N2176 C17 ballot ISO/IEC 9899:2017

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC9899:2017

Programming languages — C

(cover sheet to be replaced by ISO)
This is a working document of SC22/WG14

This version of the document is intended to be the version that is to go into ballot for C17.

— Itis based on the transformed EIEXversion of the document that has been proofread by the
members of WG14 and that has been approved by teleconference in June 2017.

— It applies all TCs of closed DRs up to April 2017.

— It applies the changes that have been voted in Markham.

— It updates some normative references.

— It provides the minimal changes required for a new version of the standard.

— It integrates some editorial changes that had been found during the revision process.

A brief explanation of the changes could still be added to the foreword.

Document conventions

This document classifies identifiers into different categories. This categorization is important to
produce a correct index.

The classes are
— Normal identifiers, toto.
— keywords, while
— symbols with external linkage of the C library, malloc
— types, size_t
— predefined macros that alias language features, complex
— other predefined macros, EOF
— pragmas and their particles, STDC
— tag names and members of struct, union or enum, tv_sec

— name fragments, usually reserved prefixes, atomic_

ISO/IEC 9899:2017 C17 ballot N2176

— character literals,’a’ or’_ ', and wide character literals, L’A’, string literals of char type,
"string" and u8"stréng", and string literals of wide character type, L"strong", character
sequences thompson\0, %zu or wide character sequences hello. Space in these are visible

"o

spaces “_” such asin "a_b_c_d".
— abstract values are written as mathematical expressions, such as 0, z, 65535 or 2" — 1.
The classification is not always unique, we have identifiers that can refer to a library function in

math.h or to a type generic macro in tgmath.h. Currently we give preference to the fact of being a
library function, e.g we have sqrt.

I

N2176 C17 ballot ISO/IEC 9899:2017

Abstract

(Cover sheet to be provided by ISO Secretariat.)

This International Standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability, reliability, main-
tainability, and efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language
execution library. Annexes summarize aspects of both of them, and enumerate factors that
influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language pro-
grammers as well as implementors of C language translation systems, the document itself is not
designed to serve as a tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Abstract

ISO/IEC 9899:2017 C17 ballot N2176

Contents
Foreword Xiv
Introduction xvii
1 Scope 1
2 Normative references 2
3 Terms, definitions, and symbols 3
4 Conformance 8
5 Environment
51 Conceptualmodels 9
5.1.1 Translationenvironment e
5.1.2 Executionenvironments e 10
5.2 Environmental considerations 17
521 Charactersets e 17
522 Character display semantics oL L L. 18
523 Signalsandinterrupts L L Lo 19
524 Environmental limits 19
6 Language 28
6.1 Notation e e e e e 28
6.2 Concepts 28
6.2.1 Scopesofidentifiers L L oo 28
6.2.2 Linkagesofidentifiers L L o L 29
6.2.3 Namespacesofidentifiers. L Lo L oL 29
6.2.4 Storage durationsof objects L 30
6.25 Types 31
6.2.6 Representationsoftypes L L 33
6.2.7 Compatible type and compositetype 35
6.2.8 Alignmentofobjects L o 36
6.3 CONVEISIONS . . .« v v o v o e e e e e e e e e 37
6.3.1 Arithmeticoperands o o 37
6.32 Otheroperands 40
6.4 Lexicalelements e 41
6.41 Keywords 42
6.42 Identifiers 43
ii Contents

N2176

6.5

6.6
6.7

6.8

C17 ballot ISO/IEC 9899:2017
6.4.3 Universal characternames. 44
644 Constants 45
6.45 Stringliterals 50
6.4.6 Punctuators 52
6.47 Headernames. e 53
6.4.8 Preprocessingnumbers L L L L L L L L 53
649 Comments 54
Expressions 55
6.5.1 Primaryexpressions oo 56
6.5.2 Postfixoperators 57
6.53 Unaryoperators 63
6.54 Castoperators. e 65
6.5.5 Multiplicative operators L L L L Lo 66
6.5.6 Additiveoperators L 66
6.5.7 Bitwiseshiftoperators o oL Lo 68
6.5.8 Relationaloperators L L 68
6.5.9 Equalityoperators 69
6.5.10 Bitwise ANDoperator 70
6.5.11 Bitwise exclusive ORoperator 70
6.5.12 Bitwise inclusive OR operator 70
6.5.13 Logical ANDoperator 71
6.5.14 Logical ORoperator 71
6.5.15 Conditionaloperator L L 71
6.5.16 Assignmentoperators oL 72
6.5.17 Commaoperator 75
Constantexpressions L e 76
Declarations e 78
6.7.1 Storage-classspecifiers L 79
6.72 Typespecifiers 79
6.7.3 Typequalifiers 87
6.74 Functionspecifiers L 90
6.7.5 Alignmentspecifier. L oo 92
6.7.6 Declarators 92
6.7.7 Typemnames 98
6.7.8 Typedefinitions L 99
6.7.9 Initialization L 100
6.7.10 Staticassertions 105
Statementsandblocks oo o 106
6.8.1 Labeledstatements 106
6.82 Compoundstatement 107

Contents iii

ISO/IEC 9899:2017 C17 ballot N2176

6.8.3 Expressionand null statements 107

6.84 Selectionstatements 108

6.8.5 Iterationstatements 109

6.8.6 Jumpstatements o 110

6.9 Externaldefinitions 113
6.9.1 Functiondefinitions 113

6.9.2 External objectdefinitions L L oL L L 115

6.10 Preprocessing directives oo 117
6.10.1 Conditionalinclusion 118
6.10.2 Sourcefileinclusion e 119
6.10.3 Macroreplacement 121
6.10.4 Linecontrol e 126
6.10.5 Errordirective 126
6.10.6 Pragmadirective 127
6.10.7 Nulldirective e e 127
6.10.8 Predefined macronames 127
6.10.9 Pragmaoperator 129

