
WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF ELECTRONICS

Field: Control Engineering and Robotics (AIR)

Specialization: Embedded Robotics (AER)

MASTER OF SCIENCE THESIS

Control system for

two HOG wheel mobile robot

System sterowania robota mobilnego

z dwiema wirującymi półsferami

Author:

Jędrzej Boczar

Supervisor:

dr inż. Robert Muszyński

Grade:

WROCŁAW 2019

Streszczenie

Głównymprzedmiotempracy jest analiza procesu implementacji algorytmów sterowa-

nia robotem mobilnym na podstawie jego modelu matematycznego. Temat ten prze-

analizowany został na przykładzie robota Hogger
2
, będącego wynikiem poprzednich

prac prowadzonych na Politechnice Wrocławskiej. Robot ten, ze względu na niekon-

wencjonalny sposób poruszania się wykorzystujący dwie wirujące półsfery, wymaga

złożonych algorytmów sterowania, których implementacja nastręcza problemów nie-

spotykanych w typowych robotach mobilnych. Z tego względu, metodyka potrzebna

do implementacji sterowania poddana została wnikliwej analizie.

Praca skupia się przede wszystkim na aspektach związanych z procesem generacji

kodu źródłowego na postawie modelu matematycznego robota. Na początku przed-

stawiona została koncepcja robota Hogger
2
, wraz z jego modelem matematycznym

i algorytmami sterowania. Następnie opisane zostały teoretyczne aspekty implemen-

tacji algorytmów sterowania w systemach wbudowanych oraz samego procesu gene-

racji kodu. Powyższe informacje wykorzystane zostały do implementacji sterowania

na konkretnym przykładzie robota Hogger
2
. W ostatniej części pracy, poruszone zo-

stały dodatkowo aspekty sprzętowe związane z implementacją oraz przedstawiono

konieczne do wprowadzenia w robocie zmiany.

Contents

Contents 4

Glossary 5

1 Introduction 7

2 Hogger2 robot 9
2.1 HOG drive . 9

2.2 Two HOG wheel robot . 10

2.2.1 Full kinematic model . 10

2.2.2 Simplified kinematic model . 13

2.2.3 JPTD kinematic model . 14

2.3 Control algorithms . 15

2.3.1 Input-output decoupling and linearisation 15

2.3.2 Static feedback linearisation . 16

2.3.3 Dynamic feedback linearisation . 16

2.3.4 Samson’s algorithm . 17

2.4 Simulation results . 17

3 Code generation methodology 21
3.1 Real-time computing . 21

3.1.1 Real-Time Operating Systems . 22

3.2 Embedded systems programming . 22

3.2.1 High-level languages . 23

3.2.2 Hardware access . 23

3.3 Code generation . 23

3.3.1 Mathematica . 24

3.3.2 MATLAB . 24

3.3.3 SymPy . 25

3.4 Code optimisation . 25

3.4.1 Compiler optimisations . 25

3.4.2 Basic types of optimisation . 26

3.4.3 Data locality . 28

3.4.4 Floating-point arithmetic . 28

3.4.5 Automatic compiler tuning . 29

3.5 Code structure . 29

3.5.1 Control loop . 30

3.5.2 Generated code decomposition . 30

4 CONTENTS

3.6 Differentiation and integration . 31

3.6.1 Differentiation . 32

3.6.2 Integration . 32

4 Control algorithms implementation 35
4.1 Symbolic modelling . 35

4.1.1 Function declarations . 35

4.1.2 Function implementations . 37

4.1.3 Common subexpression elimination 37

4.1.4 C files structure . 38

4.1.5 Differentiation and integration . 38

4.2 Benchmarks . 38

4.2.1 Platforms performance . 39

4.2.2 Models performance . 42

4.3 Algorithm implementation . 43

5 Hardware analysis 49
5.1 Interaction with hardware . 49

5.1.1 Controller outputs . 49

5.1.2 Controller inputs . 50

5.2 Onboard computer . 52

5.2.1 Computing power . 52

5.2.2 Hardware interactions . 52

5.3 Necessary hardware modifications . 52

5.3.1 Existing construction . 53

5.3.2 Feedback measurement method 53

5.3.3 Microcontroller unit . 53

6 Conclusion 55

Bibliography 56

A Generated code examples 61

For typesetting this thesis, the LAT
E
X document preparation system has been

used. LAT
E
X has been developed by L. Lamport [3], and is an overlay on top

of the T
E
X system [1]. Mathematical fonts called AMS Euler which have been

used in this document, have been commissioned by the American Mathematical

Society and designed by H. Zapf [2] with the assistance of D. Knuth and his

students. The URW Palladio font, used for roman text, is a clone of H. Zapf’s

old-style typeface called Palatino [5]. Typesetting of sans-serif monospaced text

has been done using Inconsolata font, created by R. Levien [4].

[1] D. E. Knuth. The TEXbook. Computers & typesetting. Addison-Wesley, 1986.

[2] D. E. Knuth and H. Zapf. AMS Euler — a new typeface for mathematics.
Toronto: University of Toronto Press: Scholarly Publishing, 1989.

[3] L. Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1994.

[4] R. Levien. Inconsolata. url: https://levien.com/type/myfonts/inconsola
ta.html.

[5] Linotype Palatino nova: A classical typeface redesigned by Hermann Zapf. Lino-
type Library GmbH. 2005.

https://levien.com/type/myfonts/inconsolata.html
https://levien.com/type/myfonts/inconsolata.html

Glossary

ADC analog-to-digital converter

API application programming interface

BLDC brushless direct current [electric motor]

CAS computer algebra system

CPU central processing unit

CSE common subexpression elimination

DAC digital-to-analog converter

DC direct current

DSP digital signal processing

FPU floating point unit

GCC GNU compiler collection

HAL hardware abstraction layer

HOG hemisphere omnidirectional gimbaled

I2C inter-integrated circuit [bus]

IMU inertial measurement unit

MCU microcontroller unit

OS operating system

PC personal computer

PWM pulse-width modulation

RC remote control

RTOS real-time operating system

SLAM simultaneous localization and mapping

SPI serial peripheral interface

UART universal asynchronous receiver-transmitter

WUST Wrocław University of Science and Technology

Chapter 1

Introduction

The primarymotivation for thiswork has beenHogger
2
robot developed at theWrocław

University of Science and Technology (WUST). This robot is quite exceptional because

its motion is based on the concept of hemisphere omnidirectional gimbaled (HOG)

drive. Although today this drive system is almost completely forgotten, its invention

dates back to year 1938 [55]. Because of its unique properties, research on HOG drive

robots has been done at WUST [16, 20, 21, 39], as well as in other works, e.g. [1, 9].

Hogger
2
motion system has a great potential, however its capabilities come at

the cost of complicated control. As a continuation of previous research, the algorithms

developed in [21] were to be investigated and implemented in this work. In the course

of the investigation however, the complexity of control algorithms required for Hogger
2

control and the number of aspects that have to be taken into account during the pro-

cess of implementation has been realised. This led to a shift in the main subject of

this work to further investigate the methodology of the process of control algorithms

implementation in a real robotic system.

The theoretical background for designing control algorithms for mobile robots is

awide, yet already extensively covered subject. Notableworks, including [30, 42, 45, 46],

treat about solving the control task for general and special cases, providing algorithms

that perform well, even for highly nonlinear control objects. Even so, the majority of

control implementations use simple solutions that often underperform, but are easier

to implement, and as a result are chosen over more sophisticated algorithms. This

is often the case, because complex solutions require careful design and may easily

become overwhelming, when other aspects of the implementation emerge, e.g. real-

time operation and numerical precision. In majority of works, the process of algorithm

implementation is often pushed to the background or even passed over, since it is

considered trivial.

In practical applications, well established, certified systems, for instance MAT-

LAB [54] or the de facto standard in automotive industry, AUTOSAR [4], are being

used and provide powerful and convenient tools for building complex control systems

and implementing them on real hardware. One notable part of the implementation

process is the usage of tools that can generate low-level code for the target devices.

Some examples where code generation plays an important role in the implementation

process include the DC motor control laboratory stand at WUST [27] or Kugle ball-

balancing robot developed as a part of an exemplary master thesis project [19]. Then

again, in smaller projects such extensive tools may not always be of choice, bringing

8 1. Introduction

a lot of development overhead, when compared to relatively straightforward tasks that

have to be implemented.

This thesis aims to explore and describe the methodology that can be used to im-

plement standard robot control algorithms, considering the problems originating from

the uncovered complexity of seemingly simple procedures and from hardware related

issues that may be easily overlooked, when the mathematical description becomes

the primary focus area. The main field of the implementation process covered in this

work is the procedure of generating computer program code corresponding to the pre-

viously developed mathematical description. The process of code generation is often

used during the broader process of implementing a control algorithm.

The content of this work is organised in the following way. In Chapter 2, Hogger
2

robot is introduced to give a better understanding of the kind of problems that are

to be faced. The mathematical model and control algorithms developed for the robot

in previous works are outlined and the results of already performed simulations are

summarised. Chapter 3 treats about the methodology that can be used for imple-

menting control algorithms using the code generation approach, as well as it discusses

common design considerations when using embedded systems for the task of robot

control. The background introduced inChapters 2 and 3 is then applied inChapter 4 for

the specific problem of implementing Hogger
2
robot control, while describing the sub-

sequent steps of the process. In Chapter 5, the aspect of hardware required for the task

of robot control is explored and the hardware available in the existing Hogger
2
proto-

type is analysed. The final summary is presented in Chapter 6, providing some possible

directions of future work related to the issues that have been raised in this thesis.

Chapter 2

Hogger2 robot

Implementation of most control algorithms requires knowledge about the controlled

object and its mathematical model. The subject of this work is to implement control

algorithms forHogger
2
robot. The concept ofHogger

2
was already analysed inprevious

works [16, 20, 21]. This chapter summarises the findings, focussing on the aspects that

are important from the perspective of control algorithms implementation.

First, the concept of Hogger
2
robot will be discussed. Later the robot kinematic

models will be described, along with the control algorithms proposed for specific

models. Finally, the results of already performed simulations will be summarised.

This chapter includes relatively spacious mathematical expressions. For the sake

of legibility, the t argument in functions dependant on time (e.g. q(t)) will be omitted

(resulting in just q). Moreover, trigonometric functions sin(x), cos(x + y) and tan(x)

will be written in shorter form, sx, cx+y and tanx respectively.

2.1 HOG drive

Hemisphere omnidirectional gimbaled drive (HOG) is a concept dating back to the

year 1938 or even earlier [55]. A gimbal is a mechanical part that allows the rotation of

an object around a single axis [50]. HOG drive uses a spinning hemisphere mounted

on two gimbals. This makes it possible to rotate the hemisphere around the two axes

that are perpendicular to its spinning axis [51]. The concept of HOG drive has been

illustrated in Figure 2.1.

In HOG drive it is assumed, that at any point in time, the hemisphere has one con-

tact point with the ground. The linear velocity of this point determines the resulting

velocity relative to the ground that causesmovement of the vehicle. When the spinning

axis is perpendicular to the ground, the resulting linear wheel velocity is zero. Ma-

nipulating the rotation of the hemisphere allows to generate velocities in any direction.

Additionally, because the spinning movement holds substantial kinetic energy, it is

possible to convert the angular movement velocity into linear velocity in a short time,

which gives the possibility to achieve high acceleration.

10 2. Hogger2 robot

X

Y

Z

Roll

Pitch

Yaw

Figure 2.1: The concept of a HOG wheel. The hemisphere spins around Z axis and can

be rotated around X and Y axes

2.2 Two HOG wheel robot

The concept of the vehicle described in [55] assumes usage of only one HOGwheel and

two regular wheels. Based on this vision, a real robot called Hogger has been created

at WUST. The robot has been shown in Figure 2.2a and was described in [39]. This

idea is further extended in the work [20] by considering a vehicle that moves using two

HOG wheels. The vehicle has been called Hogger
2
and its prototype has been built

and then described in [15, 16]. Hogger
2
robot has been shown in Figures 2.2b and 2.2c.

Its construction overcomes the limitations caused by having regular wheels, allowing

to fully benefit from the unique properties of the HOG drive. On the other hand, such

a drive complicates the task of robot control, requiring additional coordination of the

movement of bothHOGwheels, which can be done using propermathematicalmodels.

Suchmodels havebeendeveloped forHogger
2
in [20–22] andwill be summarisedbelow.

2.2.1 Full kinematic model

As shown in [20], Hogger
2
configuration can be described using 9 variables denoting its

position and orientation in the world frame (x, y, θ0), and the angles of rotation of each

HOG wheel (ϕi, θi, ψi). The variables ψi denote the angle of the spinning movement

of a hemisphere (yaw angle) andϕi, θi are the angles of hemisphere rotation (roll/pitch

respectively). The resulting vector is denoted by

q = (x, y, θ0, ϕ1, θ1, ψ1, ϕ2, θ2, ψ2)
T
. (2.1)

The configuration variables have been illustrated in Figures 2.3 and 2.4.

The kinematic model of a nonholonomic mobile robot is described by the equation

q̇ = G(q)η, (2.2)

2.2. Two HOG wheel robot 11

(a) Hogger robot (b) Hogger
2
robot — top view

(c) Hogger
2
robot — front view

Figure 2.2: HOG drive based robots

2l

R

ϕ1 (Roll)

θ1 (Pitch)

ψ1 (Yaw)

ϕ2

θ2

ψ2

Figure 2.3: Hogger
2
hemisphere angles description

12 2. Hogger2 robot

Y

X

2l

x

y

θ0

ψ1

ψ2

ϕ1

ϕ2

θ1

θ2

2R

Figure 2.4: Hogger
2
configuration variables

where η denotes the control inputs vector, q̇ is the velocity vector in the robot configur-

ation space and G(q) is a matrix composed of generator vectors available for the given

nonholonomic constraints [46].

The kinematic model of Hogger
2
robot has been derived with the assumption of

nonholonomic constraints of no slip at the contact point of hemispherewith the ground.

Two different models have been proposed in [20], depending on the choice of the

physical meaning of control inputs vector η. The models, later referred to as Full
Models, are described by the following equations.

Full Model 1. Direct control over rotations and one spinning movement

q̇ =

Rsθ0 Rcθ0cϕ1 R (sθ0sθ1 − sϕ1cθ0cθ1) 0 0

−Rcθ0 Rsθ0cϕ1 −R (sθ0sϕ1cθ1 + sθ1cθ0) 0 0

−
Rsϕ2
2l tanθ2

−
Rcϕ1
2l

R

(
−
sθ1

sϕ2
tanθ2

+sϕ1cθ1

)
2l

Rsϕ2
2l tanθ2

Rcϕ2
2l

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
1
sθ2

0
sθ1
sθ2

− 1
sθ2

0

η. (2.3)

2.2. Two HOG wheel robot 13

Full Model 2. Direct control over both spinning movements and three rotations

q̇ =

Rsθ0 Rcθ0cϕ1 R (sθ0sθ1 − sϕ1cθ0cθ1) 0 0

−Rcθ0 Rsθ0cϕ1 −R (sθ0sϕ1cθ1 + sθ1cθ0) 0 0

0 −
Rcϕ1
2l

Rsϕ1cθ1
2l

Rcϕ2
2l

−
Rsϕ2cθ2
2l

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 sθ1 0 −sθ2
0 0 0 1 0

0 0 0 0 1

η. (2.4)

It is important to note that in Full Model 1 (2.3) the angles (ϕ1, θ1, ψ1, ϕ2, θ2) are

controlled directly (i.e. ϕ̇1 = η1, ˙θ1 = η2, . . .), while in Full Model 2 (2.4) we have direct

control over (ϕ1, θ1, ψ1, θ2, ϕ2).

2.2.2 Simplified kinematic model
Due to the complicated mathematical description of the robot movement, a simplified

model has been derived in [20]. The model uses a concept of a hypothetical steerable

wheel with variable diameter. Such a wheel can represent the HOG wheel, with the

exception that the horizontal movement of the HOG wheel mounting point caused by

hemisphere rotation is ignored. This simplification effectively transforms the model to

the case of a robot of class (1, 2).

Simplified Model (2.5) has been derived using a transformation of the configuration

variables of Full Model 2 (2.4), and uses a configuration vector

q = (x, y, θ0, θu1, ϕu1, θu2, ϕu2, ru1, ru2)
T
,

where ru1, ru2 denote the current radii of the hypothetical wheels, θu1, θu2 are the

orientations of the wheels, and ϕu1, ϕu2 are the angles of wheels’ spinning motion.

The variables in Simplified Model have been illustrated in Figure 2.5 and the control is

described by the following equation.

