply matrices by scalars, vectors, and matrices,
- transpose matrices, compute their determinants, inverses.

Tasks

1. For the matrices A and B compute (if possible): $3A - \frac{1}{2}B$, A^T , AB, BA, A^2 :

(a)
$$A = \begin{bmatrix} 1 & 4 \\ -2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & -6 \\ -8 & 2 \end{bmatrix},$$

(b) $A = \begin{bmatrix} 1 & -3 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & -4 & 0 \end{bmatrix},$
(c) $A = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}, B = \begin{bmatrix} -2 & 1 & 0 & 5 \end{bmatrix},$
(d) $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -2 & 0 \\ 4 & 1 \\ 0 & 3 \end{bmatrix}.$

- (e) What will change in the computation in points (b) and (c), if one represents the objects A and B as vectors?
- 2. Find the determinants of matrices:

(a)
$$\begin{bmatrix} 5 & -1 \\ 7 & -8 \end{bmatrix}$$
, (b) $\begin{bmatrix} \cos \frac{\pi}{12} & \sin \frac{\pi}{12} \\ \sin \frac{\pi}{12} & \cos \frac{\pi}{12} \end{bmatrix}$

(c) $\begin{bmatrix} 2 & 5 & 3 \\ 4 & 0 & 8 \\ 7 & 1 & 1 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & 66 & 777 \\ 2 & 55 & 888 \\ 3 & 44 & 999 \end{bmatrix}$.

- 3. Generate the following vectors:
 - (a) a vector $v \in \mathbb{R}^5$, with components increasing by 5 and starting with 11,
 - (b) 5 vectors $v_i \in \mathbb{R}^5$, $i \in [0, 4]$, with components increasing by 2 and starting with i,
 - (c) 5 vectors $v_i \in \mathbb{R}^5$, $i \in [0, 4]$, with subsequent components squared and starting with i,
 - (d) versors for R^5 ,
 - (e) normalized versions of the above,
 - (f) vectors with reversed elements order of the vectors from points 3b, and 3c,
 - (g) vectors with exchanged elements 2 and 4 of the vectors from points 3b, and 3c.
- 4. Generate the following matrices:
 - (a) null matrix of size 5x5,
 - (b) unit matrix of size 5x5,
 - (c) diagonal matrix of size 5x5 with elements $a_{ii} = i$,
 - (d) diagonal matrix of size 5x5 with elements $a_{ii} = i^i$,
 - (e) the above matrix with element a_{22} set to 7,
 - (f) the above matrix with exchanged rows 2 and 3,
 - (g) the above matrix with exchanged columns 3 and 5,
 - (h) the above matrix with the second row zeroed,
 - (i) the above matrix with zeroed the upper left submatrix of size 2x2.
- 5. For the matrices from the task 1 find their inverses when possible.
- 6. Find the determinants of square matrices $A = [a_{ij}]$ of size 5x5 $(1 \le i, j \le 5)$, if:
 - (a) $a_{ij} = i + j$,
 - (b) $a_{ij} = 2i + 3j$,
 - (c) $a_{ij} = i \cdot j$,
 - (d) $a_{ij} = i^2 j^3$,
 - (e) $a_{ij} = \min(i, j),$
 - (f) $a_{ij} = i^j$.

7. Calculate the surface area of a parallelogram constituted with two vectors $u = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$,

$$v = \begin{pmatrix} 0\\3\\2 \end{pmatrix}.$$

8. Let $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$, and $c = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ be the vectors defining a three-dimensional parallelepiped. Find its volume.