6.11 Futurelanguagedirections. L. 130
6.11.1 Floatingtypes 130
6.11.2 Linkages ofidentifiers 130
6.11.3 Externalnames e 130
6.11.4 Character escapesequencest 130
6.11.5 Storage-classspecifiers L o 130
6.11.6 Functiondeclarators 130
6.11.7 Function definitions 130
6.11.8 Pragmadirectives. L 130
6.11.9 Predefined macronames 130

7 Library 131
7.1 Introduction e 131
7.1.1 Definitionsof terms 131

712 Standard headers 131

7.1.3 Reservedidentifiers 132

714 Useoflibrary functions, 132

7.2 Diagnostics<assert.h> o 135
721 Programdiagnostics L 135

7.3 Complex arithmetic <complex.h> 136
731 Introduction L 136

732 ConventionS e e e e e e e 136

733 Branchcuts 136

iv Contents

N2176

7.4

7.5

7.6

7.7

7.8

79
7.10
7.11

7.12

7.13

C17 ballot ISO/IEC 9899:2017
734 The CX_LIMITED_RANGE pragma 137
7.3.5 Trigonometric functions L L oL 137
7.3.6 Hyperbolicfunctions L L o 139
7.3.7 Exponential and logarithmic functions 140
7.3.8 Power and absolute-value functions 141
7.3.9 Manipulation functions o oL Lo 142
Character handling <ctype.h> o . 145
74.1 Character classification functions 145
742 Character case mapping functions L. 147
Errors<errno.h> 149
Floating-point environment <fenv.h> 150
7.6.1 The FENV_ACCESS pragmao v vt 151
7.6.2 Floating-pointexceptions L L . 152
763 Rounding 154
764 Environment 155
Characteristics of floating types <float.h> 157
Format conversion of integer types <inttypes.h> 158
7.8.1 Macros for format specifiers Lo Lo 158
7.8.2 Functions for greatest-width integer types 159
Alternative spellings <iso646.h>. Lo L L. 161
Sizes of integer types <limits.h> 162
Localization <locale.h>. 163
7111 Localecontrol 163
7.11.2 Numeric formatting convention inquiry 164
Mathematics<math.h> o 169
7.12.1 Treatmentof error conditions L L L. 170
7122 The FP_CONTRACT pragma oo v v i ittt et 171
7.12.3 Classificationmacros 172
7.12.4 Trigonometric functions L L L. 173
7.12.5 Hyperbolicfunctions L L L o 175
7.12.6 Exponential and logarithmic functions 177
7.12.7 Power and absolute-value functions L0 L., 180
7.12.8 Error and gamma functions oL L L L L L 182
7.129 Nearestinteger functions, 183
7.12.10 Remainder functions o oo oL o 185
7.12.11 Manipulation functions o o L L L L 186
7.12.12 Maximum, minimum, and positive difference functions 187
71213 Floating multiply-add, 188
7.12.14 CompariSOn MACrOS« v v v v vt e e e e 189
Nonlocal jumps <setjmp.h>. L L oL 191

Contents v

ISO/IEC 9899:2017 C17 ballot N2176

Vi

7.14

7.15

7.16

7.17

7.18
7.19
7.20

7.21

7.22

7.13.1 Savecalling environment, 191
7.13.2 Restore calling environment 191
Signal handling <signal.h>. L .. 193
7.14.1 Specify signalhandling, 193
7142 Sendsignal 194
Alignment <stdalign.h> L L L L o 196
Variable arguments <stdarg.h> 0 L. 197
7.16.1 Variable argument listaccessmacros 197
Atomics <stdatomic.h> o o o 200
717.1 Introduction L 200
717.2 Initialization 201
7173 Orderand consistency 201
7174 Fences 204
7175 Lock-free property 205
717.6 Atomicintegertypes L 205
7.17.7 Operations on atomictypes 206
7.17.8 Atomic flag type and operations L L 208
Boolean type and values <stdbool.h> 210
Common definitions <stddef.h>. 0oL 211
Integer types <stdint.h> oo 212
720.1 Integertypes 212
7.20.2 Limits of specified-width integertypes 213
7.20.3 Limits of otherintegertypes 215
7.20.4 Macros for integer constants Lo 216
Input/output <stdio.h>. L 217
721.1 Introduction L 217
7212 Streams 218
7213 Files 219
7214 Operationsonfiles o 221
7215 Fileaccessfunctions o o 222
7.21.6 Formatted input/output functions Lo 225
7.21.7 Character input/output functions L Lo 240
7.21.8 Direct input/output functions oL L L Lo 243
7.21.9 File positioning functions o L Lo 244
7.21.10 Error-handling functions L 246
General utilities <stdlib.h> oo o 248
7.22.1 Numeric conversion functions 248
7.22.2 Pseudo-random sequence generation functions 252
7.22.3 Memory management functions 0L 253
7.22.4 Communication with the environment 255

Contents

N2176 C17 ballot ISO/IEC 9899:2017
7.22.5 Searching and sorting utilities. L 0oL 257
7.22.6 Integer arithmetic functions L L L L 259
7.22.7 Multibyte/wide character conversion functions 259
7.22.8 Multibyte/wide string conversion functions 261