Simplified Model Direct control over the velocities (˙θu1, ϕ̇u1, ˙θu2, ṙu1, ṙu2)

q̇ =

0 r
u1
cθ0+θu1 0 0 0

0 r
u1
sθ0+θu1 0 0 0

0
r
u1
sθu1−θu2
2lsθu2

0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0
r
u1
sθu1

ru2 sθu2
0 0 0

0 0 0 1 0

0 0 0 0 1

η. (2.5)

When applying control derived for Simplified Model, the results must be transformed

14 2. Hogger2 robot

Y

X

2l

x

y

θ0

θu1

θu2

ϕu1

ϕu2

r
u
1

r u
2

Figure 2.5: Robot configuration in the simplified model

back to the configuration space of Full Model (2.1). In [21] two approaches have been

described: ‘offline’ and ‘online’ modes. While both approaches can be applied in sim-

ulations, the ‘offline’ mode is impractical in real-world control, because it additionally

requires simulating the simplified model operation to measure its output. When using

the ‘online’ mode, both measurement of state and application of control are done in

Full Model space and are transformed from/to Simplified Model to apply the rest of the

algorithm. The transformations between state variables of Full Model and Simplified
Model are described by the equations

ϕui = ψi

r
ui

= R
√
c2ϕi

(
s2θi − 1

)
+ 1

θui = atan

sθi
sϕicθi

,

and the inverse transformation

ψi = ϕui

ϕi = ± acos

 √
rui
2−R2

√
tan

2
θui

+1√
−R2−R2 tan2θui

+ rui
2
tan

2
θui

θi = ± asin

 rui tanθui

R

√
tan

2
θui

+1

.

2.2.3 JPTD kinematic model

JPTDalgorithm is a heuristic-based simplification ofFullModel 2 (2.4), developed in [21].

In this model, the least significant parts of the kinematic control matrix G(q) of Full

2.3. Control algorithms 15

Model 2 have been replaced with zeros. The JPTD model has proved to yield good

results in simulations, so it should be considered as potentially better suited for the

task of robot control in this particular case. The model is described by the following

equation.

JPTDModel Direct control over the velocities (ϕ̇1, ˙θ1, ˙ψ1, ˙θ2, ϕ̇2)

q̇ =

0 0 R (sθ0sθ1 − sϕ1cθ0cθ1) 0 0

0 0 −R (sθ0sϕ1cθ1 + sθ1cθ0) 0 0

0 0
Rsϕ1cθ1
2l

0 −
Rsϕ2cθ2
2l

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 sθ1 0 −sθ2
0 0 0 1 0

0 0 0 0 1

η. (2.6)

2.3 Control algorithms
Several different control algorithms for Hogger

2
have been derived in [21]. The al-

gorithms have been tested in simulations only. They will be presented below, along

with summary of simulation results.

2.3.1 Input-output decoupling and linearisation
Because all the Hogger

2
models described in Section 2.2 have 5 control inputs and 9

state variables, to apply the state feedback linearisation algorithms, first we have to use

the input-output decoupling algorithm to construct linearising output function with 5

outputs [45]. In the cases of Full Models (2.3), (2.4) and JPTDmodel (2.6) a trivial function

h(q) = (x, y, θ0, ψ1, ψ2)
T

can be used. For Simplified Model (2.5) a more sophisticated function

h(q) =

x+ d cos(θu1 + θ0)

y+ d sin(θu1 + θ0)

θu2
ru1
ru2

 (2.7)

has been chosen for the static linearisation algorithm, to avoid model singularities, and

two different trivial ones, namely

h(q) = (x, y, θu2, ru1, ru2)
T
, (2.8)

and

h(q) = (x, y, θu2, ϕu1, ϕu2)
T
, (2.9)

for dynamic linearisation.

16 2. Hogger2 robot

u = ˙hd − K(h− hd)

Feedback control

η =
(
∂h
∂q
G
)−1

u

Static linearization

q̇ = Gη

Object

h(q)

Output function

hd
u η q

h

Input-output linear submodel

Figure 2.6: Static state feedback linearisation diagram with input-output decoupling.

The submodel effectively behaves like an integrator (u is homogeneous to a velocity)

2.3.2 Static feedback linearisation

Given that the robot is modelled by the Equation (2.2), the static linearisation algorithm

works by defining new control signal

u =
d

dt
h(q) =

dh(q)

dq
G(q)η, (2.10)

resulting in a submodel that is a linear integrator when considering its input-output

relation between u and h. For such a system, a standard feedback control algorithm in

the form

u = ˙hd − K(h− hd) (2.11)

is used, with a positive definite matrix K and desired output hd. The actual control

signal for the robot can be then calculated from (2.10), obtaining

η =

(
dh

dq
G

)−1

u,

thus the algorithm cannot work, when the matrix

D =
dh

dq
G

is singular. The concept of static linearisation has been depicted in Figure 2.6.

2.3.3 Dynamic feedback linearisation

In general, the dynamic state feedback linearisation algorithm is used when static lin-

earisation cannot be applied (
dh
dq
G is singular) [45]. The algorithm works by ‘delaying’

some or all of the control inputs, by introducing additional integrators in the system.

For a system described by (2.2), a new control signal is defined,

v =
d2h(q)

dt2
= Kdd(q)u+ P(q, η), (2.12)

2.4. Simulation results 17

v = ¨hd − K1(˙h− ˙hd)

− K2(h− hd)

Feedback control

u = K−1
dd(v− P)

∫
dt

q̇ = Gη

Object

h(q)

Output function

hd
v u η

q

h

Input-output linear submodel

Dynamic linearisation

Figure 2.7: Dynamic state feedback linearisation with input-output decoupling. The

submodel behaves like a system of two chained integrators (v is homogeneous to an

acceleration)

whereu is an intermediate control signal, which is either equal to η̇, or consists partially

of elements of η̇ and partially elements of η. The matrix Kdd and the vector P are

obtained by factorization of the whole expression with relation to u. The resulting

submodel has an input-output relation of a double-integrator (in particular, it is linear).

The standard control algorithm for a system of two chained integrators is defined by

v = ¨hd − K1(˙h− ˙hd) − K2(h− hd),

where K1, K2 are positive definite matrices and hd is the desired output of the system.

The control signal obtained from (2.12) can be written as

u = K−1
dd(v− P),

where someor all elements ofuhave to be further integrated to obtainη. ThematrixKdd
must have non-zero determinant for the algorithm to work. The concept of dynamic

linearisation has been depicted in Figure 2.7.

2.3.4 Samson’s algorithm
Another algorithm used to control Hogger

2
robot is the path tracking algorithm pro-

posed in [33]. It is designed specifically for robots of class (1, 2), and as such can be

used for Simplified Model (2.5). The algorithm models the problem of path tracking

using Frenet frame and applies feedback linearisation for the model defined in such a

way. The concept of Frenet frame has been depicted in Figure 2.8.

2.4 Simulation results
Results of the simulations described in [21] have been summarised in Table 2.1. The

simultaneous model has been omitted, because it was mainly introduced to verify the

correctness of calculations. The following factors, important from the perspective of

control algorithm implementation, have been considered:

18 2. Hogger2 robot

Y

X

P(s)

P(sc)

M

yc

x

y

θc

Figure 2.8: Path tracking in Frenet frame. The path is defined by the curve P(s), M
represents the robot position and the tracking errors are denoted by yc and θc

Table 2.1: Short summary of simulation results. The numbers (1) and (2) written on

the right of each model name correspond either to the number of Full Model used, or to
the number of Full Model on which the given simplified model is based

Control signal

Model Algorithm Tracking error extrema osc. freq.

1. Full (1) static zero v. high v. high

2. Full (2) static zero v. high v. high

3. Full (2) dynamic zero v. high v. high

4. JPTD (2) dynamic small small v. low

5. Simplified (1) static, offline medium medium low

6. Simplified (2) static, offline high medium low

7. Simplified (1) static, online small medium low

8. Simplified (2) static, online small high low

9. Simplified (1) dynamic, offline small medium low

10. Simplified (2) dynamic, offline high medium low

11. Simplified (1) Samson, offline small medium v. low

12. Simplified (2) Samson, offline high high v. low

2.4. Simulation results 19

• overall trajectory tracking accuracy,

• control signal extrema values,

• control signal oscillations frequency.

Among the simulation results presented in Table 2.1, all the algorithms using Full
Model directly (1-3) are inapplicable in practice. Furthermore, algorithms 6, 10, 12 have

unacceptable tracking errors. The algorithm 8 should also be considered unpromising

due to high control signal values. The best results have been achieved using algorithm

4, while algorithms 5, 7, 9 and 11 should also be considered for application on the real

robot.

Chapter 3

Code generation methodology

Translating mathematical description of a control algorithm into code is an important

step of the process of creating the robot control system. The task of implementing the

control algorithm can be trivial, e.g. in a proportional regulator case, however for com-

plex problems writing code by hand becomes long and error-prone process. Moreover,

embedded systems often have restricted computational resources, that impose restric-

tions on algorithms’ complexity and the programming languages that can be used for

their implementation.

A common approach to implementing complex control algorithms on embedded

systems, is to develop the problem description symbolically in a computer algebra sys-

tem (CAS) and later use that description, alongwith the tools available in that symbolic

environment, to generate source code that will be incorporated into the application [8].

The actual code generation procedure is usually discussed in the documentation of the

specific environment used.

In this chapter the details of code generation process as a whole will be explored.

First, the real-time operation problems will be summarised. Then the embedded envir-

onments restrictions will be discussed, alongwith the available choice of programming

languages that can be used for implementation. The process of code generation and op-

timisationwill be described, both in general and on the example of SymPy environment.

In addition, the structure of code and integration with the rest of the application will

be considered. Finally, the issues related to numerical differentiation and integration

in real-time applications will be addressed.

3.1 Real-time computing

Real-time computing is a term which describes the software that has to meet require-

ments of a real-time system [36]. A real-time system (also: reactive system) is a system

that responds to stimuli from the environment at the speed dictated by that environ-

ment. This is contrary to transformational systems that perform only data processing,

or interactive systems, for which the interaction speed is dictated by the system itself.

It is important to note, that real-time operation is not concerned about the actual com-

putation speed, but the system predictability and strong guarantees of the response

time.

22 3. Code generation methodology

All digital control systems have natural real-time restrictions. This is due to the

process of discretization, in which it is assumed that the control and sensing happen

at regular time intervals. When the control system is not able to deliver control signals

on time, its performance degrades significantly.

The process of digital control can be divided into four main parts: A/D conversion,

computation, D/A conversion, and actuation [5]. When converting from continuous

to discrete model, it is often assumed that data processing is instantaneous, but it is

not the case in real-world scenarios. While the computation time highly depends on

the implementation details of the algorithm used, the conversion and actuation times

are usually constant and dictated by hardware. This imposes restriction on the time

of the system response. This time has to be shorter than a single control period or the

system will not be able to meet the assumed frequency of control events. Furthermore,

minimising processing time allows tominimise approximation errors due to divergence

between continuous and discrete models.

3.1.1 Real-Time Operating Systems
In its simplest definition, an operating system (OS) can be defined as a piece of software

designed to provide a level of abstraction over the hardware (e.g. input and output

devices ormemory allocation), aswell as to control the scheduling ofmultiple programs

running in parallel [52]. A real-time operating system (RTOS) is a system designed for

real-time applications. Contrary to regular OSs, RTOSs do not always provide good

hardware abstraction. RTOSs are mainly targeted at small microprocessor devices and

have to provide minimal overhead to be applicable on resource constrained systems.

Because of this, themain task of an RTOS is to control systemmultitasking and resource

sharing, adhering to the guarantees required for real-time operation [40].

Parallel operation on a single central processing unit (CPU) device can be achieved

by creating multiple ‘small programs’, called threads, that are executed one at a time,

but are frequently switched by the scheduler. The task synchronisation is commonly

implemented using queues, semaphores and mutexes [40]. These constructs allow

to avoid data-race problems that can emerge if multiple threads try to use the same

resource at the same time. [40] Multitasking provided by an RTOS can be preemptive

or cooperative. Cooperative multitasking does not allow for task preemption, i.e. a

task will never stop running until it signalises to the system that it has performed

required work and can be stopped, to allow other tasks to do their work. Most RTOSs

implement a combination of preemptive and cooperative multitasking, as it is the most

flexible approach.

3.2 Embedded systems programming
Electronic devices that perform complex algorithms are usually realised on microcon-

trollers. A microcontroller unit (MCU) is a microprocessor with peripherals that allow

it to communicate with other devices, e.g. sensors, motors. MCUs have highly re-

stricted hardware capabilities (memory, processor frequency, etc.) when compared to

desktop computers. This imposes restrictions for tools and libraries that can be used

on MCU-based devices.

3.3. Code generation 23

3.2.1 High-level languages∗

It is often convenient to write down the algorithm computations in a matrix form. Pro-

gramming languages like MATLAB or Python, that are meant for scientific computing,

provide us with concise syntax for such operations — one that reflects the way how

we would write the computations down on paper. But implementing algorithms on

embedded systems using these programming languages is often impossible. The main

problem is the size of the runtime environment that must be installed on a device with

relatively small memory, as well as the requirement of a strong CPU, because these

languages usually perform significantly slower than compiled languages, such as C.

Another problem that often arises when programming embedded systems is dy-

namic memory management. It is connected to the real-time operation requirements.

High-level languagesusuallyusegarbage collector tomanageallocatedmemory. Garbage

collector deallocates memory at unpredictable times and the user has no influence on

when garbage collection is performed, which may freeze the program execution at an

important moment. This can lead to the program missing real-time deadlines, so, to

avoid this, manual memory management should be used.

3.2.2 Hardware access
MCUs are equipped with peripherals for external communication and signal pro-

cessing. These are often difficult to configure and use. Moreover, microcontrollers

from different vendors have different hardware and require a lot of processor-specific

configuration. Developing low-level software for all the possible hardware platforms is

impractical, so vendors provide libraries, so called hardware abstraction layers (HALs),

that ease hardware configuration and allow to develop code using provided abstrac-

tions. These libraries are often available only in the C programming language, because

over the years it has become a standard in the industry.

The omnipresence of C libraries for embedded systems and the resulting lack of

support for other languages, makes it difficult to use other languages than C in em-

bedded applications, where hardware access is required. It is often inconvenient to

use HAL written in C when programming in another language, even though a lot of

languages provide dedicated bindings for integration with C. The C++ language is a

notable exception, as C code can be used directly in a C++ application.

3.3 Code generation
Many CASs have built-in tools for converting the expressions developed symbolically

into code written in another programming language. The resulting code can have

different complexity and extendability possibilities. In the process, several code optim-

∗
High level of abstraction is a relative concept and somemay consider languages on the level of C and

C++ to be high-level programming languages, relative to e.g. assembly language, because they free the

user from thinking about hardware details, such as usage of processor registers. In this work however,

the term ‘high-level programming language’ refers to languages that provide the user with features such

as automatic memory management or dynamic type deduction. The term ‘dynamic languages’ would

probably be more suitable, however the author decides to stick to the term ‘high-level programming

language’ for the rest of the work.

24 3. Code generation methodology

isations can be performed, to reduce the complexity of computations that have to be

performed during runtime.

Some popular symbolic environments for code generation will be described below.

Based on the reasons described in Section 3.2, the only considered target language will

be the C programming language.

3.3.1 Mathematica
WolframMathematica is a powerful technical computing system, which mainly targets

the area of symbolic computations [57]. Mathematica pricing depends on the usage

area, starting from£105 (or £ 55/year) for non-professional, personal usage for students.

It is widely used for computations and simulations on desktop computers, but also

offers two options for generating code for embedded platforms.

The first option is the CCodeGenerator package, which provides tools for converting

functionsdefined symbolically inMathematica intoC code. Mathematica automatically

applies optimisations to the generated functions and generates complete C source and

header files. The downside of the package is that it assumes linking the program with

Wolfram runtime libraries. This makes it hard to cross-compile the generated code for

embedded targets, although it could be possible to manually extracts parts of code that

perform the necessary computation and include themonly in the rest of the application.

The secondmethod available is the Microcontroller Kit, which is a set of tools that

provide high abstraction over hardware, allowing to easily develop complex control

applications. The greatest advantage of the package is its completeness, i.e. simple

symbolic description of the application can be converted into a complete C project,

compiled and flashed onto the device with just a few lines of code. However, this is

also its major downside, as the package supports mainly boards with ATmega32MCUs

from Arduino, Pololu and Adafruit. The lack of support for other hardware is very

limiting, especially because most of the MCUs used in the industry today have ARM

CPU cores.

3.3.2 MATLAB
MATLAB is an industrial standard numerical computing environment [54]. It offers

the Simulink package, that allows to design control algorithms visually as a system

of blocks. It also provides many additional tools, among which there are the MATLAB

Coder software for generating code in other programming languages and the Symbolic

Math Toolbox for symbolic computations and code generation. The licence pricing

starts from 35e for student licence (non-commercial usage).

The MATLAB Coder is a tool for generating C code based on numerical code written in

MATLAB language. It allows to generate portable code with no runtime dependencies,

which can be used on embedded platforms. The Simulink Coder can be used to

generate complete C applications based on visual system model. The Embedded Coder

is an additional extension, that allows for optimising the code specifically for embedded

platforms and includes much wider support for target platforms than Mathematica’s

Microcontroller Kit. MATLAB Coder is a comprehensive package for many control

applications, but it does not support symbolic expressions, so another package has to

be used instead for such cases.

3.4. Code optimisation 25

AlthoughMATLAB is primarily a numerical computation environment, it supports

symbolic computations though the Symbolic Math Toolbox. The developed expressions

can be than optimised and converted to simple C code. The generation of C using

Symbolic Math Toolbox is not as comprehensive as with the MATLAB Coder and may

require additional processing to integrate with the rest of application.

3.3.3 SymPy
SymPy is a library for the Python programming language, providing tools for per-

forming symbolic computations [32]. It is BSD licensed, so it is free for usage, even

commercial. SymPy is cross-platform and easily extensible because it is written in pure

Python. This however has negative impact on its performance, when compared to e.g.

Mathematica. To increase computation speed, the SymEngine [44] is planned to be

used as the backend for SymPy in the future, but now it covers only a subset of SymPy

functionality.

SymPy provides tools for converting symbolic expressions into codewritten in other

languages, including C. It also provides ways to simplify and optimise the expressions,

as well as to customise the generation process, e.g. by changing the floating-point types

used for variables to 32-bit, instead of the default 64-bit.

3.4 Code optimisation
Whenever code optimisation is considered, it is important to remember the famous

quote by Donald Knuth [25]:

Programmerswaste enormous amounts of time thinking about, orworrying

about, the speed of noncritical parts of their programs, and these attempts

at efficiency actually have a strong negative impact when debugging and

maintenance are considered. We should forget about small efficiencies, say

about 97% of the time: premature optimization is the root of all evil. Yet we

should not pass up our opportunities in that critical 3%.

Indeed, prematureoptimisation can causemanyproblemswhendevelopinga computer

program. However, automatic code generation is a different scenario, because most

often we do not have to maintain the actual generated code, but rather the code that

is responsible for the whole process of code generation. This results in much lower

probability of introducing human errors during the optimisation process. For this

reason, code generation is a natural phase when code optimisation should be applied.

3.4.1 Compiler optimisations
With computers becoming integral part of modern technology, programming becomes

vital for achieving high income inmany industries. This leads to constant development

of the tools that are used to translate code into CPU instructions — the compilers.

One can argue that modern compilers are among the largest software projects that

exist [31], with GNU compiler collection (GCC) having over 14.5 million lines of code

in its codebase [26]. Modern compilers incorporate an increasing number of code

26 3. Code generation methodology

optimisation techniques, making some of the optimisations that a programmer could

perform unneeded, or even undesirable — it is often better to write simpler, more

maintainable code and let the compiler optimise it.

3.4.2 Basic types of optimisation
Code optimisation is a large area of research. There are many different types of optim-

isations [3, 23], taking a look at available GCC flags [14] reveals that they all cannot be

described in this document. To provide reasonable view of what types of optimisation

can be applied, some of the basic types will be discussed below.

Local and global optimisations

Optimisations can be local or global [3]. Local optimisations are performed only on

basic blocks, i.e. parts of code with no control flow (no jump instructions). These are

fairly simple and usually provide little savings but their application is also simple and

does not take a lot of time.

Global optimisations, on the other hand, take into consideration larger blocks of

code. They usually act on whole functions. Those optimisations provide greater poten-

tial benefits, but require more computations involved, slowing down the compilation

process.

There is also another type of optimisations, called interprocedural optimisations,

that work on the program as a whole. Not all compilers support this type of optimisa-

tions. Interprocedural optimisations are applied at the end of optimisation process, and

allow to inspect complex dependencies between different parts of the program, giving

opportunity to optimisations that would be impossible without that information, but

come at the cost of even more computations required to apply them.

Compile-time evaluation

These types of optimisations, including constant folding and constant propagation,

work by identifying parts of code that can be computed at the time of compilation, i.e.

involve operations on constants [3]. An example of constant folding has been provided

below.

Before constant folding:

float a = sinf(M_PI / 2) * x;

After constant folding:

float a = 1 * x;

Common Subexpression Elimination

Common subexpression elimination (CSE) is a technique that requires analysing the

computation graph to find parts of expressions that are computed multiple times and

modifies the code, by computing them once before and storing a result in a new

temporary variable, which is then used in all the expressions [3]. The process can be

repeated recursively— different compilers have different depths of search for common

subexpressions.

3.4. Code optimisation 27

CSE can provide significant benefits, especially if the subexpressions computation

is time consuming, however sometimes, when the subexpressions can be computed

fast, it may be beneficial not to apply CSE, if this would require storing the values in

memory instead of using CPU registers.

The concept of CSE has been illustrated below.

Before CSE:

float p = sinf(a)*cosf(b) * x;

float q = -sinf(a)*cosf(b) * y;

After CSE:

float tmp = sinf(a)*cosf(b);

float p = tmp * x;

float q = -tmp * y;

Dead code elimination

This type of optimisations analyses the control flow, identifying parts of code that can

never be reached and may be safely removed [3], for example:

Before dead code elimination:

int pow2(int x) {

int y = x * 3;

return x * x;

}

After dead code elimination:

int pow2(int x) {

return x * x;

}

Loop unrolling

Loop unrolling is a technique that compensates for the time required for conditional

branch instructions in the loop condition block, which is much longer when compared

to simple arithmetical operations [3]. By rewriting loop body multiple times, the

number of tests of loop condition decreases, which can increase program performance

at the cost of increasing binary size. A loop with condition known at compile time may

even be fully unrolled, but this may lead to significant increase of program size.

Below an example of partial loop unrolling has been provided. In this example, the

number of loop condition evaluations is reduced by the factor of three.

Before loop unrolling:

int q = x;

for (int i = 0; i < 30; ++i) {

q = q * x;

}

After loop unrolling:

int q = x;

for (int i = 0; i < 30; i += 3) {

q = q * x;

q = q * x;

q = q * x;

}

28 3. Code generation methodology

Function inlining

Function calls impose significant overhead, becauseof the requirement to store registers’

contents on the stack, before jumping to the function body [3]. This is especially true

for functions performing simple operations. Function inlining works by copying the

function body directly into the places in code where it is used. This also increases

overall binary size. An example of function inlining has been provided below.

Before function inlining:

int pow3(int x) {

return x * x * x;

}

int a = 2, b = 3;

int y = pow3(a) + b;

int z = a + pow3(y);

After function inlining:

int pow3(int x) {

return x * x * x;

}

int a = 2, b = 3;

int y = a * a * a + b;

int z = a + y * y * y;

3.4.3 Data locality
Memory latency is the main bottleneck of computing these days [56]. This problem,

althoughmore important for programs that process large amounts of data, is so crucial

from the performance point of view, that it has been described shortly below.

Modern processors, even those in embedded systems, can perform multiple arith-

metic operations during the time of one memory access. This effectively means that

every time some data from memory is required, the CPU has to stall for several pro-

cessing cycles. To remedy this, computers include multi-level cache memory. Cache

memory is much faster than regular memory, but has much smaller capacity, because

it is much more expensive. It stores recently accessed data, so that the most frequently

used data can be read faster. Whole cache lines are loaded from the main memory at

once when a single access occurs, so to reduce the number of situations when the re-

quired data is not already in cache (so called ‘cache misses’), CPU should readmemory

at memory addresses that are close to each other.

3.4.4 Floating-point arithmetic
Processors can differ in the type of floating point unit (FPU) available, or they can not

have any FPU at all. In the later case, floating-point arithmetic can be implemented

using software constructs, which is done by default when using C compiler. This

however, results in much slower computations and big increase in the final binary

size. Because of this fact, on such devices fixed-point arithmetic is often used. Porting

floating-point calculations to fixed-point is a difficult topic and will not be described

here.

Many modern microprocessors, especially 32-bit ones used for implementing com-

plex mathematical algorithms, are equipped with FPU, thus it is not always necessary

to avoid floating-point. However it has to be noted, that microprocessors used in em-

bedded systems often have 32-bit FPUs, as compared to desktop computers with 64-bit

3.5. Code structure 29

precision FPUs. In C, different floating-point precisions are represented by the 32-bit

float type and the double type (so called ‘double-precision’).

An important type of optimisations consists of transforming the code written using

64-bit floating point arithmetic to 32-bit one [47]. For example, this involves the default

C standard library functions, such as sin or cos, which perform arithmetic using

double-precision floating point numbers. There exist standard library functions for

single-precision operations, having f suffix (e.g. sinf instead of sin).

After applying such optimisations the resulting precision of mathematical opera-

tions decreases, so the algorithm results have to be verified to check if the computation

errors stay in the required range. Even so, single-precision operations are generally

sufficient for most algorithms.

3.4.5 Automatic compiler tuning

As the actual number of optimisations available in the compilers is much larger that the

ones mentioned earlier, it is difficult to decide which optimisations should be enabled

for the given hardware platform and algorithms used in the application. Compilers

usually provide different optimisation levels, which combine a set of optimisations to

provide sensible defaults, which then can be further modified with other compilation

flags to selectively enable/disable optimisations.

As an example, GCC provides optimisation levels numbered from 0 to 3 (-O0 to

-O3), where 0 means no optimisations and 3 enables almost all of them. Furthermore,

there are some special optimisation levels: optimisations that do not increase resulting

binary size (-Os), optimisations that do not cause unexpected results when debugging

the program (-Og) and optimisations that do not conform to mathematical operation

standards, e.g. IEEE floating point standard (-Ofast) [14].

While the presets provided are more convenient, they may not be optimised for

a particular hardware configuration. As a solution, many techniques of automatic

compiler flags tuning have been proposed, including iterative methods with different

types of sampling of the available compilation flags space, and even machine learning

based approaches [6, 24]. These methods allow to find optimal configurations, but

require additional benchmarking, which increases development time and efforts, and

the results may not be significant enough to be worth the costs in all applications.

3.5 Code structure

A robotic system usually requires implementing multiple tasks, such as sensing, local-

isation, path planning, motor control, etc. Multiple parts of the system have to perform

a sequence of operations with delays between them, e.g. reading an inertial measure-

ment unit (IMU) might involve reading the accelerometer data, reading the gyro data,

filtering the readings and waiting appropriate time for the next reading. Furthermore,

differentmodules often require different service frequencies and often have to exchange

data between each other.

The issues mentioned above are not of concern when implementing a system with

a single task, however, thework involved into extending the system can beminimised by

30 3. Code generation methodology

implementing the task in a modular way. Modular programming is a concept of split-

ting the module interface from its implementation, which can be done in C by writing

the application programming interface (API) in header files andmoving the algorithms

implementation to source files [18]. The modules are later connected depending on

the system architecture, whether it is a bare-metal application or an OS/RTOS based

one.

3.5.1 Control loop
Control loops are a key component of many embedded systems. A typical feedback

control loop consists of three main blocks: measurement of inputs, control output

calculation and its application [5]. As described in Section 3.1, this imposes a delay

between measurement and actuation, which should be minimised to improve control

quality. Moreover, if the delay becomes noticeable, the system should be treated as

a control system with delays, which makes the control process much more complic-

ated [17] In many algorithms it is possible to calculate the output faster, by delaying

some calculations that are not required for computing the current output value, but are

used for the next value calculation. This involves some computations that update the

internal state or operations that can be precomputed before the next algorithm iteration,

e.g. calculating the next point of the desired trajectory. In such cases, the control loop

can be modified by splitting it into four parts instead of three, as shown in Figure 3.1.

In Figure 3.1b the delay Ti between measurement and actuation has been illus-

trated. In practical applications, measurement and actuationmay involve reading from

orwriting tomultiple devices. This complicates the situation evenmore, becausemeas-

urements are taken at different time moments, as well as the outputs are not updated

at the same instant. Consequently, it is important to design the control loop in such

a manner, that the time difference of different measurements/actuations is as low as

possible.

3.5.2 Generated code decomposition
It is a good programming practice to separate the code of a program into many small

functions [28]. Such an approach allows for easier code maintainability and better

code reuse. Whenever implementing a complex algorithm, the programmer should

decompose the problem into smaller subproblems, that can be tested independently.

Although this practice is so important for code written manually, it may be not

so desirable when the code is generated automatically. As the generation process is

automatic, the code does not have to be manually maintained and any changes to

the code are made on the generation algorithm instead. This questions the relevance

of algorithm decomposition, because producing bigger functions may lead to more

opportunities for code optimisation, e.g. allowing for improved application of CSE by

providing a bigger context. Moreover, generating code as a single, big procedure may

be easier, as well as it can decrease the amount of work that a programmer has to do

in order to incorporate the algorithm into the rest of the application.

On the other hand, decomposed implementation still leads to some benefits. First,

people have a tendency to make mistakes, so even if the generation process is perfectly

repeatable, there might be subtle errors in the description of the generation process

3.6. Differentiation and integration 31

Measure inputs

Calculate output

Apply output

Update state

(a) Loop steps

Time

qn qn+1 qn+2

ηn ηn+1

C CU U

Tn Tn+1

M
e
a
s
u
r
e

O
u
t
p
u
t

(b) Timing diagram (C — calculate, U — update, qi — i-th measurement, ηi —

i-th output). The delay Ti may jitter, due to other tasks scheduled in the system

Figure 3.1: Generalised control loop diagram

or in the implemented algorithm itself. Splitting the code allows for easier debugging

process and can speed up the process of code development. In addition, code split into

separate functions allows for easier timing of separate parts of the algorithm, facilitating

the process of code profiling, by allowing to easier locate the performance bottlenecks.

Apart from that, the code that has been generated, although it may not be modified,

will be easier to read and to reason about, if it is split into smaller functions.

Considering the arguments mentioned above, the final decision on selected ap-

proach has to be made depending on the specific problem, and none of the approaches

seems to be unconditionally better.

3.6 Differentiation and integration

Another problem that often emerges during implementation of control algorithm is

how to properly perform differentiation and integration operations numerically. Back-

ground information concerning this issue will be required in following chapters, so

the problem has been shortly described below.

From definition, differentiation is written as the limit [34]

d

dx
f(xi) = lim

h→0

f(xi + h) − f(xi)

h
,

32 3. Code generation methodology

while integration is defined by the Riemann integral as [34]∫xf
x0

f(x)dx = lim

n→∞
n∑
i=1

f(xi)h,

xi = x0 + ih,

h =
xf − x0
n

.

Of course in practice it is impossible to achieve h value which is infinitely close to

zero. Even more, for discretely sampled data points, h is equal to the sampling period.

Because of this, different estimation methods for calculating derivatives and integrals

exist [34].

3.6.1 Differentiation

The simplest algorithm for differentiation is the finite difference approximation [34].

There are three variants of this algorithm: forward, backward and central differences.

The only one that is applicable for an online algorithm (not having knowledge of future

measurements) is backward difference, which leads to a simple derivative approxima-

tion defined as

∇hf(xi) =
f(xi) − f(xi − h)

h
,

for some small h.

The differentiation operation is very sensitive to input noise, because high frequen-

cies are amplified. To illustrate this, take for example a derivative of a sine wave with

an angular frequencyω:

d

dx
sin(ωx) = ω cos(ωx).

As can be seen, the resulting differentiated signal is a phase-shifted input signal, ampli-

fied by the value of frequencyω. This property can have negative impact on the control

algorithmperformance in presence of high frequency noise. In order to reduce the noise

influence, it is common to use filters to smooth the differentiated signal. These could

be standard IIR or FIR filters [43], or a more sophisticated statistical-based estimation

approach, e.g. Kalman filter [42]. Unfortunately, applying filters introduces a phase lag

relative to the real value of the estimated derivative, so the filtering strength should be

balanced.

3.6.2 Integration

Simple method for numerical integration is quadrature integration [34]. In this method

the integrated function is interpolated using polynomial functions, usually of low

degree. In the simplest case a constant function (polynomial of degree zero) can be

used. This method is called rectangle rule, and is defined by

Fn = Fn−1 + fnh,

3.6. Differentiation and integration 33

where Fi denotes i-th value of the calculated integral, fn is the current value of the in-

tegrated function, and h is the sampling period.

A simple, yet effective improvement to this method is to use a polynomial of degree

one. The method (called trapezoidal rule) can be written as

Fn = Fn−1 +
fn + fn−1

2
h.

Similarly, polynomials of higher degrees can be used, e.g. of second degree (Simpson’s

rule), but in practice the accuracy improvementsmay be unnoticeable due to insufficient

measurements precision.

Chapter 4

Control algorithms implementation

After designing the mathematical background for a control algorithm, it is necessary

to implement it in a programming language on a target device. This step is often con-

sidered as a trivial task and overlooked, which may introduce errors in the implement-

ation or lead to design decisions that canmake future extensions of the implementation

difficult.