723 _Noreturn <stdnoreturn.h>. L. 263
7.24 String handling <string.h>. L L o L. 264
7.24.1 String functionconventions Lo 264
7242 Copyingfunctions 264
7.24.3 Concatenation functions L L L o 265
7244 Comparisonfunctions L L oo 266
7245 Searchfunctions o 267
7.24.6 Miscellaneous functions L Lo oo 270

7.25 Type-generic math <tgmath.h> 272
7.26 Threads <threads.h> 274
726.1 Introduction 274
7.26.2 Initialization functions oo L L Lo 275
7.26.3 Condition variable functions 275
7264 Mutexfunctions 277
7265 Thread functions 279
7.26.6 Thread-specific storage functions 281

727 Dateand time<time.h> o oo o 284
7271 Componentsoftime 284
7.27.2 Time manipulation functions L L. 285
7.27.3 Time conversionfunctions Lo L 287

7.28 Unicode utilities <uchar.h> Lo o Lo 292
7.28.1 Restartable multibyte/wide character conversion functions 292

7.29 Extended multibyte and wide character utilities <wchar.h>. 295
7.29.1 Introduction L L 295
7.29.2 Formatted wide character input/output functions 295
7.29.3 Wide character input/output functions 307
7.29.4 General wide string utilities L 0oL, 311
7.29.4.1 Wide string numeric conversion functions 311

7.29.4.2 Wide string copying functions o oL 314

7.29.4.3 Wide string concatenation functions 315

7.29.4.4 Wide string comparison functions 315

7.29.4.5 Wide string search functions L. 317

7.29.4.6 Miscellaneous functions 320

7.29.5 Wide character time conversion functions 320
7.29.6 Extended multibyte/wide character conversion utilities 321
7.29.6.1 Single-byte/wide character conversion functions 321

Contents vii

ISO/IEC 9899:2017 C17 ballot N2176
7.29.6.2 Conversion state functions 322

7.29.6.3 Restartable multibyte/wide character conversion functions 322

7.29.6.4 Restartable multibyte/wide string conversion functions 324

7.30 Wide character classification and mapping utilities <wctype.h> 326
730.1 Introduction L 326
7.30.2 Wide character classification utilities 326
7.30.2.1 Wide character classification functions 326

7.30.2.2 Extensible wide character classification functions 329

7.30.3 Wide character case mapping utilities 330
7.30.3.1 Wide character case mapping functions 330

7.30.3.2 Extensible wide character case mapping functions 330

7.31 Futurelibrary directions L L 332
7.31.1 Complex arithmetic <complex.h> 332
7.31.2 Character handling <ctype.h> 332
7313 Errors<errno.h>. 332
7.31.4 Floating-point environment <fenv.h>. 332
7.31.5 Format conversion of integer types <inttypes.h>. 332
7.31.6 Localization <locale.h> 332
7.31.7 Signal handling <signal.h> 332
7.31.8 Atomics <stdatomic.h>.0 L. 332
7.31.9 Boolean type and values <stdbool.h> 332
7.31.10 Integer types <stdint.h> L oo 332
73111 Input/output <stdio.h> Lo 333
7.31.12 General utilities <stdlib.h> L 333
7.31.13 String handling <string.h> 333
7.31.14 Date and time <time.h> L Lo oo o 333
7.31.15 Threads <threads.h> 333
7.31.16 Extended multibyte and wide character utilities <wchar.h> 333
7.31.17 Wide character classification and mapping utilities <wctype.h> 333
Annex A (informative) Language syntax summary 334
A1l Lexical grammar 334
A2 Phrasestructure grammar 338
A3 Preprocessing directives L o 344
A4 Floating-point subjectsequence L L L 345
Annex B (informative) Library summary 346
B.1 Diagnostics<assert.h> 346
B.2 Complex<complex.h> 346
B.3 Character handling <ctype.h> o L. 347
B.4 Errors<errno.h> 347

viii Contents

N2176 C17 ballot ISO/IEC 9899:2017

B.5 Floating-point environment <fenv.h>0 000 347
B.6 Characteristics of floating types <float.h> 348
B.7 Format conversion of integer types <inttypes.h> 348
B.8 Alternative spellings <is0646.h>. 349
B.9 Sizes of integer types <limits.h> L o L oL 349
B.10 Localization <locale.h>. L 349
B.11 Mathematics<math.h> 349
B.12 Nonlocal jumps <setjmp.h>. L L 352
B.13 Signal handling <signal.h>. 352
B.14 Alignment <stdalign.h> o o 353
B.15 Variable arguments <stdarg.h> 0L 353
B.16 Atomics <stdatomic.h> L 353
B.17 Boolean type and values <stdbool.h> 354
B.18 Common definitions <stddef.h>. L. 354
B.19 Integer types <stdint.h> o 354
B.20 Input/output <stdio.h>. L L 355
B.21 General utilities <stdlib.h> o oo oo 357
B.22 _Noreturn <stdnoreturn.h> 358
B.23 String handling <string.h>. L L L L oL 358
B.24 Type-generic math <tgmath.h> 359
B.25 Threads <threads.h> 360
B.26 Date and time <time.h> L L 360
B.27 Unicode utilities <uchar.h> 0 0L 361
B.28 Extended multibyte/wide character utilities <wchar.h>. 361
B.29 Wide character classification and mapping utilities <wctype.h> 364
Annex C (informative) Sequence points 366
Annex D (normative) Universal character names for identifiers 367
D.1 Ranges of charactersallowed 367
D.2 Ranges of characters disallowed initially 367
Annex E (informative) Implementation limits 368
Annex F (normative) IEC 60559 floating-point arithmetic 370
F1 Introduction 370
F2 Types e e 370
E3 Operatorsand functions L 0L 370
F4 Floating tointegerconversion oL 372
E5 Binary-decimalconversion L o 372
F6 Thereturnstatement 372
F7 Contracted expressions 372