In the previous chapters we have introduced the background essential for imple-

menting control algorithms for Hogger
2
robot. Chapter 2 described Hogger

2
along

with the model and the control algorithms derived for this robot in [21]. In Chapter 3

the background of code generation process have been explained, providing choice of

tools that can be used for generating and optimising the control algorithms. In this

chapter the specific problem of implementing control algorithms for Hogger
2
will be

discussed. First, the implementation of control algorithms for Hogger
2
will be presen-

ted. The SymPy CAS, which has been described in Subsection 3.3.3, will be used for

the code generation process. The algorithms will be implemented in C programming

language. The choice of the language has already been explained in Subsection 3.2.1.

Finally, the results of performance benchmarks of the developed implementation will

be shown and discussed.

4.1 Symbolic modelling
The first step in the Hogger

2
control algorithms implementation is to convert the math-

ematical description of the robot into scripts in a CAS. For this purpose, the SymPy

system introduced in Subsection 3.3.3 has been used.

The kinematic models described in Section 2.2 have been implemented symbolic-

ally in SymPy. To verify the correctness of the implementation, Full Model 1 and Full
Model 2 have been tested if they satisfy the nonholonomic constrains of Hogger

2
robot

described in [20]. Given the models, the static and dynamic linearisation algorithms

have been implemented using the methods shown in Section 2.3. Finally, all the calcu-

lated expressions have been simplified using the methods provided by SymPy library.

4.1.1 Function declarations
Considering arguments presented in Subsection 3.5.2, the decision of decomposing

the control algorithms into separate functions has been taken. The main reason for

36 4. Control algorithms implementation

such a decision was to be able to easily benchmark the performance of different parts

of the algorithm.

The decomposition has been based on the diagrams shown in Figures 2.6, 2.7. Each

block in the diagrams has only one (vector) output. Since in C language we have to

represent vectors and matrices as arrays and it is impossible to return an array from

a function without using dynamic memory allocation, the following convention has

been used for the functions that have to return vector outputs: the first argument of

each function is used as the output argument and all the following arguments are used

as inputs and are not modified. The functions do not return any value, so their return

type is void∗. Additionally the functions for calculating thedeterminants of thematrices

that are being inverted during the algorithms have been generated. Providingmeans of

checking the determinants is important, because control algorithmwill fail at the points

of singularities and itmaybenecessary to switch to another algorithmor to usemethods

dedicated to avoiding singularities.

SymPy code generation does not allow to generate code of whole C functions, it

is only possible to generate the expressions that can be used inside the function body,

however it is not an issue. In fact, it is beneficial, because it allows the user to fully

control the interface used in the application and make the order of function arguments

fixed. For each model the following functions have been generated:

Static linearisation (Figure 2.6)

void feedback_u(float u[5], const float K[25], const float h[5],

const float hd[5], const float d_hd[5]);

void static_lin_eta(float eta[5], const float u[5], const float q[9]);

float static_lin_det_D(const float q[9]);

Dynamic linearisation (Figure 2.7)

void feedback_v(float v[5], const float K1[25], const float K2[25],

const float h[5], const float d_h[5], const float hd[5],

const float d_hd[5], const float d2_hd[5]);

void dynamic_lin_u(float u[5], const float v[5], const float eta[5],

const float q[9]);

float dynamic_lin_det_Kdd(const float q[9], const float eta[5]);

∗
A function in a programming language is not understood the same as in mathematics, because

it usually can have side effects or can modify its input arguments. This however is not the case in

the situation discussed here, so all the generated functions are what is referred to as ‘pure functions’

in programming theory. And because the functions created in the generation process do not have any

constrains on their domain, they can never fail, so their return type can be left void.

4.1. Symbolic modelling 37

The chosen naming conventionwas to specify the output of the block represented by

a function as the postfix on the function name. The naming of the variables corresponds

to the one used in mathematical description. Greek letters have been replaced with

their English names and a prefix have been used to represent derivatives (d_ for first

derivative, d2_ for the second derivative, etc.).

Additionally, two functions for conversion between the configuration variables of

Full Models and Simplified Model have been defined as:

void full_to_simplified(float q_simp[9], const float q_full[9]);

void simplified_to_full(float q_full[9], const float q_simp[9]);

4.1.2 Function implementations
The documentation of code generation in SymPy is not extensive, but helpful materials

can be found in [10]. The main function for generating C code in SymPy is the ccode

function. Its basic usage is relatively simple, however the whole generation process

in SymPy is not as straightforward as it could be. There are some minor problems that

have to be addressed.

First, the C language does not have a native construct for manipulations onmatrices

and vectors, thus all the calculations have to be performed element by element. Fortu-

nately, SymPycangenerate code in thatmanner if anoutput symbol of typeMatrixSymbol

is passed to the ccode function through the assign_to argument. The MatrixSymbol is

a placeholder for a matrix and proper dimensions have to be specified.

Second problem that emerged is that the robot configuration variables have been

used in all the equations using their direct names, i.e. x, y, θ, etc. Consequently,

the function would require passing all the nine state variables as separate arguments

(and doing the same for other input vectors), which would not be convenient, nor effi-

cient. To remedy this, a custom code printer class had to be implemented. The ccode

function is in fact a wrapper around CCodePrinter class. SymPy allows to derive from

this class to easily extend the printing process. In this way the printer has been ex-

tended by providing a set of mappings that would cause replacing variable names

with indexing operations on the provided vector, e.g. transforming the expression x

into q[0]. The code printer has been configured in single precision floating mode, for

the reasons described in Subsection 3.4.4.

4.1.3 Common subexpression elimination
The CSE optimisation has been described in Subsection 3.4.2 while talking about com-

piler optimisation techniques. As mentioned, modern compliers can perform this type

of optimisation, e.g. GCC does this by default at -O2 optimisation level. That being

said, CSE performed by the compiler does not always achieve complete elimination

of common subexpressions. This will be later seen in Section 4.2 when the results of

benchmarks will be presented.

To increase the performance of the generated code, CSE can be performed using

SymPy library. The SymPy function cse performsCSE on the expression tree, returning

a list of substitutions in their required declaration order, along with the resulting

38 4. Control algorithms implementation

simplification of the original expression. After performing the optimisation, the code

of the subexpression declarations can be generated before the code of the final result

calculation, by creating appropriate variables local to the generated function. Code

generated in such a way is still subject to compiler optimisations, which in turn may

lead to the compiler inlining some of the previously generated local variables into

the final expression, effectively reverting the CSE process. However, if this is the case,

than most probably such operation will provide performance benefits for the given

CPU. As a result, the CSE performed symbolically in SymPy can aid the complier

in the process of optimisation, but if needed, the compiler can easily revert the CSE

in appropriate places.

4.1.4 C files structure
The generated functions have been organised into standard C header-source file pairs,

e.g. dynamic_lin.h/dynamic_lin.c for thedynamic linearisation algorithm. Theheader

exposes the interface to be used in the application through the function declarations

and includes all the necessary libraries, namely the standard C maths library (through

the <math.h> header). An additional header file robot_parameters.h has been gen-

erated and included in all the files. It contains the value of the radius R of robot

hemispheres, the distance l between their centres and, for static linearisation of Simpli-
fied Model, the distance d used in the linearising output function h(q).

4.1.5 Differentiation and integration
As can be noticed, during the code generation process no functions for integration or

differentiation have been generated. There are two reasons for this decision.

First of all, in a general case we cannot know what data concerning the robot will

be available for direct measurement. While most often the position is being meas-

ured directly, it may also be the case that, for some of the state variables, velocity

will be measured directly instead. Considering this factor, only general routines for

differentiation and integration should be provided, which can be then used to finalise

the control algorithm implementation by executing these routines on the measured

data appropriately.

Another reason for separating the implementation of differentiation and integra-

tion is that multiple problems emerge when performing these operations numerically.

There are differentmethods that allow for increasing precision of differentiation and in-

tegration. Some of the methods have been introduced in Section 3.6. More information

on this subject can be found in [34].

4.2 Benchmarks
Compared to algorithms designed for typical mobile robots, like these of class (2, 0), the

control algorithms developed for Hogger
2
are complex. Because of this fact, the time

required for computations is of concern. To estimate the required hardware capabilities,

appropriate benchmarks had to be performed. The benchmarks have been divided into

two stages. In the first part, the relative performance on three different platforms have

4.2. Benchmarks 39

Table 4.1: Naming convention used in benchmark results plots. Function names cor-

respond to the names defined in Subsection 4.1.1

Function name In-plot name

feedback_u Static u

static_lin_eta Static η

static_lin_det_D Static det(D)

feedback_v Dynamic v

dynamic_lin_u Dynamic u

dynamic_lin_det_Kdd Dynamic det(Kdd)

full_to_simplified Full→ Simplified

simplified_to_full Simplified→ Full

been compared. Later, the time complexity of different models and control algorithms

have been tested in details.

The tests have been performed for the algorithms of static and dynamic feedback

linearisation described in Section 2.3, using the models listed in Section 2.2. In each

test case the time taken by each function for an input consisting of random data has

been measured. Special compiler directives have been used to disable optimisations

that could be performed due to unused function results. Because the time taken

by the benchmarked functions may be small (relative to available timing methods

resolution), on some hardware platforms the time was measured for several function

calls and thendividedby thenumber of calls. Furthermore, thewholeprocedureof time

measurement was repeated multiple times to compute the mean value and estimate

the standard deviation using Welford’s online algorithm [48]. The algorithm has been

chosen due to limitedmemory on some of the devices used. The overhead of the timing

procedures have been measured using an empty function call and subtracted from

the final results. All the results presented later have been compiled using the -O2

GCCoptimisation level. The results naming convention has been described in Table 4.1.

4.2.1 Platforms performance
In this stage, the performance of the algorithms forFullModel 1 andFullModel 2has been
compared on different hardware platforms. The benchmarks have been run on three

devices: personal computer (PC), Raspberry Pi microcomputer and STM32 Cortex-M

microcontroller. Details of the platforms along with C compiler versions have been

described in Table 4.2.

The results of the benchmarks have been presented in Figures 4.1, 4.2 and 4.3.

As expected, the most time consuming functions are the functions static_lin_eta

and dynamic_lin_u, responsible for the process of linearisation of control signals.

The presented results show that the performance difference between the implement-

ations with and without applying CSE is significant. The relative difference in calcu-

lation time is the largest for dynamic linearisation function. This function is the most

40 4. Control algorithms implementation

Table 4.2: Hardware platforms used for benchmarks

PC

Operating system: Linux, kernel version: 4.19

C compiler: gcc (GCC) 9.1.0

Processor: Dual Core Intel Core i5-5200U, 2.2GHz

Raspberry Pi

Operating system: Linux, kernel version: 4.14

C compiler: gcc (Raspbian 4.9.2-10+deb8u2) 4.9.2

Processor: Broadcom BCM2835, ARM1176JZF-S, 1GHz

STM32

Operating system: none

C cross-compiler: arm-none-eabi-gcc (Arch Repository) 9.1.0

Processor: STM32F407, ARM Cortex-M4, FPU, 168MHz

Static

u
Static

η
Static

det(D)
Dynamic

v
Dynamic

u
Dynamic

det(Kdd)

Function

0

100

200

300

400

500

T
i
m
e
[
n
s
]

Model

Full 1

Full 1 CSE

Full 2

Full 2 CSE

Figure 4.1: Benchmarks results on PC. Computed for 100 000 function calls measuring

time after each 100 calls. Black bars represent standard deviation of measurements.

Function naming convention has been described in Table 4.1

4.2. Benchmarks 41

Static

u
Static

η
Static

det(D)
Dynamic

v
Dynamic

u
Dynamic

det(Kdd)

Function

0

2

4

6

8

T
i
m
e
[
u
s
]

Model

Full 1

Full 1 CSE

Full 2

Full 2 CSE

Figure 4.2: Benchmarks results on Raspberry Pi. Computed for 100 000 function calls

measuring time after each 100 calls. Black bars represent standard deviation of meas-

urements. Function naming convention has been described in Table 4.1

Static

u
Static

η
Static

det(D)
Dynamic

v
Dynamic

u
Dynamic

det(Kdd)

Function

0

100

200

300

400

500

600

T
i
m
e
[
u
s
]

Model

Full 1

Full 1 CSE

Full 2

Full 2 CSE

Static

u
Static

η
Static

det(D)
Dynamic

v
Dynamic

u
Dynamic

det(Kdd)

0

5

10

15

20

Model

Full 1 CSE

Full 2 CSE

Figure 4.3: Benchmarks results on STM32. Computed for 1000 function calls measuring

time after each call. Black bars represent standarddeviation ofmeasurements. Function

naming convention has been described in Table 4.1. For clarity, the two benchmarks

with CSE optimisation applied have been presented separately in the subplot

42 4. Control algorithms implementation

complex one, and so the optimisation algorithm finds many opportunities to extract

common subexpressions. The performance gain is the largest on the STM32 device (up

to time decrease by 96.4% for Full Model 1). This may be caused by higher relative time

cost of evaluating trigonometric functions on this device, however the exact reasons

may be more complicated and have not been investigated.

The standard deviation values seen in the plots and their relevance to real-time

behaviour have to be addressed. These values are so high for PC and Raspberry Pi

due to the method of time measurement used on these devices. The tested functions

computation time is very short relatively to timer resolution on these machines, even

though the time has been measured after more than one function call. Besides this, the

time cannot be measured precisely because the operating systems are not real-time, i.e.

at anymoment the systemmay interrupt the process introducing unpredictable delays.

In addition, an OS can often change the CPU frequency, which may be another source

of the measurements inconsistency. Despite the fact that the measurements are not

precise, they show the order of time required for computations. On the other hand,

the time measured on the microcontroller is precise up to single processor cycles. This

is because there is no OS, which means that nothing can interrupt the measurement.

Also, the ARMCortex-M core includes a built-in CPU cycles counter that has been used

to measure time with single CPU cycle resolution.

What is the most important, the results of benchmarks proved that it is possible

to achieve computation times below 1 millisecond on the STM32F4 microcontroller,

even without applying CSE. Consequently, there is no need to seek for more powerful

CPUs if the control algorithm is the only computationally expensive task that will be

performed.

4.2.2 Models performance
This part of measurements have been performed on the STM32 MCU only. The overall

time complexity of the static and dynamic linearisation algorithms have been tested

for all the models presented in Section 2.2. The results have been shown in Figures 4.4

and 4.5. A few interesting details can be read from the presented plots.

First, the actual performance of SimplifiedModel ismuchworse than the performance

of other models due to very high cost of computing the transformations of configur-

ation variables, even though the linearisation time is relatively low. Of course this

does not mean that the simplification may not give better control results then other

models, this only shows that the computational cost of using Simplified Model will be

higher. Nevertheless, it may be possible to reduce the total computation time by in-

corporating the conversions directly in the linearisation function, which may increase

the possibilities of applying CSE.

Second, it can be seen that the time taken by the feedback calculation function for

Simplified Model, shown in Figure 4.4, is unusually high. This is caused by the non-

trivial linearising function h(q) (Equation (2.7)) that had to be chosen to avoid singular

linearisation matrix D.

Finally, an interesting result can be seen in Figure 4.5 for the JPTD Model. As

described in Subsection 2.2.3, the model is a simplification of Full Model 2 by setting

appropriate expressions in the matrix G(q) to zero, hence the computation time in this

case, without applying CSE, is lower than for Full Model 2. However, when the CSE

4.3. Algorithm implementation 43

0 20 40 60 80 100

Time [us]

Full 1

Full 1 CSE

Full 2

Full 2 CSE

Simplified

Simplified CSE

M
o
d
e
l

Function

Static u

Static η

Static det(D)

Full→ Simplified

Simplified→ Full

Figure 4.4: Benchmarks results on STM32 for the static linearisation algorithm. The plot

shows cumulative times and per-function times for different models. The results for

Simplified model include additional state conversion times

is applied, the performance gain is much bigger for the original Full Model 2, and as

a result, the JPTD Model calculation end up being actually slower. This phenomenon

must be attributed to the fact that, because of the modification of the matrixG(q), some

trigonometric expressions cannot be simplified, which results in some tanf evaluations

that do not exist in Full Model 2†. In fact, after applying CSE there are 4 tanf, 5 sinf

and 5 cosf evaluations in JPTD Model, and only 2 tanf, 5 sinf and 5 cosf evaluations

in Full Model 2. For completeness, without applying CSE the counts are: 116 sinf,

164 cosf, 2 tanf for Full Model 2 and 70 sinf, 64 cosf, 20 tanf for JPTD Model.

4.3 Algorithm implementation
When the functions that implement different blocks of the control algorithms have been

generated, they have to be connected in a computer program that realises the task of

robot control. The controller program has to perform the same set of operations in reg-

ular intervals, as has been previously shown in Figure 3.1. The control loop can be split

into a repeated sequence of actions, where the most natural starting operation seems to

be measurement, and as such a sequence can be implemented as a function/procedure

in a programming language.

An important part of implementing algorithms in a computer program is to identify

the persistent state, i.e. the state that has to be preserved between subsequent iterations.

This is important, because in each iteration of a stateful algorithm data from previous

iterations has to be used and an initial state has to be provided before first iteration.

†
Note however, that symbolic simplification has been performed in both test cases, only the CSE

algorithm has not been applied in one of them.

44 4. Control algorithms implementation

0 50 100 150 200 250

Time [us]

Full 1 CSE

Full 2

Full 2 CSE

Full 2 JPTD

Full 2 JPTD CSE

Simplified (ϕ)

Simplified (ϕ) CSE

Simplified (r)

Simplified (r) CSE

M
o
d
e
l

Function

Dynamic v

Dynamic u

Dynamic det(Kdd)

Full→ Simplified

Simplified→ Full

Figure 4.5: Benchmarks results on STM32 for the dynamic linearisation algorithm.

The plot shows cumulative times and per-function times for different models. Full
Model 1 without CSE has been omitted, as it takes 640µs. The results for Simplified
model include additional state conversion times. Two SimplifiedModels have been tested,

depending on the choice of output function h(q) — either from Equation (2.8) with

direct radii control ‘Simplified (r)’ or from Equation (2.9) with control over ϕ angles

‘Simplified (ϕ)’

The state storage in a computer program can be implemented using global variables,

variables local to a module, a structure or an object, depending on the programming

style used.

The implementations of both static and dynamic linearisation are analogous, how-

ever the case of dynamic linearisation is more complex, so it will be used here for

demonstration purpose. An example implementation of dynamic linearisation has

been show using pseudocode in Algorithm 1. The pseudocode consists of three main

parts:

parameters describe the values that do not change in every iteration (and, most likely,

are constant throughout the whole operation of the program),

persistent state represents the variables required and modified in each iteration of

the algorithm,

function describes the order of operations performed in each iteration; divided into:

local variables describes the variables required for the scope of one iteration,

procedures further decomposition of the performed operations corresponding

to the steps shown in Figure 3.1a.

The types of variables have been provided as arrays of floating point values, e.g.

‘η[n] :: float[5]’ denoting an array of 5 floating point values. Each variable is used

4.3. Algorithm implementation 45

Algorithm 1: Straightforward implementation of dynamic linearisation

parameters
K1 :: float[25]

K2 :: float[25]

persistent state
h[n] :: float[5]

h[n−1] :: float[5] » for computing the 1st derivative
hd[n] :: float[5]

hd[n−1] :: float[5] » for computing the 1st derivative
˙hd[n−1] :: float[5] » for computing the 2nd derivative
η[n] :: float[5] » for integration of u

function ControlStep(∆t)

local variables
q[n] :: float[9]

˙h[n] :: float[5]

˙hd[n] :: float[5]
¨hd[n] :: float[5]

v[n] :: float[5]

u[n] :: float[5]

η̇[n] :: float[M],M ∈ {1, . . . , 5} » depending on the model used
procedure MeasureInputs

q[n] ←measure_q()

» linearising output
h[n−1] ← h[n] » shift sample numbers
h[n] ← calculate_linearising_output(q[n])

» trajectory generation
hd[n−1] ← hd[n] » shift sample numbers
hd[n] ← calculate_next_trajectory_point(∆t)

procedure CalculateOutput

» derivatives calculation
˙h[n] ← differentiate(h[n], h[n−1], ∆t)
˙hd[n] ← differentiate(hd[n], hd[n−1], ∆t)
¨hd[n] ← differentiate(

˙hd[n], ˙hd[n−1], ∆t)
˙hd[n−1] ← ˙hd[n]

» control algorithm
v[n] ← feedback_v(K1, K2, h[n],

˙h[n], hd[n], ˙hd[n], ¨hd[n])

u[n] ← dynamic_lin_u(v[n], η[n], q[n])

» integration of some or all of the elements of u
η̇[n] ← u[n] » take the elements of u that have to be integrated
η[n] ← u[n] » take the elements of u that do not have to be integrated
η[n] ← integrate(η[n], η̇[n], ∆t) » integrate derivatives of η

procedure ApplyOutput

η[n] ← prepare_output(η[n]) » output saturation, optional filtering
apply_control(η[n])

46 4. Control algorithms implementation

to store value of some vector from an iteration relative to the current iteration number.

This has been shown using a suffix, e.g. h[n−1] corresponds to the value of linearising

output at previous iteration (n is the current iteration). Assignments has been written

symbolically using the ← operator, while the syntax ‘function(arguments)’ denotes

a call to a function that uses the values of arguments as its inputs and possibly returns

an output.

Algorithm 1 corresponds to the diagram shown in Figure 2.7. The required persist-

ent state has been identified based on the analysis of implementation of ControlStep—

simply, the values that are used before assignment during one iteration have to be saved

between subsequent iterations. The algorithm is a sequence of operations and function

calls. Some of the functions used are the generated functions, as described in Sub-

section 4.1.1 and the remaining functions have to be manually implemented. The in-

tegration and differentiation functions have been assumed to use simple algorithms of

backward difference and quadrature integration with the rectangle rule, as described

in Section 3.6. Using other algorithms may require storing additional state and adding

additional function arguments to integration and differentiation calls. The implement-

ation of integration requires modifications depending on the dimension of η, which

in turn depends on the robot model used. Because of this the integration has beenwrit-

ten in a simplified way, not to complicate the pseudocode. In addition, the following

functions have to be implemented:

measure_q collects the values of robot configuration variables, involving measuring

motor angles and robot global position; somevaluesmaybe calculatedusing other

program modules (e.g. localisation module) and some may use their previous

values if they cannot be measured with the required frequency,

calculate_linearising_output applies the linearisingoutput functionh(q), asdescribed

in Subsection 2.3.1,

calculate_next_trajectory_point calculates the desired value of h at the current time

instant; the function should internally track current time if the trajectory is defined

using analytical functions or it could implement calculation of newhd value based

on control provided by the user using a controller device,

prepare_output saturates the control signal to an appropriate range depending on

the physical construction of the robot to avoid damaging the motors; this can also

involve optional filtering of output to avoid rapid acceleration that could damage

the motors,

apply_control sends the values of control signals to robot actuators (motors/motor

drivers).

As can be noticed, Algorithm 1 does implement only three of four steps shown

in Figure 3.1a. Careful analysis of the algorithm allows to identify operation that can be

moved to the end of the ControlStep function in order to decrease the delay between

measurement of inputs and applying calculated controls. Most notably, the calculations

of trajectory could be moved to the end of the function to calculate the values for

4.3. Algorithm implementation 47

the next iteration
‡
. Apart from this, the shifting of some of the values from current

sample to the previous one can be done at the end of the function. Algorithm 2

shows a version of the implementation optimised for minimising the time between

measurement and actuation. Although in this case the performance improvementsmay

not be noticeable when compared to the time taken by other operations, in some case

such an algorithm timing optimisation procedure can lead to significant improvements.

This example implementation may be further modified. For instance, it is possible

to implement an algorithm that combines both static and dynamic linearisation, by first

computing the determinant det(D), and, depending on whether its value is close to

zero or not, the dynamic or static linearisation algorithm can be used correspondingly.

‡
It is the case only if the trajectory is known beforehand, so this optimisation cannot be applied if

the trajectory is defined by the signal from controller device operated by the user (e.g. a joystick).

48 4. Control algorithms implementation

Algorithm 2: Dynamic linearisation implementation optimised for response time

parameters
K1 :: float[25]

K2 :: float[25]

persistent state
h[n−1] :: float[5] » for computing the 1st derivative
hd[n] :: float[5]
˙hd[n] :: float[5] » for precalculation of trajectory
¨hd[n] :: float[5] » for precalculation of trajectory
hd[n−1] :: float[5] » for computing the 1st derivative
˙hd[n−1] :: float[5] » for computing the 2nd derivative
η[n] :: float[5] » for integration of u

function ControlStep(∆t)

local variables
q[n] :: float[9]

h[n] :: float[5]

˙h[n] :: float[5]

v[n] :: float[5]

u[n] :: float[5]

η̇[n] :: float[M],M ∈ {1, . . . , 5} » depending on the model used
procedure MeasureInputs

q[n] ←measure_q()

h[n] ← calculate_linearising_output(q[n])

procedure CalculateOutput

˙h[n] ← differentiate(h[n], h[n−1], ∆t)

v[n] ← feedback_v(K1, K2, h[n],
˙h[n], hd[n], ˙hd[n], ¨hd[n])

u[n] ← dynamic_lin_u(v[n], η[n], q[n])

» integration of some or all of the elements of u
η̇[n] ← u[n] » take the elements of u that have to be integrated
η[n] ← u[n] » take the elements of u that do not have to be integrated
η[n] ← integrate(η[n], η̇[n], ∆t) » integrate derivatives of η

procedure ApplyOutput

η[n] ← prepare_output(η[n]) » output saturation, optional filtering
apply_control(η[n])

procedure UpdateState

» precompute future trajectory
hd[n−1] ← hd[n]
hd[n] ← calculate_next_trajectory_point(∆t)
˙hd[n] ← differentiate(hd[n], hd[n−1], ∆t)
¨hd[n] ← differentiate(

˙hd[n], ˙hd[n−1], ∆t)
˙hd[n−1] ← ˙hd

» save current linearising output value as the previous one
h[n−1] ← h[n]

Chapter 5

Hardware analysis

The primary objective of this work is to design a robot controller that could be im-

plemented on the actual robot. The methodology for controller implementation has

already been shown from software perspective, however some unwritten assumptions

made about the capabilities of the underlying robot hardware. To complete Hogger
2

robot control considerations, the hardware required for the implementation has to be

analysed.

In this chapter hardware required for Hogger
2
robot control will be analysed using

the existing robot prototype [16] as the reference. An overview will be provided first,

describing the theoretical aspects of hardware interaction from software perspective.

Following, the basis for determining the onboard computer requirements will be out-

lined. Finally, the necessary modifications to the existing Hogger
2
prototype will be

described.

5.1 Interaction with hardware
It is helpful to consider hardware requirements from the perspective of the mathemat-

icalmodel developed for the robot. Thismethod allows to identify the input and output

operations that have to be implemented in software, which leads to the hardware that

has to exist in the robot.

The robot configuration vector that corresponds to Hogger
2
construction is the one

used in Full Model 1 and Full Model 2, and shown in Equation (2.1). The configuration

can be split into two parts: the global position and orientation of the robot (x, y, θ0),

and the internal angles of motor rotations (ϕ1, θ1, ψ1, ϕ2, θ2, ψ2). The angles can

be further split into hemispheres rotation angles (ϕ1, θ1, ϕ2, θ2) and the angles of

hemispheres spinning movements (ψ1, ψ2).

5.1.1 Controller outputs
Identification of controller output is a straightforward task. The controller output

vector η is defined by the Equations (2.3) and (2.4), and is homogeneous to a velocity.

While the global velocity (ẋ, ẏ, ˙θ0) of the robot are controlled indirectly, we have to be

able to control the velocities of all of the other 6 configuration variables.

In the Hogger
2
prototype (see [16] and Figures 2.2b, 2.2c), servo motors have been

used to control the variables (ϕ1, θ1, ϕ2, θ2), and for the variables (ψ1, ψ2) brushless

50 5. Hardware analysis

direct current (BLDC)motors have been used. It has to be noted that the standard BLDC

motor controllers control the velocity by default. On the other hand, servomechanisms

most often take position as their control input, and so the values obtained in control

algorithm output ηmay have to be further integrated to obtain the position values. This

also generates another problem, that is, the velocities in η cannot be higher that those

stated in servo specifications, and, while this is also true for BLDCmotors, the velocities

of servo motors are often relatively low, which has to be considered.

5.1.2 Controller inputs
The subject of robot statemeasurements is muchmore complicated. In general in a con-

trol algorithm we have to be able to measure the whole robot configuration vector q.

Analysing the diagrams in Figures 2.6 and 2.7, we can see that this is true. Even though

some blocks in the algorithm require only the vector

h(q) = (x, y, θ0, ψ1, ψ2)
T
, (5.1)

which itself does not contain all elements of q, the matrices
δh
δq
G, Kdd and the vector P

depend on other elements of q. Detailed analysis of the expressions shows that for

both full models, the linearisation blocks always uses the variables (θ0, ϕ1, θ1, ϕ2, θ2),

and the rest of q can be found in Equation (5.1).

Global position

Global positioning aims to estimate the position of the robot in an external reference

frame. This can be achieved either using dead reckoning or global localisation meth-

ods [29].

Dead reckoning is the most convenient methods in the sense that the localisation

is based only on the robot internal measurements. Based on the measured robot ve-

locity its position in the world is calculated by transforming the measured velocities

to the global reference frame and integrating the results. It is usually faster and less

computationally complicated technique than global localisation. On the other hand,

dead reckoning suffers from the problem of drift, where small errors in velocity meas-

urements are integrated, resulting in the error of global localisation increasing with

time. Because of the weakness of dead reckoning, global positioning methods have

to be used. There are a lot of available methods, which can be divided into indoor

and outdoor methods [29].

It should be noted that from the point of view of Hogger
2
control, global position

error does not influence the local correctness of control, because it is only used for

calculating feedback errors (h − hd, etc.), so the localisation errors in practice have

the same result as if the desired trajectory hd was changed.

Servo motors

The measurement of servo motor angles and their control is a problematic task. A ser-

vomechanism is a device that already includes a feedback control system [53], so it has

tomeasure its positionwhich is then used for tracking error calculation. However, most

5.1. Interaction with hardware 51

standard servos do not provide output with the information about current position.

This means that, in order to measure the angle, another solution has to be found.

The easiest (and most expensive) solution is to use servo motors that provide cur-

rent position output. These can be divided into two groups. The first one are highly

advanced servos that provide multiple configuration registers accessed over serial pro-

tocols, e.g. Dynamixel servos [38]. The second one includes cheaper servomechanisms,

that provide the signal from the internal potentiometer as an analog output pin. These

include FEETECH FS90-FB servo [13] or Analog Feedback Servos by Adafruit [2], how-

ever this kind of servos usually have poor motor parameters when compared to other

models.

A simple alternative for servomechanisms that provide current angle information

by design is to use a modified standard servo. Taking advantage of the fact that

each servomechanism has a built-in potentiometer, a wire can be connected to the

potentiometer’s output signal. This allows to read the voltage directly by the MCU

which can be then converted into angle information after proper calibration.

Another approach,which requiresnohardwaremodifications is to simulate the servo

movement based on the velocity given in servo specification. Although theoretically

applicable, this method does not provide very accurate data, because any disturbances

that happen due to insufficient motor torque will not be registered.

As the last proposed solution, servomechanism can be replacedwith a custommade

servo, i.e. a DC (or other
∗
) motor with an attached encoder. This in practice may be

more costly in terms of money and development time, but can be tuned specifically for

the controlled system, yielding the best results.

BLDC motors

BLDC motors have multiple advantages over brushed DC motors, at the cost of

more complicated controller design. The main advantages of BLDC motors are high

power-to-weight ratio, high speed and higher durability due to lack of brushes that

wear out [49].

As in the case of servomechanisms, standardBLDCmotor controllers do not provide

position or velocity feedback. At the same time, this limitation is less significant

in the case of BLDC motors in Hogger
2
robot, because of much higher velocity of their

operation. The motors are used to spin the hemispheres, and their velocity has been

included in the mathematical model in the linearising output h, and thus its value can

be controlled using hd, specifically it can be set to a high constant value. In such case,

an assumption can be made that the current velocity of the motor is equal to its desired

velocity, and the error introduced by this assumption may be negligible. If however

the control results are not satisfactory, a controller with velocity feedback should be

found.

∗
However stepper motors should generally be avoided in high-speed applications, as they are de-

signed to work well in open loop, but in the presence of high, unpredictable torque, they can lose

steps, which introduces unrecoverable errors. And even though adding an encoder solves the problem,

the motor will still have worse power-to-weight ratio than other types of motors.

52 5. Hardware analysis

5.2 Onboard computer
An important aspect of controller hardware is the choice of computer device whichwill

be used to perform algorithm calculations. The choice depends on what calculations

the robot has to perform onboard and what hardware has to be controlled.

Generally, for low latency, high precision operation a bare-metal/RTOS-basedMCU

is the best choice, as has been discussed in Section 3.2. When considering higher level

algorithms, e.g. simultaneous localization and mapping (SLAM), it may be desirable

to use more powerful microcomputer alongside the MCU. In such scenario, the lowest

level control loop (i.e. the control algorithms as discussed in this thesis) can be im-

plemented on the MCU, while the main computer performs the heavy computations

and sends commands to the MCU over some serial interface, by setting the value of hd
(see Figures 2.6, 2.7).

5.2.1 Computing power
It is important to find a balance between computing power and price when choosing

an MCU for an embedded system. The computing power required for the applic-

ation mainly depends on the desired control loop frequency and the complexity of

the algorithm itself (and any other computations that have to be performed).