Contents ix

ISO/IEC 9899:2017 C17 ballot

F8 Floating-point environment
F9 Optimization.
F10 Mathematics<math.h>.
FE10.1 Trigonometric functions
F10.2 Hyperbolic functions
F.10.3 Exponential and logarithmic functions
F10.4 Power and absolute value functions
F10.5 Error and gamma functions
F10.6 Nearestinteger functions
F10.7 Remainder functions

F10.8 Manipulation functions,

F10.9 Maximum, minimum, and positive difference functions

F10.10 Floating multiply-add

F10.11 Comparison macros

Annex G (normative) IEC 60559-compatible complex arithmetic

G.1 Introduction L o
G2 Types oo e
G3 Conventions
G4 Conversions
G4.1 Imaginarytypes.
G42 Realandimaginary
G.4.3 Imaginaryandcomplex
G5 Binaryoperators. L
G.5.1 Multiplicative operators
G.5.2 Additiveoperatorso o
G.6 Complex arithmetic <complex.h>
G.6.1 Trigonometric functions
G.6.2 Hyperbolic functions
G.6.3 Exponential and logarithmic functions
G.6.4 Power and absolute-value functions

G.7 Type-generic math <tgmath.h>

Annex H (informative) Language independent arithmetic

H.1 Introduction
H2 Types e
H.21 Booleantype
H22 Integertypes,
H.2.3 Floating-pointtypes
H24 Typeconversions

H.3 Notification e

X Contents

N2176

N2176 C17 ballot ISO/IEC 9899:2017

H.3.1 Notification alternatives 401
Annex I (informative) Common warnings 402
Annex J (informative) Portability issues 403

J.1 Unspecifiedbehavior 403
J2 Undefinedbehavior. 405
J.3 Implementation-defined behavior 416

J.3.1 Translation. 416

J.3.2 Environment 416

J.3.3 Identifiers 416

J.34 Characters 416

J35 Integers 417

J.3.6 Floatingpoint 417

J.3.7 Arraysand pointers L L L 418

J38 Hints 418

J.3.9 Structures, unions, enumerations, and bit-fields 418

J.3.10 Qualifiers e 418

J.3.11 Preprocessing directives L L L oL 418

J.3.12 Library functions 419

J.3.13 Architecture 421

J4 Locale-specificbehavior 421
J.5 Common extensions e e e 422

J.5.1 Environmentarguments Lo Lo 422

J.5.2 Specialized identifierso oL oo 422

J.5.3 Lengths and cases of identifiers 422

J.5.4 Scopesofidentifiers L o oL 422

J.5.,5 Writable string literals o oo 422

J.5.6 Other arithmetictypes 422

J.5.7 Functionpointercasts o L. 422

J.5.8 Extended bit-fieldtypes L o o 422

J.59 The fortrankeyword L 422

J.5.10 Theasmkeyword 422

J.5.11 Multiple external definitions 423

J.5.12 Predefined macronames 423

J.5.13 Floating-pointstatusflags 423

J.5.14 Extra arguments for signal handlers 423

J.5.15 Additional stream types and file-openingmodes 423

J.5.16 Defined file position indicator.o o L. 423

J.5.17 Matherrorreporting 423

Contents X1

ISO/IEC 9899:2017 C17 ballot N2176

Annex K (normative) Bounds-checking interfaces 424
K1 Background 424
K2 Scope e 424
K3 Library 424

K31 Introduction 424
K311 Standardheaders 424
K3.1.2 Reservedidentifiers 425
K3.13 Useoferrno 425
K3.14 Runtime-constraint violations 425

K32 Errors<errno.h>. 425

K.3.3 Common definitions <stddef.h>, 426

K.3.4 Integer types<stdint.h>, 426

K35 Input/output<stdio.h> 426
K351 Operationsonfiles. 427
K.3.5.2 Fileaccessfunctions 428
K.3.5.3 Formatted input/output functions 430
K354 Character input/output functions 438

K.3.6 General utilities <stdlib.h> 439
K3.6.1 Runtime-constrainthandling 439
K3.6.2 Communication with the environment 440
K.3.6.3 Searching and sorting utilities 441
K.3.6.4 Multibyte/wide character conversion functions 443
K.3.6.5 Multibyte/wide string conversion functions 443

K3.7 String handling <string.h> 445
K3.71 Copyingfunctions 446
K.3.72 Concatenation functions 448
K.3.7.3 Searchfunctions 450
K.3.74 Miscellaneous functions 451

K.3.8 Dateand time<time.h> L L o 452
K3.81 Componentsoftime. 453
K.3.8.2 Time conversion functions 453

K.3.9 Extended multibyte and wide character utilities <wchar.h> 455
K.3.9.1 Formatted wide character input/output functions 455
K3.9.2 General wide string utilities 463
K.3.9.3 Extended multibyte/wide character conversion utilities 469

Annex L (normative) Analyzability 473
L1 Scope 473
L2 Definitions e 473
L3 Requirements e 473

xii Contents

N2176 C17 ballot ISO/IEC 9899:2017

Bibliography 475

Index 476

Contents xiii

ISO/IEC 9899:2017 C17 ballot N2176

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see http://www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in
the Introduction and/or on the ISO list of patent declarations received (see http://www.iso.org/
patents).

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Techni-
cal Barriers to Trade (TBT), see the following URL: http://www.iso.org/iso/home/standards_
development/resources-for-technical-work/foreword.htm.

The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their environments and system software interfaces.

This fourth edition cancels and replaces the third edition, ISO/IEC 9899:2011, which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 9899:2011/Cor 1:2012.
There are no major changes in this edition, only technical corrections and clarifications.