The loop frequencydetermination in case of feedback linearisation algorithms canbe

done using standard methods for linear control systems [12]. Feedback linearisation
†

transforms the system into an equivalent linear system. The analysis of frequency

response of the system can be then used to tune the gains of the feedback controller,

e.g. the K matrix for the control law in Equation (2.11). As a rule of thumb, control

frequency between 100Hz and 1 kHz can be chosen as an initial guess.

To determine the final requirements it is best to perform tests on a similar device,

and then, given the required sampling frequency, choose theMCUcomparing thedevice

capabilities, considering factors such as CPU clock frequency, FPU and DSP instruc-

tions availability, etc. For these reasons, it is more convenient to choose a strongerMCU

when developing a prototype to avoid wasting time on hardware replacements.

5.2.2 Hardware interactions
Another, probably evenmore critical factor that has tobe taken into accountwhenchoos-

ing MCU, is the availability of peripherals for interfacing with sensors and actuators

used in the robot. This involves serial communication interfaces (UART, SPI, I
2
C, etc.),

timers used for PWM signal generation, and analog signal converters (ADCs/DACs).

5.3 Necessary hardware modifications
The initial tests of the implementation of control algorithms developed in this thesis

shall be performed using the existing prototype of Hogger
2
robot. The prototype is

a functional construction, however it is not fully prepared for the control task.

†
In case of Hogger

2
: input-output linearisation, as opposed to full state linearisation.

5.3. Necessary hardware modifications 53

5.3.1 Existing construction
Hogger

2
prototype described in [16] has been equipped with four PowerHD HD-

1501MG servos [35] and two EMAX BL2215/25 BLDC motors [11]. These motors

have been chosen based on the required parameters calculated in that thesis
‡
. The

construction has been tested using standard remote control (RC) radio system, namely

RadioLink T6EAP [37]. Robot control have been simplified to allow for direct control by

a human operator without the need for complex motion controller. The servo positions

and BLDC motor velocities have been interlocked (θ1 = θ2, ϕ1 = ϕ2, ˙ψ1 = ˙ψ2). Such

a model has been described in [20, Section 4.4]. This simplification effectively reduces

the number of control inputs to 3. During the tests it was possible to achieve the

desired robot behaviour, although potential improvements concerning its mechanical

construction have been described.

5.3.2 Feedback measurement method
In the existing prototype no state feedback measurements have been performed, how-

ever state measurement is crucial for implementing the robot controller. Because

the servo motors used in the prototype do not provide position information, one of

the methods described in Section 5.1.2 has to be used. The method of soldering an ad-

ditional wire directly to the servo internal potentiometer will be used for the prototype

implementation. BLDC motor velocity measurements will not be performed, but in-

stead, the velocities will be set to high values and the tracking will be assumed to be

perfect, as discussed in Section 5.1.2. Initially, for measuring robot global position,

an indoor motion capture system will be used, and a radio transmitter-receiver pair,

will be used for communication with the system
§
. Later, more sophisticated solutions

can be tested.

5.3.3 Microcontroller unit
Inorder tobe able to test the implementationof control algorithmsdeveloped inChapter 4,

the robot must be equipped with an MCU that will be able to control all the motors

and read the robot state. The following MCU capabilities are required:

• 4 PWM outputs for setting servomechanisms target positions,

• 2 PWM outputs for setting BLDC motors target positions,

• 4 ADC channels for measuring servo potentiometers positions,

• up to 5
¶
timer channels with input capture functionality (‘PWM inputs’) for

reading signals from RC receiver.

‡
There is amistake in [16, Equation (2.9)]— the final value ofMd should be equal to 0.125Nm instead

of 0.25Nm.

§
nRF24L01modules [41] can be used for this task. Themodules have already been tested by the author

in [7], and introduce a delay of 158.4µs, which should be enough for control at the frequency of 1 kHz
(delay of 15.8% of the control period).

¶
This is the number of control inputs η in themodel, however for simple human control 2 or 3 channels

will be enough.

54 5. Hardware analysis

• availability of serial interfaces for communicating with other sensors used, e.g.

motion-capture system (through radio module), IMU, etc.

Beside the things mentioned above, the selected CPU should include an FPU, because

the algorithms have been implemented using floating-point arithmetic.

Estimation of required CPU computing power has been done using the, somewhat

arbitrarily chosen, STM32F407 microcontroller (see Table 4.2). As can be seen in Fig-

ures 4.4 and 4.5, the most time-consuming computation when using CSE optimisation

takes 63µs for the case of dynamic linearisation of Simplified Model. Such period can,

in theory, allows for control loop frequency even as high as 15 kHz. Even though this

frequency will probably be impossible to achieve due to the time required for meas-

urement, actuation and side computations, the STM32F407 MCU should be capable of

operating at control loop frequency well above 1 kHz.

Considering the capabilities of STM32F407 MCU it is a reasonable choice for im-

plementing. It easily meets all the requirements mentioned above, concerning both

computing power and peripherals availability, as it includes up to 24 ADC channels, up

to 17 timers (PWM inputs/outputs) andmultiple serial interfaces. The specific choice of

STM32F407 is a result of the author’s preference and possession of STM32F4Discovery

development board, which can greatly reduce the initial amount of work required for

preparing electronic circuits for the controller, however a lot of other MCUs based on

ARM Cortex-M4 core would suffice.

Chapter 6

Conclusion

The main goal of this thesis was to design a controller implementing algorithms for

Hogger
2
robot, to explore the methodology behind the implementation process and to

evaluate hardware required for the robot. The assumed goals have been accomplished.

In the work the specific problem of Hogger
2
control has been described. The al-

gorithms already developed for the robot have been summarised, focussing on the is-

sues related to the implementation on the real robot. The results of previous simulations

have been compared, identifying the most promising algorithms.

The implementation considerations have been described, underlining the issues

specific to embedded systems. A methodology process which includes symbolic mod-

elling of mathematical algorithms description and low-level code generation have been

proposed. It has been shown that free tools supporting this kind of methodology

are available, and when needed, more complete commercial solutions can be chosen.

Furthermore, the structure of code for the task of robot control has been outlined

and decomposed into logical blocks.

To complete the discussion, a selected example of controller design has been shown

by implementing specific blocks of the controller for Hogger
2
robot. The process of

symbolic modelling in SymPy environment has been explained and the optimisation

possibilities available during code generation have been explored. An example of

a complete implementation has been shown as pseudocode for the dynamic feedback

linearisation algorithm, explaining the data that has to be stored between successive

iterations.

The hardware required for proper robot state measurements and controller imple-

mentation has been analysed, providing multiple solutions and highlighting potential

problems. Finally, the changes to the existing prototype that are required for testing

the control algorithms implementation have been proposed.

There is still a lot of work to be done to complete Hogger
2
robot. This thesis focused

on the methodology and the process of control implementation, leaving the actual

implementation as a future goal. The ground for concrete implementation has been

prepared, however several problems have to be solved before. The hardware ofHogger
2

prototype has to be extended, as described in Chapter 5, to allow for reliable measure-

ments of robot state. The task of robot localisation is another issue that has to be

considered. First tests should probably be performed using only the motion capture

system available at WUST, however for better control IMU measurements should be

used too. An interesting work direction may be to test localisation techniques based

56 6. Conclusion

on Kalman filter that could use odometry data, even in the presence of vibrations that,

until now, have always emerged during robot control.

The benchmarks performed on the generated code are not ideal, due to possibly

unrealistic testing data, but should serve as good approximation of the processor cap-

abilities. To make the tests more exact, the object model could be implemented too, but

the results may not provide any useful information. If more complex calculations are

ever required, it should be considered, whether the CPU used for the robot should be

exchanged for a more powerful one or the calculations should be split between more

CPUs.

Not all the algorithms presented in [21] have been implemented. In future work

Samson’s algorithm should be implemented, as it has shown promising results in simu-

lations (see Table 2.1). Furthermore, the algorithms of Hogger
2
control do not consider

its unique dynamic properties. This is an important area to be explored, as the spinning

hemispheres may produce Coriolis forces that have significant influence on the robot

behaviour. Dynamic robot properties have not been tested in the simulations, so the al-

gorithms that have been considered promising may in fact have low performance or

even be completely unusable. This however will be testedwhen the existing algorithms

will be finally implemented for the robot prototype. Another algorithmic challenge is

designing control that can robustly control the robot near singularities, avoiding un-

stable zero dynamics that may emerge in some configurations.

HOG drive is unquestionably an interesting field of research into new movement

techniques for mobile robots. Surprisingly, it has not yet been deeply examined and we

cannot conclude whether it may become successful in practical applications or not.

Certainly, there are multiple directions that are yet to be explored, and hopefully this is

not the last work related to Hogger
2
robot and other works are to come in near future.

Bibliography

[1] E. Ackerman. You’ve Never Seen a Robot Drive System Like This Before. 7th June 2011.

url: https://spectrum.ieee.org/automaton/robotics/diy/youve-never-seen-

a-drive-system-like-this-before.

[2] Adafruit. Analog Feedback Micro Servo —Metal Gear. url: https://www.adafruit.

com/product/1450.

[3] A. V. Aho et al. Compilers: Principles, Techniques, and Tools (2Nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[4] AUTOSAR — AUTomotive Open System ARchitecture. url: https://www.autosar.

org/.

[5] K. J. Åström and R. M. Murray. Analysis and Design of Feedback Systems, Chapter
10. California Institute of Technology. 2004. url: https://www.cds.caltech.edu/

~murray/courses/cds101/fa04/caltech/am04_ch10-3nov04.pdf.

[6] C. Blackmore, O. Ray and K. Eder. ‘Automatically Tuning the GCC Compiler to

Optimize the Performance of Applications Running on the ARM Cortex-M3’. In:

CoRR abs/1703.08228 (2017). url: http://arxiv.org/abs/1703.08228.

[7] J. Boczar. ‘A device for multimodal localization of indoor mobile robots’. Bach-

elor’s thesis. Wrocław University of Science and Technology, 2017.

[8] P. Caspi andO.Maler. ‘FromControl Loops to Real-Time Programs’. In:Handbook
of Networked and Embedded Control Systems. Ed. by D. Hristu-Varsakelis and W. S.

Levine. Boston, MA: Birkhäuser Boston, 2005, pp. 395–418.

[9] E. Clarke, B. Fite and J. Reyer. ‘Design, Development, and Analysis of a Hemi-

spherical Singularity Drive System for Instantaneously Omnidirectional Motion

With Kinematic Isotropy’. In: Nov. 2016.

[10] B. Dahlgren et al. Automatic Code Generation with SymPy. 2017. url: https://www.

sympy.org/scipy-2017-codegen-tutorial/.

[11] Emax. Emax BL2215/25 950kv Outrunner Brushless Motor. url: https : / / www .

headsuphobby.com/Emax-BL221525-950kv-Outrunner-Brushless-Motor--Discon

tinued_ep_94-1.html.

[12] F. Fairman. Linear Control Theory: The State Space Approach. Wiley, 1998.

[13] FEETECH. FEETECH FS90-FB Micro Servo with Position Feedback. url: https :

//www.pololu.com/product/3436.

[14] Free Software Foundation, Inc. Using the GNU Compiler Collection (GCC): Options
That Control Optimization. url: https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html.

https://spectrum.ieee.org/automaton/robotics/diy/youve-never-seen-a-drive-system-like-this-before
https://spectrum.ieee.org/automaton/robotics/diy/youve-never-seen-a-drive-system-like-this-before
https://www.adafruit.com/product/1450
https://www.adafruit.com/product/1450
https://www.autosar.org/
https://www.autosar.org/
https://www.cds.caltech.edu/~murray/courses/cds101/fa04/caltech/am04_ch10-3nov04.pdf
https://www.cds.caltech.edu/~murray/courses/cds101/fa04/caltech/am04_ch10-3nov04.pdf
http://arxiv.org/abs/1703.08228
https://www.sympy.org/scipy-2017-codegen-tutorial/
https://www.sympy.org/scipy-2017-codegen-tutorial/
https://www.headsuphobby.com/Emax-BL221525-950kv-Outrunner-Brushless-Motor--Discontinued_ep_94-1.html
https://www.headsuphobby.com/Emax-BL221525-950kv-Outrunner-Brushless-Motor--Discontinued_ep_94-1.html
https://www.headsuphobby.com/Emax-BL221525-950kv-Outrunner-Brushless-Motor--Discontinued_ep_94-1.html
https://www.pololu.com/product/3436
https://www.pololu.com/product/3436
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

58 BIBLIOGRAPHY

[15] D. N. Góral. Był sobie robot.. Nietypowy projekt wykonany w programie Autodesk
Inventor. PCC Polska. 2017. url: http://www.pccpolska.pl/platforma-mobilna-

napedzana-dwiema-polsferami-studium-tematu/.

[16] D. N. Góral. ‘Two HOG wheel mobile robot construction’. Bachelor’s thesis.

Wrocław University of Science and Technology, 2017.

[17] R. Hametner et al. ‘Implementation Guidelines for Closed Loop Control Al-

gorithms on PLCs’. In: Feb. 2013.

[18] J. R. Hayes. Modular Programming in C. 2001. url: https://www.embedded.com/

design/prototyping-and-development/4023876/Modular-Programming-in-C.

[19] T. K. Jespersen. ‘Kugle — Modelling and Control of a Ball-balancing Robot’.

Master’s thesis. Aalborg University, 2019.

[20] P. Joniak. ‘Analysis of twoHOGwheelmobile robot behaviour’. Bachelor’s thesis.

Wrocław University of Science and Technology, 2014.

[21] P. Joniak. ‘Control problem for two HOG wheel mobile robot’. Master’s thesis.

Wrocław University of Science and Technology, 2016.

[22] P. Joniak and R.Muszyński. ‘Path Following for TwoHOGWheelsMobile Robot’.

In: Journal of Automation,Mobile Robotics and Intelligent Systems 11.02 (2017), pp. 75–
81.

[23] A. Karkare. CS 738: Advanced Compiler Optimizations: Overview of Optimizations.
2018. url: https://karkare.github.io/cs738/lecturenotes/02OptsOverviewSl

ides.pdf.

[24] T. Kisuki et al. Iterative Compilation in Program Optimization. 2000. url: https://

pdfs.semanticscholar.org/2b77/619723635067e314871c09ce27a2d5529bcb.pdf.

[25] D. E. Knuth. ‘Structured programming with go to statements’. In: Computing
Surveys 6 (1974), pp. 261–301.

[26] M. Larabel. GCC Soars Past 14.5 Million Lines Of Code & I’m Real Excited For GCC
5. 5th Jan. 2015. url: https://www.phoronix.com/scan.php?page=news_item&px=

MTg3OTQ.

[27] J. Malewicz. ‘Prototyping environment for robotic subsystems’. Bachelor’s thesis.

Wrocław University of Science and Technology, 2008.

[28] R. C.Martin.Clean Code: AHandbook of Agile Software Craftsmanship. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2008.

[29] R. Mautz. Indoor Positioning Technologies. Geodätisch-geophysikalische Arbeiten

in der Schweiz. ETH Zurich, Department of Civil, Environmental, Geomatic En-

gineering, Institute of Geodesy and Photogrammetry, 2012. url: https://books.

google.pl/books?id=BsHpMgEACAAJ.

[30] A. Mazur. ‘Sterowanie Oparte na Modelu dla Nieholonomicznych Manipulat-

orów Mobilnych’. PhD thesis. Wrocław University of Science and Technology,

2009.

[31] D. McCandless, P. Doughty-White and M. Quick. Codebases: Millions lines of code.
24th Sept. 2015. url: https://informationisbeautiful.net/visualizations/

million-lines-of-code/.

http://www.pccpolska.pl/platforma-mobilna-napedzana-dwiema-polsferami-studium-tematu/
http://www.pccpolska.pl/platforma-mobilna-napedzana-dwiema-polsferami-studium-tematu/
https://www.embedded.com/design/prototyping-and-development/4023876/Modular-Programming-in-C
https://www.embedded.com/design/prototyping-and-development/4023876/Modular-Programming-in-C
https://karkare.github.io/cs738/lecturenotes/02OptsOverviewSlides.pdf
https://karkare.github.io/cs738/lecturenotes/02OptsOverviewSlides.pdf
https://pdfs.semanticscholar.org/2b77/619723635067e314871c09ce27a2d5529bcb.pdf
https://pdfs.semanticscholar.org/2b77/619723635067e314871c09ce27a2d5529bcb.pdf
https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ
https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ
https://books.google.pl/books?id=BsHpMgEACAAJ
https://books.google.pl/books?id=BsHpMgEACAAJ
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/

BIBLIOGRAPHY 59

[32] A. Meurer et al. ‘SymPy: symbolic computing in Python’. In: PeerJ Computer
Science 3 (Jan. 2017), e103. url: https://doi.org/10.7717/peerj-cs.103.

[33] A. Micaelli and C. Samson. Trajectory tracking for unicycle-type and two-steering-
wheels mobile robots. Research Report RR-2097. INRIA, 1993. url: https://hal.

inria.fr/inria-00074575/file/RR-2097.pdf.

[34] K.Mørken.Numerical Algorithms andDigital Representation. Chapter 11:Numerical

Differentiation and Integration. 2015. url: https://www.uio.no/studier/emner/

matnat/math/MAT-INF1100/h08/kompendiet/komp.html.

[35] PowerHD. Power HD High-Torque Servo 1501MG. url: https://www.pololu.com/

product/1057.

[36] P. Puschner. Introduction to Real-Time Systems. Technische Universität Wien. 2017.

url: https://ti.tuwien.ac.at/cps/teaching/courses/real-time-systems/

slides/rts01_definitions.pdf.

[37] RadioLink. RadioLink T6EAP Instruction Manual. url: https://www.manualslib.

com/manual/921053/Radiolink-T6eap.html.

[38] ROBOTIS. DYNAMIXEL. url: http://www.robotis.us/dynamixel/.

[39] M. Rybczyński. ‘Model of mobile robot with HOG wheel’. Bachelor’s thesis.

Wrocław University of Science and Technology, 2013.

[40] J. Sauermann and M. Thelen. Realtime Operating Systems. Concepts and Implement-
ation of Microkernels for Embedded Systems. 1997. url: http://dsp-book.narod.ru/

DSPROSES.pdf.

[41] N. Semiconductor. nRF24L01, Single chip 2.4 GHz Transceiver. url: https://www.

sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf.

[42] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer Handbooks.

Springer International Publishing, 2016.

[43] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. San
Diego, CA, USA: California Technical Publishing, 1997.

[44] SymEngine. url: https://github.com/symengine/symengine.

[45] K. Tchoń and R. Muszyński. Mathematical Methods of Automation and Robotics.
Lecture Notes in Automation and Robotics. 2017.

[46] K. Tchoń et al. Manipulatory i roboty mobilne: modele, planowanie ruchu, sterowanie.
Problemy Współczesnej Nauki, Teoria i Zastosowania. Robotyka. Akademicka

Oficyna Wydawnicza PLJ, 2000.

[47] Texas Instruments Wiki. Floating Point Optimization. url: http://processors.

wiki.ti.com/index.php/Floating_Point_Optimization.

[48] Wikipedia, The Free Encyclopedia. Algorithms for calculating variance: Welford’s
online algorithm. url: https://en.wikipedia.org/wiki/Algorithms_for_calcula

ting_variance#Welford’s_online_algorithm.

[49] Wikipedia, The Free Encyclopedia. Brushless DC electric motor. url: https://en.

wikipedia.org/wiki/Brushless_DC_electric_motor.

https://doi.org/10.7717/peerj-cs.103
https://hal.inria.fr/inria-00074575/file/RR-2097.pdf
https://hal.inria.fr/inria-00074575/file/RR-2097.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/komp.html
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/komp.html
https://www.pololu.com/product/1057
https://www.pololu.com/product/1057
https://ti.tuwien.ac.at/cps/teaching/courses/real-time-systems/slides/rts01_definitions.pdf
https://ti.tuwien.ac.at/cps/teaching/courses/real-time-systems/slides/rts01_definitions.pdf
https://www.manualslib.com/manual/921053/Radiolink-T6eap.html
https://www.manualslib.com/manual/921053/Radiolink-T6eap.html
http://www.robotis.us/dynamixel/
http://dsp-book.narod.ru/DSPROSES.pdf
http://dsp-book.narod.ru/DSPROSES.pdf
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf
https://github.com/symengine/symengine
http://processors.wiki.ti.com/index.php/Floating_Point_Optimization
http://processors.wiki.ti.com/index.php/Floating_Point_Optimization
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor

60 BIBLIOGRAPHY

[50] Wikipedia, The Free Encyclopedia. Gimbal. url: https://en.wikipedia.org/

wiki/Gimbal.

[51] Wikipedia, The Free Encyclopedia. Hemispherical omnidirectional gimbaled wheel.
url: https://en.wikipedia.org/wiki/Hemispherical_omnidirectional_gimbal

ed_wheel.

[52] Wikipedia, The Free Encyclopedia. Operating system. url: http://en.wikipedia.

org/w/index.php?title=Operating\%20system&oldid=898517811.

[53] Wikipedia, The Free Encyclopedia. Servomechanism. url: https://en.wikipedia.

org/wiki/Servomechanism.

[54] The MathWorks, Inc. MATLAB. url: https://www.mathworks.com/products/

matlab.html.

[55] Unknown. Hemisphere Drive Speedster. Oct. 1938. url: http://blog.modernmechan

ix.com/hemisphere-drive-speedster/.

[56] J. Weidendorfer. Analysis and Optimization of the Memory Access Behavior of Applic-
ations. url: http://calcul.math.cnrs.fr/IMG/pdf/weidendorfer.pdf.

[57] Wolfram Research, Inc. Mathematica. url: https://www.wolfram.com.

https://en.wikipedia.org/wiki/Gimbal
https://en.wikipedia.org/wiki/Gimbal
https://en.wikipedia.org/wiki/Hemispherical_omnidirectional_gimbaled_wheel
https://en.wikipedia.org/wiki/Hemispherical_omnidirectional_gimbaled_wheel
http://en.wikipedia.org/w/index.php?title=Operating\%20system&oldid=898517811
http://en.wikipedia.org/w/index.php?title=Operating\%20system&oldid=898517811
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Servomechanism
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://blog.modernmechanix.com/hemisphere-drive-speedster/
http://blog.modernmechanix.com/hemisphere-drive-speedster/
http://calcul.math.cnrs.fr/IMG/pdf/weidendorfer.pdf
https://www.wolfram.com

Appendix A

Generated code examples

To give the reader a better view of the complexity of Hogger
2
control algorithms, some

examples of generated code have been provided in this appedinx. At the same time, it

can be seen howCSE optimisationworks for casesmore complex than the one provided

in Subsection 3.4.2.

62 A. Generated code examples

Listing A.1: Static linearisation for Full Model 2 without CSE

void full_2_static_lin_eta(float eta[5], const float u[5], const float q[9])
{

eta[0] = -u[3]*sinf(q[4]) + u[0]*sinf(q[2])/R - u[1]*cosf(q[2])/R;
eta[1] = u[3]*cosf(q[4])*tanf(q[3]) + u[0]*cosf(q[2])/(R*cosf(q[3])) +

u[1]*sinf(q[2])/(R*cosf(q[3]));
eta[2] = u[3];
eta[3] = u[4]*cosf(q[7])*tanf(q[6]) + 2*l*u[2]/(R*cosf(q[6])) +

u[0]*cosf(q[2])/(R*cosf(q[6])) + u[1]*sinf(q[2])/(R*cosf(q[6]));
eta[4] = u[4];

}

Listing A.2: Static linearisation for Full Model 2 with CSE

void full_2_cse_static_lin_eta(float eta[5], const float u[5], const float q[9])
{

float x0 = q[4];
float x1 = q[2];
float x2 = sinf(x1);
float x3 = 1.0F/R;
float x4 = u[0]*x3;
float x5 = cosf(x1);
float x6 = u[1]*x3;
float x7 = q[3];
float x8 = 1.0F/cosf(x7);
float x9 = x4*x5;
float x10 = x2*x6;
float x11 = q[6];
float x12 = 1.0F/cosf(x11);

eta[0] = -u[3]*sinf(x0) + x2*x4 - x5*x6;
eta[1] = u[3]*cosf(x0)*tanf(x7) + x10*x8 + x8*x9;
eta[2] = u[3];
eta[3] = 2*l*u[2]*x12*x3 + u[4]*cosf(q[7])*tanf(x11) + x10*x12 + x12*x9;
eta[4] = u[4];

}

63

Listing A.3: Dynamic linearisation for Full Model 2 without CSE

void full_2_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

u[0] = -v[3]*sinf(q[4]) - ((1.0F/2.0F)*R*(R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) -
eta[3]*cosf(q[6]) + eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*sinf(q[2]) + R*(eta[1]*cosf(q[3])
- eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*cosf(q[3])*cosf(q[2]) +

2*l*eta[0]*eta[1]*sinf(q[3])*sinf(q[2]) + (-R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*cosf(q[2])*cosf(q[4]) + R*(eta[1]*cosf(q[3])
- eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[2])*sinf(q[4]) +

2*l*(eta[0]*sinf(q[2])*cosf(q[3])*cosf(q[4]) - eta[1]*sinf(q[3])*sinf(q[2])*sinf(q[4]) +
eta[1]*cosf(q[2])*cosf(q[4])))*eta[2])/l + v[1])*cosf(q[2])/R +

(-1.0F/2.0F*R*(-R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*cosf(q[2]) + R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*sinf(q[2])*cosf(q[3]) -

2*l*eta[0]*eta[1]*sinf(q[3])*cosf(q[2]) - (R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*sinf(q[2])*cosf(q[4]) +

R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[4])*cosf(q[2]) +

2*l*(eta[0]*cosf(q[3])*cosf(q[2])*cosf(q[4]) -
eta[1]*sinf(q[3])*sinf(q[4])*cosf(q[2]) -
eta[1]*sinf(q[2])*cosf(q[4])))*eta[2])/l + v[0])*sinf(q[2])/R;

u[1] = v[3]*cosf(q[4])*tanf(q[3]) + ((1.0F/2.0F)*R*(R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) -
eta[3]*cosf(q[6]) + eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*sinf(q[2]) + R*(eta[1]*cosf(q[3])
- eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*cosf(q[3])*cosf(q[2]) +

2*l*eta[0]*eta[1]*sinf(q[3])*sinf(q[2]) + (-R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*cosf(q[2])*cosf(q[4]) + R*(eta[1]*cosf(q[3])
- eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[2])*sinf(q[4]) +

2*l*(eta[0]*sinf(q[2])*cosf(q[3])*cosf(q[4]) - eta[1]*sinf(q[3])*sinf(q[2])*sinf(q[4]) +
eta[1]*cosf(q[2])*cosf(q[4])))*eta[2])/l + v[1])*sinf(q[2])/(R*cosf(q[3])) +

(-1.0F/2.0F*R*(-R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*cosf(q[2]) + R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*sinf(q[2])*cosf(q[3]) -

2*l*eta[0]*eta[1]*sinf(q[3])*cosf(q[2]) - (R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*sinf(q[2])*cosf(q[4]) +

R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[4])*cosf(q[2]) +

2*l*(eta[0]*cosf(q[3])*cosf(q[2])*cosf(q[4]) -
eta[1]*sinf(q[3])*sinf(q[4])*cosf(q[2]) -
eta[1]*sinf(q[2])*cosf(q[4])))*eta[2])/l + v[0])*cosf(q[2])/(R*cosf(q[3]));

u[2] = v[3];
u[3] = v[4]*cosf(q[7])*tanf(q[6]) + 2*l*(-1.0F/2.0F*R*(-(eta[0] + eta[2]*sinf(q[4]) -

eta[4]*sinf(q[7]))*eta[3]*sinf(q[6]) - (eta[0] + eta[2]*sinf(q[4]) -
eta[4]*sinf(q[7]))*eta[4]*cosf(q[6])*cosf(q[7]) + eta[0]*eta[1]*sinf(q[3]) +

eta[0]*eta[2]*cosf(q[3])*cosf(q[4]) - eta[1]*eta[2]*sinf(q[3])*sinf(q[4]) +
eta[3]*eta[4]*sinf(q[6])*sinf(q[7]))/l + v[2])/(R*cosf(q[6])) +

((1.0F/2.0F)*R*(R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*sinf(q[2]) + R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*cosf(q[3])*cosf(q[2]) +

2*l*eta[0]*eta[1]*sinf(q[3])*sinf(q[2]) + (-R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) -
eta[3]*cosf(q[6]) + eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*cosf(q[2])*cosf(q[4]) +

R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[2])*sinf(q[4]) +

2*l*(eta[0]*sinf(q[2])*cosf(q[3])*cosf(q[4]) - eta[1]*sinf(q[3])*sinf(q[2])*sinf(q[4]) +
eta[1]*cosf(q[2])*cosf(q[4])))*eta[2])/l + v[1])*sinf(q[2])/(R*cosf(q[6])) +

(-1.0F/2.0F*R*(-R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[0]*cosf(q[2]) + R*(eta[1]*cosf(q[3]) -

64 A. Generated code examples

eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*eta[1]*sinf(q[2])*cosf(q[3]) -

2*l*eta[0]*eta[1]*sinf(q[3])*cosf(q[2]) - (R*(eta[1]*cosf(q[3]) -
eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[3])*sinf(q[2])*cosf(q[4]) +

R*(eta[1]*cosf(q[3]) - eta[2]*sinf(q[3])*cosf(q[4]) - eta[3]*cosf(q[6]) +
eta[4]*sinf(q[6])*cosf(q[7]))*sinf(q[4])*cosf(q[2]) +

2*l*(eta[0]*cosf(q[3])*cosf(q[2])*cosf(q[4]) -
eta[1]*sinf(q[3])*sinf(q[4])*cosf(q[2]) -
eta[1]*sinf(q[2])*cosf(q[4])))*eta[2])/l + v[0])*cosf(q[2])/(R*cosf(q[6]));

u[4] = v[4];
}

65

Listing A.4: Dynamic linearisation for Full Model 2 with CSE

void full_2_cse_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

float x0 = q[4];
float x1 = sinf(x0);
float x2 = q[2];
float x3 = sinf(x2);
float x4 = 2*l;
float x5 = eta[0];
float x6 = eta[1];
float x7 = q[3];
float x8 = sinf(x7);
float x9 = x6*x8;
float x10 = x5*x9;
float x11 = x10*x4;
float x12 = cosf(x7);
float x13 = x12*x6;
float x14 = eta[3];
float x15 = q[6];
float x16 = cosf(x15);
float x17 = sinf(x15);
float x18 = eta[4];
float x19 = q[7];
float x20 = cosf(x19);
float x21 = x18*x20;
float x22 = eta[2];
float x23 = cosf(x0);
float x24 = x22*x23;
float x25 = R*(x13 - x14*x16 + x17*x21 - x24*x8);
float x26 = x3*x5;
float x27 = cosf(x2);
float x28 = x25*x27;
float x29 = x23*x6;
float x30 = x12*x23;
float x31 = x1*x3;
float x32 = x23*x8;
float x33 = R/l;
float x34 = 2*v[1] + x33*(x11*x3 + x13*x28 + x22*(x25*x31 - x28*x32 + x4*(x26*x30 + x27*x29 - x31*x9)) +

x25*x26);
float x35 = 1.0F/R;
float x36 = (1.0F/2.0F)*x35;
float x37 = x27*x36;
float x38 = 2*v[0];
float x39 = x11*x27;
float x40 = x27*x5;
float x41 = x25*x40;
float x42 = x25*x3;
float x43 = x13*x42;
float x44 = x1*x27;
float x45 = x22*(x25*x44 + x32*x42 + x4*(-x29*x3 + x30*x40 - x44*x9));
float x46 = x3*x36;
float x47 = 1.0F/x12;
float x48 = x34*x46;
float x49 = x37*(x33*(x39 + x41 - x43 + x45) + x38);
float x50 = 1.0F/x16;
float x51 = x1*x22;
float x52 = x18*sinf(x19);
float x53 = x14*x17;
float x54 = x5 + x51 - x52;
u[0] = -v[3]*x1 - x34*x37 - x46*(x33*(-x39 - x41 + x43 - x45) - x38);
u[1] = v[3]*x23*tanf(x7) + x47*x48 + x47*x49;
u[2] = v[3];
u[3] = l*x35*x50*(2*v[2] + x33*(-x10 - x12*x24*x5 + x16*x21*x54 + x51*x9 - x52*x53 + x53*x54)) +

v[4]*x20*tanf(x15) + x48*x50 + x49*x50;
u[4] = v[4];

}

66 A. Generated code examples

Listing A.5: Dynamic linearisation for JPTD Modelwithout CSE

void full_2_JPTD_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

u[0] = -v[3]*tanf(q[3])/(eta[2]*powf(cosf(q[4]), 2)) - (sinf(q[2])/cosf(q[3]) +
cosf(q[2])*tanf(q[3])*tanf(q[4]))*((1.0F/2.0F)*powf(R, 2)*(eta[2]*powf(sinf(q[3]),

2)*cosf(q[2])*powf(cosf(q[4]), 2) - eta[2]*sinf(q[3])*sinf(q[2])*sinf(q[4])*cosf(q[4]) -
eta[4]*sinf(q[3])*sinf(q[6])*cosf(q[2])*cosf(q[4])*cosf(q[7]) +
eta[4]*sinf(q[6])*sinf(q[2])*sinf(q[4])*cosf(q[7]))*eta[2]/l + v[1])/(R*eta[2]*cosf(q[4])) +