Major changes in the third edition included:
— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread-local storage (<stdatomic.h>and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar. h>) (originally specified in ISO/IEC TR 19769:2004)
— type-generic expressions

— static assertions

— anonymous structures and unions

— no-return functions

— macros to create complex numbers (<complex. h>)

— support for opening files for exclusive access

xiv Foreword

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

N2176 C17 ballot ISO/IEC 9899:2017

— removed the gets function (<stdio.h>)
— added the aligned_alloc, at_quick_exit, and quick_exit functions (<stdlib.h>)

— (conditional) support for bounds-checking interfaces (originally specified in ISO/IEC TR 24731—
1:2007)

— (conditional) support for analyzability
9 Major changes in the second edition included:

— restricted character set support via digraphs and <iso0646.h> (originally specified in
ISO/IEC 9899:1990/ Amd.1:1995)

— wide character library support in <wchar.h> and <wctype.h> (originally specified in
ISO/IEC 9899:1990/ Amd.1:1995)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators
— complex (and imaginary) support in <complex. h>

— type-generic math macros in <tgmath.h>

— the long long int type and library functions

— extended integer types

— increased minimum translation limits

— additional floating-point characteristics in <float.h>

— remove implicit int

— reliable integer division

— universal character names (\u and \U)

— extended identifiers

— hexadecimal floating-point constants and %a and %A printf/scanf conversion specifiers
— compound literals

— designated initializers

— // comments

— specified width integer types and corresponding library functions in <inttypes.h> and
<stdint.h>

— remove implicit function declaration

— preprocessor arithmetic done in intmax_t/uintmax_t
— mixed declarations and statements

— new block scopes for selection and iteration statements

— integer constant type rules

Foreword XV

ISO/IEC 9899:2017 C17 ballot N2176

— integer promotion rules

— macros with a variable number of arguments

— the vscanf family of functions in <stdio.h>and <wchar.h>
— additional math library functions in <math.h>

— treatment of error conditions by math library functions (math_errhandling)
— floating-point environment access in <fenv. h>

— IEC 60559 (also known as IEC 559 or IEEE arithmetic) support
— trailing comma allowed in enum declaration

— %L f conversion specifier allowed in printf

— inline functions

— the snprintf family of functions in <stdio.h>

— boolean type in <stdbool. h>

— idempotent type qualifiers

— empty macro arguments

— new structure type compatibility rules (tag compatibility)

— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— __func__ predefined identifier

— va_copy macro

— additional strftime conversion specifiers

— LIA compatibility annex

— deprecate ungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to Ivalues

— relaxed constraints on aggregate and union initialization

— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice versa)

Xvi Foreword

N2176 C17 ballot ISO/IEC 9899:2017

Introduction

With the introduction of new devices and extended character sets, new features may be added to
this International Standard. Subclauses in the language and library clauses warn implementors and
programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future
revisions of this International Standard. They are retained because of their widespread use, but their
use in new implementations (for implementation features) or new programs (for language [6.11] or
library features [7.31]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);
— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
International Standard. References are used to refer to other related subclauses. Recommendations
are provided to give advice or guidance to implementors. Annexes provide additional information
and summarize the information contained in this International Standard. A bibliography lists
documents that were referred to during the preparation of the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based on the 1984 /usr/group Standard.

The Working Group responsible for this standard (WG 14) maintains a site on the World Wide Web at
http://www.open-std.org/JTC1/5C22/WG14/ containing additional information relevant to this
standard such as a Rationale for many of the decisions made during its preparation and a log of
Defect Reports and Responses.

Introduction xvii

http://www.open-std.org/JTC1/SC22/WG14/

N2176 C17 ballot ISO/IEC 9899:2017

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC9899:2017

Programming languages — C

1. Scope

1 This International Standard specifies the form and establishes the interpretation of programs written
in the C programming language.? It specifies
— the representation of C programs;
— the syntax and constraints of the C language;
— the semantic rules for interpreting C programs;
— the representation of input data to be processed by C programs;
— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
2 This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;
— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

DThis International Standard is designed to promote the portability of C programs among a variety of data-processing
systems. It is intended for use by implementors and programmers.

§1 General 1

ISO/IEC 9899:2017 C17 ballot N2176

2. Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

2 General §2

http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

N2176 C17 ballot ISO/IEC 9899:2017

3. Terms, definitions, and symbols

For the purposes of this document, the following terms and definitions apply. Other terms are
defined where they appear in ifalic type or on the left side of a syntax rule. Terms explicitly defined
in this International Standard are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this International Standard are to be interpreted according to
ISO/IEC 2382. Mathematical symbols not defined in this International Standard are to be interpreted
according to ISO 80000-2.

3.1

access

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument
actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4

behavior

external appearance or action

3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which

§3.4.3 General 3

ISO/IEC 9899:2017 C17 ballot N2176

this International Standard imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides two or
more possibilities and imposes no further requirements on which is chosen in any instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that may have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.7.1

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

4 General §3.8

N2176 C17 ballot ISO/IEC 9899:2017

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11
forward reference

reference to a later subclause of this International Standard that contains additional information
relevant to this subclause

3.12
implementation
particular set of software, running in a particular translation environment under particular con-

trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently
update two non-atomic bit-fields in the same structure if all members declared between them are also (nonzero-length)
bit-fields, no matter what the sizes of those intervening bit-fields happen to be.

EXAMPLE A structure declared as

struct {
char a;
int b:5, c:11,:0, d:8;
struct { int ee:8; } e;

contains four separate memory locations: The member a, and bit-fields d and e. ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.