(sinf(q[2])*tanf(q[3])*tanf(q[4]) - cosf(q[2])/cosf(q[3]))*(-1.0F/2.0F*powf(R,
2)*(eta[2]*powf(sinf(q[3]), 2)*sinf(q[2])*powf(cosf(q[4]), 2) +

eta[2]*sinf(q[3])*sinf(q[4])*cosf(q[2])*cosf(q[4]) -
eta[4]*sinf(q[3])*sinf(q[6])*sinf(q[2])*cosf(q[4])*cosf(q[7]) -
eta[4]*sinf(q[6])*sinf(q[4])*cosf(q[2])*cosf(q[7]))*eta[2]/l +

v[0])/(R*eta[2]*cosf(q[4]));
u[1] = -v[3]*tanf(q[4])/eta[2] + (-1.0F/2.0F*powf(R, 2)*(eta[2]*powf(sinf(q[3]),

2)*sinf(q[2])*powf(cosf(q[4]), 2) + eta[2]*sinf(q[3])*sinf(q[4])*cosf(q[2])*cosf(q[4]) -
eta[4]*sinf(q[3])*sinf(q[6])*sinf(q[2])*cosf(q[4])*cosf(q[7]) -
eta[4]*sinf(q[6])*sinf(q[4])*cosf(q[2])*cosf(q[7]))*eta[2]/l +

v[0])*sinf(q[2])/(R*eta[2]*cosf(q[4])) - ((1.0F/2.0F)*powf(R, 2)*(eta[2]*powf(sinf(q[3]),
2)*cosf(q[2])*powf(cosf(q[4]), 2) - eta[2]*sinf(q[3])*sinf(q[2])*sinf(q[4])*cosf(q[4])

- eta[4]*sinf(q[3])*sinf(q[6])*cosf(q[2])*cosf(q[4])*cosf(q[7]) +
eta[4]*sinf(q[6])*sinf(q[2])*sinf(q[4])*cosf(q[7]))*eta[2]/l +

v[1])*cosf(q[2])/(R*eta[2]*cosf(q[4]));
u[2] = v[3];
u[3] = -v[3]*tanf(q[3])/(eta[2]*powf(cosf(q[4]), 2)*tanf(q[6])*tanf(q[7])) + v[4]/(eta[4]*tanf(q[7])) +

(-1.0F/2.0F*powf(R, 2)*(eta[2]*powf(sinf(q[3]), 2)*sinf(q[2])*powf(cosf(q[4]), 2) +
eta[2]*sinf(q[3])*sinf(q[4])*cosf(q[2])*cosf(q[4]) -
eta[4]*sinf(q[3])*sinf(q[6])*sinf(q[2])*cosf(q[4])*cosf(q[7]) -
eta[4]*sinf(q[6])*sinf(q[4])*cosf(q[2])*cosf(q[7]))*eta[2]/l +

v[0])*(cosf(q[2])/(R*eta[4]*sinf(q[6])*sinf(q[7])) +
sinf(q[2])*sinf(q[4])*tanf(q[3])/(R*eta[2]*powf(cosf(q[4]), 2)*tanf(q[6])*tanf(q[7])) -
cosf(q[2])/(R*eta[2]*cosf(q[3])*cosf(q[4])*tanf(q[6])*tanf(q[7]))) + ((1.0F/2.0F)*powf(R,

2)*(eta[2]*powf(sinf(q[3]), 2)*cosf(q[2])*powf(cosf(q[4]), 2) -
eta[2]*sinf(q[3])*sinf(q[2])*sinf(q[4])*cosf(q[4]) -
eta[4]*sinf(q[3])*sinf(q[6])*cosf(q[2])*cosf(q[4])*cosf(q[7]) +
eta[4]*sinf(q[6])*sinf(q[2])*sinf(q[4])*cosf(q[7]))*eta[2]/l +

v[1])*(sinf(q[2])/(R*eta[4]*sinf(q[6])*sinf(q[7])) -
sinf(q[2])/(R*eta[2]*cosf(q[3])*cosf(q[4])*tanf(q[6])*tanf(q[7])) -
sinf(q[4])*cosf(q[2])*tanf(q[3])/(R*eta[2]*powf(cosf(q[4]), 2)*tanf(q[6])*tanf(q[7]))) +

2*l*((1.0F/2.0F)*R*(eta[2]*sinf(q[4]) - eta[4]*sinf(q[7]))*eta[4]*cosf(q[6])*cosf(q[7])/l +
v[2])/(R*eta[4]*sinf(q[6])*sinf(q[7]));

u[4] = v[4];
}

67

Listing A.6: Dynamic linearisation for JPTD Model with CSE

void full_2_JPTD_cse_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

float x0 = q[4];
float x1 = cosf(x0);
float x2 = 1.0F/x1;
float x3 = q[3];
float x4 = tanf(x3);
float x5 = v[3]*x4;
float x6 = q[2];
float x7 = sinf(x6);
float x8 = 1.0F/cosf(x3);
float x9 = x7*x8;
float x10 = cosf(x6);
float x11 = tanf(x0);
float x12 = x11*x4;
float x13 = sinf(x0);
float x14 = q[6];
float x15 = sinf(x14);
float x16 = eta[4];
float x17 = q[7];
float x18 = x16*cosf(x17);
float x19 = x15*x18;
float x20 = x19*x7;
float x21 = eta[2];
float x22 = powf(x1, 2);
float x23 = sinf(x3);
float x24 = x21*x22*powf(x23, 2);
float x25 = x13*x21;
float x26 = x1*x23;
float x27 = x25*x26;
float x28 = 1.0F/l;
float x29 = powf(R, 2)*x21*x28;
float x30 = 1.0F/R;
float x31 = (1.0F/2.0F)*x30;
float x32 = x31*(2*v[1] + x29*(-x10*x19*x26 + x10*x24 + x13*x20 - x27*x7));
float x33 = x10*x8;
float x34 = x10*x13;
float x35 = x31*(-2*v[0] + x29*(x10*x27 - x19*x34 - x20*x26 + x24*x7));
float x36 = 1.0F/x21;
float x37 = x2*x36;
float x38 = 1.0F/x16;
float x39 = 1.0F/tanf(x17);
float x40 = x39/tanf(x14);
float x41 = x36*x40/x22;
float x42 = sinf(x17);
float x43 = x38/(x15*x42);
float x44 = x37*x40;
float x45 = x4*x41;

u[0] = -x37*(x2*x5 + x32*(x10*x12 + x9) + x35*(x12*x7 - x33));
u[1] = -x36*(v[3]*x11 + x10*x2*x32 + x2*x35*x7);
u[2] = v[3];
u[3] = l*x30*x43*(R*x18*x28*(-x16*x42 + x25)*cosf(x14) + 2*v[2]) + v[4]*x38*x39 - x32*(x34*x45 - x43*x7 +

x44*x9) - x35*(x10*x43 + x13*x45*x7 - x33*x44) - x41*x5;
u[4] = v[4];

}

68 A. Generated code examples

Listing A.7: Dynamic linearisation for Simplfied Modelwithout CSE

void simplified_dyn2_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

u[0] = -(v[0] + (1.0F/2.0F)*powf(eta[1], 2)*powf(q[7], 2)*sinf(q[2] + q[3])*sinf(q[3] -
q[5])/(l*sinf(q[5])))*sinf(q[2] + q[3])/(eta[1]*q[7]) + (v[1] - 1.0F/2.0F*powf(eta[1],

2)*powf(q[7], 2)*sinf(q[3] - q[5])*cosf(q[2] + q[3])/(l*sinf(q[5])))*cosf(q[2] +
q[3])/(eta[1]*q[7]);

u[1] = v[3];
u[2] = v[2];
u[3] = -v[3]*q[7]/eta[1] + (v[0] + (1.0F/2.0F)*powf(eta[1], 2)*powf(q[7], 2)*sinf(q[2] + q[3])*sinf(q[3] -

q[5])/(l*sinf(q[5])))*cosf(q[2] + q[3])/eta[1] + (v[1] - 1.0F/2.0F*powf(eta[1], 2)*powf(q[7],
2)*sinf(q[3] - q[5])*cosf(q[2] + q[3])/(l*sinf(q[5])))*sinf(q[2] + q[3])/eta[1];

u[4] = -(v[0] + (1.0F/2.0F)*powf(eta[1], 2)*powf(q[7], 2)*sinf(q[2] + q[3])*sinf(q[3] -
q[5])/(l*sinf(q[5])))*q[8]*sinf(q[2])/(eta[1]*q[7]*sinf(q[3])) + (v[1] -
1.0F/2.0F*powf(eta[1], 2)*powf(q[7], 2)*sinf(q[3] - q[5])*cosf(q[2] +

q[3])/(l*sinf(q[5])))*q[8]*cosf(q[2])/(eta[1]*q[7]*sinf(q[3])) - (v[4] +
eta[1]*eta[2]*q[7]*sinf(q[3])*cosf(q[5])/(q[8]*powf(sinf(q[5]), 2)))*powf(q[8],
2)*sinf(q[5])/(eta[1]*q[7]*sinf(q[3]));

}

Listing A.8: Dynamic linearisation for Simplfied Modelwith CSE

void simplified_dyn2_cse_dynamic_lin_u(float u[5], const float v[5], const float eta[5], const float q[9])
{

float x0 = q[2];
float x1 = q[3];
float x2 = x0 + x1;
float x3 = sinf(x2);
float x4 = eta[1];
float x5 = q[7];
float x6 = q[5];
float x7 = sinf(x6);
float x8 = powf(x4, 2)*powf(x5, 2)*sinf(x1 - x6)/(l*x7);
float x9 = 2*v[0] + x3*x8;
float x10 = cosf(x2);
float x11 = 2*v[1] - x10*x8;
float x12 = 1.0F/x4;
float x13 = x12/x5;
float x14 = (1.0F/2.0F)*x9;
float x15 = (1.0F/2.0F)*x11;
float x16 = q[8];
float x17 = sinf(x1);

u[0] = (1.0F/2.0F)*x13*(x10*x11 - x3*x9);
u[1] = v[3];
u[2] = v[2];
u[3] = x12*(-v[3]*x5 + x10*x14 + x15*x3);
u[4] = x13*x16*(-x14*sinf(x0) + x15*cosf(x0) - x16*x7*(v[4] + x17*x4*x5*eta[2]*cosf(x6)/(x16*powf(x7,

2))))/x17;
}

69

Listing A.9: Conversions between Simplfied Model and Full Models without CSE

void simplified_full_to_simplified(float q_simp[9], const float q_full[9])
{

q_simp[0] = q_simp[0];
q_simp[1] = q_simp[1];
q_simp[2] = q_simp[2];
q_simp[3] = atan2f(sinf(q_full[4]), sinf(q_full[3])*cosf(q_full[4]));
q_simp[4] = q_full[5];
q_simp[5] = atan2f(sinf(q_full[7]), sinf(q_full[6])*cosf(q_full[7]));
q_simp[6] = q_full[8];
q_simp[7] = R*sqrtf((powf(sinf(q_full[4]), 2) - 1)*powf(cosf(q_full[3]), 2) + 1);
q_simp[8] = R*sqrtf((powf(sinf(q_full[7]), 2) - 1)*powf(cosf(q_full[6]), 2) + 1);

}
void simplified_simplified_to_full(float q_full[9], const float q_simp[9])
{

q_full[0] = q_simp[0];
q_full[1] = q_simp[1];
q_full[2] = q_simp[2];
q_full[3] = ((fmodf(q_simp[3], M_PI) > (3.0F/2.0F)*M_PI || fmodf(q_simp[3], M_PI) < M_PI_2) ?

(1) : (-1)
)*acosf(sqrtf(-powf(R, 2) + powf(q_simp[7], 2))*sqrtf(powf(tanf(q_simp[3]), 2) + 1)/sqrtf(-powf(R,
2)*powf(tanf(q_simp[3]), 2) - powf(R, 2) + powf(q_simp[7], 2)*powf(tanf(q_simp[3]), 2)));

q_full[4] = ((fmodf(q_simp[3], M_PI) > (3.0F/2.0F)*M_PI || fmodf(q_simp[3], M_PI) < M_PI_2) ?
(1) : (-1)
)*asinf(q_simp[7]*tanf(q_simp[3])/(R*sqrtf(powf(tanf(q_simp[3]), 2) + 1)));

q_full[5] = q_simp[4];
q_full[6] = ((fmodf(q_simp[5], M_PI) > (3.0F/2.0F)*M_PI || fmodf(q_simp[5], M_PI) < M_PI_2) ?

(1) : (-1)
)*acosf(sqrtf(-powf(R, 2) + powf(q_simp[8], 2))*sqrtf(powf(tanf(q_simp[5]), 2) + 1)/sqrtf(-powf(R,
2)*powf(tanf(q_simp[5]), 2) - powf(R, 2) + powf(q_simp[8], 2)*powf(tanf(q_simp[5]), 2)));

q_full[7] = ((fmodf(q_simp[5], M_PI) > (3.0F/2.0F)*M_PI || fmodf(q_simp[5], M_PI) < M_PI_2) ?
(1) : (-1)
)*asinf(q_simp[8]*tanf(q_simp[5])/(R*sqrtf(powf(tanf(q_simp[5]), 2) + 1)));

q_full[8] = q_simp[6];
}

70 A. Generated code examples

Listing A.10: Conversions between Simplfied Model and Full Models with CSE

void simplified_cse_full_to_simplified(float q_simp[9], const float q_full[9])
{

float x0 = q_full[4];
float x1 = sinf(x0);
float x2 = q_full[3];
float x3 = q_full[7];
float x4 = sinf(x3);
float x5 = q_full[6];

q_simp[0] = q_simp[0];
q_simp[1] = q_simp[1];
q_simp[2] = q_simp[2];
q_simp[3] = atan2f(x1, sinf(x2)*cosf(x0));
q_simp[4] = q_full[5];
q_simp[5] = atan2f(x4, sinf(x5)*cosf(x3));
q_simp[6] = q_full[8];
q_simp[7] = R*sqrtf((powf(x1, 2) - 1)*powf(cosf(x2), 2) + 1);
q_simp[8] = R*sqrtf((powf(x4, 2) - 1)*powf(cosf(x5), 2) + 1);

}
void simplified_cse_simplified_to_full(float q_full[9], const float q_simp[9])
{

float x0 = q_simp[3];
float x1 = fmodf(x0, M_PI);
float x2 = (3.0F/2.0F)*M_PI;
float x3 = M_PI_2;
float x4 = ((x1 > x2 || x1 < x3) ? (1) : (-1));
float x5 = tanf(x0);
float x6 = powf(x5, 2);
float x7 = sqrtf(x6 + 1);
float x8 = q_simp[7];
float x9 = powf(x8, 2);
float x10 = powf(R, 2);
float x11 = -x10;
float x12 = 1.0F/R;
float x13 = q_simp[5];
float x14 = fmodf(x13, M_PI);
float x15 = ((x14 > x2 || x14 < x3) ? (1) : (-1));
float x16 = tanf(x13);
float x17 = powf(x16, 2);
float x18 = sqrtf(x17 + 1);
float x19 = q_simp[8];
float x20 = powf(x19, 2);

q_full[0] = q_simp[0];
q_full[1] = q_simp[1];
q_full[2] = q_simp[2];
q_full[3] = x4*acosf(x7*sqrtf(x11 + x9)/sqrtf(-x10*x6 + x11 + x6*x9));
q_full[4] = x4*asinf(x12*x5*x8/x7);
q_full[5] = q_simp[4];
q_full[6] = x15*acosf(x18*sqrtf(x11 + x20)/sqrtf(-x10*x17 + x11 + x17*x20));
q_full[7] = x15*asinf(x12*x16*x19/x18);
q_full[8] = q_simp[6];

}

	Contents
	Glossary
	Introduction
	Hogger2 robot
	HOG drive
	Two HOG wheel robot
	Full kinematic model
	Simplified kinematic model
	JPTD kinematic model

	Control algorithms
	Input-output decoupling and linearisation
	Static feedback linearisation
	Dynamic feedback linearisation
	Samson's algorithm

	Simulation results

	Code generation methodology
	Real-time computing
	Real-Time Operating Systems

	Embedded systems programming
	High-level languages
	Hardware access

	Code generation
	Mathematica
	MATLAB
	SymPy

	Code optimisation
	Compiler optimisations
	Basic types of optimisation
	Data locality
	Floating-point arithmetic
	Automatic compiler tuning

	Code structure
	Control loop
	Generated code decomposition

	Differentiation and integration
	Differentiation
	Integration

	Control algorithms implementation
	Symbolic modelling
	Function declarations
	Function implementations
	Common subexpression elimination
	C files structure
	Differentiation and integration

	Benchmarks
	Platforms performance
	Models performance

	Algorithm implementation

	Hardware analysis
	Interaction with hardware
	Controller outputs
	Controller inputs

	Onboard computer
	Computing power
	Hardware interactions

	Necessary hardware modifications
	Existing construction
	Feedback measurement method
	Microcontroller unit

	Conclusion
	Bibliography
	Generated code examples