3.15

object

region of data storage in the execution environment, the contents of which can represent values
Note 1 to entry: When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter

formal parameter

§3.16 General 5

ISO/IEC 9899:2017 C17 ballot N2176

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that may be impractical for some implementations

3.18

runtime-constraint

requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

Note 2 to entry: Implementations that support the extensions in annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

3.19

value

precise meaning of the contents of an object when interpreted as having a specific type

3.19.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.19.2

indeterminate value

either an unspecified value or a trap representation

3.19.3

unspecified value

valid value of the relevant type where this International Standard imposes no requirements on
which value is chosen in any instance

Note 1 to entry: An unspecified value cannot be a trap representation.

3.19.4

trap representation

an object representation that need not represent a value of the object type

3.19.5

perform a trap

interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this International Standard, when the word “trap” is not immediately followed by “representation”, this
is the intended usage.?

3.20
[]

ceiling of z: the least integer greater than or equal to «

DFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

6 General §3.20

N2176 C17 ballot ISO/IEC 9899:2017

EXAMPLE [2.4] is 3, [—2.4] is —2.

3.21

Ed

floor of z: the greatest integer less than or equal to «
EXAMPLE [2.4]is 2, |—2.4] is —3.

§3.21 General 7

ISO/IEC 9899:2017 C17 ballot N2176

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an implementation or
on a program; conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior” or by the omission of any explicit definition of behavior.
There is no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified in
this International Standard.? It shall not produce output dependent on any unspecified, undefined,
or implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implemen-
tation shall accept any strictly conforming program in which the use of the features specified
in the library clause (clause 7) is confined to the contents of the standard headers <float.h>,
<is0646.h>, <limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming program.?

A conforming program is one that is acceptable to a conforming implementation.’)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h>(7.18), common definitions <stddef . h>(7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

3 A strictly conforming program can use conditional features (see 6.10.8.3) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef _STDC_IEC_559__ /x FE_UPWARD defined */
/* ... %/
fesetround (FE_UPWARD) ;
/*x ... %/

#endif

YThis implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
International Standard.

S)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs may depend upon nonportable features of a conforming implementation.

8 General §4

N2176 C17 ballot ISO/IEC 9899:2017

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in
this International Standard. Their characteristics define and constrain the results of executing
conforming C programs constructed according to the syntactic and semantic rules for conforming
implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this International Standard. A source file together with
all the headers and source files included via the preprocessing directive #include is known as
a preprocessing translation unit. After preprocessing, a preprocessing translation unit is called a
translation unit. Previously translated translation units may be preserved individually or in libraries.
The separate translation units of a program communicate by (for example) calls to functions whose
identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.®

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.
Trigraph sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens” and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

9Implementations shall behave as if these separate phases occur, even though many are typically folded together in
practice. Source files, translation units, and translated translation units need not necessarily be stored as files, nor need there
be any one-to-one correspondence between these entities and any external representation. The description is conceptual only,
and does not specify any particular implementation.

7) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

§5.1.1.2 Environment 9

ISO/IEC 9899:2017 C17 ballot N2176

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set; if there is no
corresponding member, it is converted to an implementation-defined member other than the
null (wide) character.®)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-
tives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an imple-
mentation-defined manner) if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. Diagnostic messages need not be produced in other circumstances.”

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this International Standard describes the behavior for a construct as being both a
constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.9).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any benefit
of an operating system), the name and type of the function called at program startup are implemen-
tation-defined. Any library facilities available to a freestanding program, other than the minimal set
required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

8 An implementation need not convert all non-corresponding source characters to the same execution character.

) The intent is that an implementation should identify the nature of, and where possible localize, each violation. Of course,
an implementation is free to produce any number of diagnostics as long as a valid program is still correctly translated. It may
also successfully translate an invalid program.

10 Environment §5.1.221

N2176 C17 ballot ISO/IEC 9899:2017

\ int main(void) { /x ... %/ }

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

\ int main(int argc, char *argv[]) { /x ... %/ }

or equivalent;'” or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argvlargc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;') reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.4.4).

5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an abstract machine
in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function that does any
of those operations are all side effects,'? which are changes in the state of the execution environment.
Evaluation of an expression in general includes both value computations and initiation of side effects.

19Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char ** argv, and so
on.

MIn accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

12The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

§5.1.23 Environment 11

10

11

ISO/IEC 9899:2017 C17 ballot N2176

Value computation for an Ivalue expression includes determining the identity of the designated
object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.'® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used and
that no needed side effects are produced (including any caused by calling a function or accessing a
volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the floating-point environment. The value of any object modified by the handler
that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes indeterminate
when the handler exits, as does the state of the floating-point environment if it is modified by the
handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Accesses to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

char cl, c2;
/* ... %/
cl =cl + c2;

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

12 Environment §5.1.2.3

12

13

14

15

N2176 C17 ballot ISO/IEC 9899:2017

the “integer promotions” require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;

/* ... x/

fl = f2 % d;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate semantics. Values are
independent of whether they are represented in a register or in memory. For example, an implicit spilling of a register is
not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the storage type. In
particular, casts and assignments are required to perform their specified conversion. For the fragment

double d1, d2;

float f;

dl = f = expression;

d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see E9).

double x, vy, z;

/* .0 %/

X = (x xy) *x z; // not equivalent to x x=y * z;
z=(x-vy) +y; // not equivalent to z = x;

Z =X+ X *Y; // not equivalent to z = x * (1.0 + y);
y =x/ 5.0; // not equivalent to y = x x 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/*x ... %/
a=a + 32760 + b + 5;

the expression statement behaves exactly the same as

| a = (((a+32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [-32768, +32767], the implementation cannot rewrite this
expression as

a = ((a+ b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

Q
1}

(a + (b + 32765));

§5.1.2.3 Environment 13

16

ISO/IEC 9899:2017 C17 ballot N2176

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>

int sum;

char xp;

/* ... x/

sum = sum * 10 - 'O’ + (xp++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - '0") + ((x(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution (or thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this
standard. The execution of the entire program consists of an execution of all of its threads.'¥ Under
a freestanding implementation, it is implementation-defined whether a program can have more
than one thread of execution.

The value of an object visible to a thread 7" at a particular point is the initial value of the object, a
value stored in the object by T', or a value stored in the object by another thread, according to the
rules below.

NOTE1 In some cases, there may instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library defines a number of atomic operations (7.17) and operations on mutexes (7.26.4) that are
specially identified as synchronization operations. These operations play a special role in making
assignments in one thread visible to another. A synchronization operation on one or more memory
locations is either an acquire operation, a release operation, both an acquire and release operation, or a
consume operation. A synchronization operation without an associated memory location is a ferice and
can be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads

that later perform an acquire or consume operation on A. We do not include relaxed atomic operations as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders must respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads may observe modifications to different
variables in inconsistent orders.

149)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

14 Environment §5.124

10

11

12

13

14

15

16

17

N2176 C17 ballot ISO/IEC 9899:2017

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object A/ synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency'® to an evaluation B if:

— the value of A is used as an operand of B, unless:

e Bis an invocation of the kill_dependency macro,
o Ais the left operand of a & or | | operator,
o Ais the left operand of a ?: operator, or

o A is the left operand of a , operator;
or

— A writes a scalar object or bit-field M, B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.
An evaluation A is dependency-ordered before'® an evaluation B if:

— A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

v

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is
that a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

15)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
19The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

§5.124 Environment 15

18

19
20

21

22

23

24

25

26
27

28
29

30
31

32
33

34

35

36

37

ISO/IEC 9899:2017 C17 ballot N2176

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A wvisible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and
— there is no other side effect X to M such that A happens before X and X happens before 5.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies M,
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.

NOTE 14 The requirement above is known as “read-write coherence”.

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
“relaxed” loads. By doing so, we effectively make the “cache coherence” guarantee provided by most hardware available to C
atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there must exist an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result must contain undefined behavior.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not

16 Environment §5.124

38

N2176 C17 ballot ISO/IEC 9899:2017

be modified by the abstract machine are generally precluded by this standard, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question may alias is also generally precluded, since
this may violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location may not preserve the
semantics of the program as defined in this standard, since they potentially introduce a data race. However, they are typically
valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data races. They
would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in which
source files are written (the source character set), and the set interpreted in the execution environment
(the execution character set). Each set is further divided into a basic character set, whose contents are
given by this subclause, and a set of zero or more locale-specific members (which are not members
of the basic character set) called extended characters. The combined set is also called the extended
character set. The values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B CDETFGHTIJK
N O P QRS TUV WX Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h
s t u

k 1
n o p q r X

i]
Vo

the 10 decimal digits

\ © 1 2 3 456 7 809

the following 29 graphic characters

s &7 () o xo+ 0, -0/
o< =>2 0 N1~ _ {1} ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a byte.
In both the source and execution basic character sets, the value of each character after 0 in the above
list of decimal digits shall be one greater than the value of the previous. In source files, there shall
be some way of indicating the end of each line of text; this International Standard treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this International Standard
the term does not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing
directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

§52.1 Environment 17

ISO/IEC 9899:2017 C17 ballot N2176

5.2.1.1 Trigraph sequences

Before any other processing takes place, each occurrence of one of the following sequences of three
characters (called trigraph sequences)'” is replaced with the corresponding single character.

7= # ?77)] 7?70 |

72([77~ 77>}

2?7/ N\ 77< A ??7- ~
No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.
EXAMPLE 1

i ??=define arraycheck(a, b) a??(b??) ??!??! b??(a??)

becomes

i #define arraycheck(a, b) a[b] || blal

EXAMPLE 2 The following source line

| printf("En?72/n");

becomes (after replacement of the trigraph sequence ??/)

i printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.
— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active

17)The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described in
ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment §5.2.2

N2176 C17 ballot ISO/IEC 9899:2017

position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this International Standard.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains at least

one instance of every one of the following limits:'®)

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

18 Implementations should avoid imposing fixed translation limits whenever possible.

§524.1 Environment 19

ISO/IEC 9899:2017 C17 ballot N2176

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)!”

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Sizes of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if preprocess-
ing directives.

Moreover, except for CHAR_BIT and MB_LEN_MAX, the following shall be replaced by expressions that
have the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions. Their implementation-defined values shall be equal or greater
in magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

[
| CHAR_BIT 8
L

— minimum value for an object of type signed char

| SCHAR_MIN -127 /7 —(2" - 1)

19)See “future language directions” (6.11.3).

20 Environment §524.21

N2176 C17 ballot ISO/IEC 9899:2017

— maximum value for an object of type signed char

[
| SCHAR_MAX +127 // 2" -1
L

— maximum value for an object of type unsigned char

[
UCHAR_MAX 255 // 28 —1

— minimum value for an object of type char

| CHAR_MIN see below
L

— maximum value for an object of type char

| CHAR_MAX see below
L

— maximum number of bytes in a multibyte character, for any supported locale

| MB_LEN_MAX 1
L

— minimum value for an object of type short int

[
SHRT_MIN -32767 // —(2"° —1)
L

— maximum value for an object of type short int

| SHRT_MAX 32767 // 2 —1

— maximum value for an object of type unsigned short int

| USHRT_MAX 65535 // 2'° — 1

— minimum value for an object of type int

|INT_MIN -32767 // —(2'° — 1)
L

— maximum value for an object of type int

[
INT_MAX +32767 // 2% —1
L

— maximum value for an object of type unsigned int

[-
UINT_MAX 65535 // 2'6 -1
L

— minimum value for an object of type long int

[«
LONG_MIN -2147483647 // —(2°' — 1)
L

— maximum value for an object of type long int

I
LONG_MAX +2147483647 // 2% — 1
L

— maximum value for an object of type unsigned long int

§524.2.1 Environment 21

ISO/IEC 9899:2017 C17 ballot N2176

[Q-
ULONG_MAX 4294967295 // 2%? —1
L

— minimum value for an object of type long long int

|LLONG_MIN -9223372036854775807 // —(2%% — 1)
L

— maximum value for an object of type long long int

| LLONG_MAX +9223372036854775807 // 2°° — 1
L

— maximum value for an object of type unsigned long long int

[
|ULLONG_MAX 18446744073709551615 // 2% —1
L

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.ZY The
value UCHAR_MAX shall equal 2¢HAR-BIT _ 1,

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a representation
of floating-point numbers and values that provide information about an implementation’s floating-
point arithmetic.?) The following parameters are used to define the model for each floating-point
type:

sign (£1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum ey,;, and a maximum ep,ax)

p precision (the number of base-b digits in the significand)

fr nonnegative integers less than b (the significand digits)

T ®»

A floating-point number (x) is defined by the following model:
2
x = sb® E fkb_k/ €min <e< €max
k=1

In addition to normalized floating-point numbers (f; > 0 if 27#0), floating types may be able to
contain other kinds of floating-point numbers, such as subnormal floating-point numbers (x # 0,
€ = emin, f1 = 0) and unnormalized floating-point numbers (x # 0, ¢ > emin, f1 = 0), and values
that are not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying
Not-a-Number. A quiet NaN propagates through almost every arithmetic operation without raising a
floating-point exception; a signaling NaN generally raises a floating-point exception when occurring
as an arithmetic operand.??

An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this International Standard to retrieve the sign shall produce an unspecified sign, and any
requirement to set the sign shall be ignored.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of

0See 6.2.5.

2DThe floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

22TEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms
quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

22 Environment §524.22

10

N2176 C17 ballot ISO/IEC 9899:2017

that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+,- , *, /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state
that the accuracy is unknown.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #1f preprocessing directives; all floating values shall be constant expressions. All
except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all
three floating-point types. The floating-point model representation is provided for all values except
FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-defined
value of FLT_ROUNDS:*

-1 indeterminable

0 toward zero

1 to nearest

2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

Except for assignment and cast (which remove all extra range and precision), the values yielded
by operators with floating operands and values subject to the usual arithmetic conversions and of
floating constants are evaluated to a format whose range and precision may be greater than required
by the type. The use of evaluation formats is characterized by the implementation-defined value of
FLT_EVAL_METHOD:**)

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of
the doub'le type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior.

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

—1 indeterminable?

0 absent (type does not support subnormal numbers)?)

23)Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through the function
fesetround in <fenv.h>.

2)The evaluation method determines evaluation formats of expressions involving all floating types, not just real
types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

Z)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

26)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

§524.22 Environment 23

ISO/IEC 9899:2017 C17 ballot N2176

1 present (type does support subnormal numbers)

11 The values given in the following list shall be replaced by constant expressions with implementa-

tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

[

| FLT_MANT_DIG
| DBL_MANT_DIG
| LDBL_MANT_DIG
L

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
plogiob if b is a power of 10
[1+4+ plogyb] otherwise
FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest supported

floating type with pm.x radix b digits can be rounded to a floating-point number with n decimal
digits and back again without change to the value,

Prmax 10810 b if b is a power of 10
[1 4 pmaxloggb] otherwise
 DECIMAL_DIG 10 |

— number of decimal digits, ¢, such that any floating-point number with ¢ decimal digits can be

rounded into a floating-point number with p radix b digits and back again without change to
the ¢ decimal digits,

plogyb if bis a power of 10
[(p—1)log,yb] otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, emin

[

| FLT_MIN_EXP
| DBL_MIN_EXP
| LDBL_MIN_EXP
L

24 Environment §524.22

N2176 C17 ballot ISO/IEC 9899:2017

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [log; b=~

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, e;ax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log1o((1 — b~ P)b%mex) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

12 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number, (1 — b=7)pcmax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

13 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the given
floating point type, b~

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, b¢min—1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number?”
FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

27)1f the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

§524.22 Environment 25

ISO/IEC 9899:2017 C17 ballot N2176

Recommended practice

14 Conversion from (at least) double to decimal with DECIMAL_DIG digits and back should be the
identity function.

15 EXAMPLE1 The following describes an artificial floating-point representation that meets the minimum requirements of this
International Standard, and the appropriate values in a <float.h> header for type float:

6
x=516° > frl6™F, —31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

16 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559, and the appropriate values in a <float . h> header for types float and double:

zp = s2¢ % fe27k, —125<e< 4128
k=1
53
zg=52° Y fr27k, —1021 < e < +1024

k=1
FLT_RADIX 2
DECIMAL_DIG 17
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON OX1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN OX1P-149F // hex constant
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX OX1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53

DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant

DBL_TRUE_MIN
DBL_HAS_SUBNORM

0X1P-1074
1

//

hex constant

28)The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

26 Environment §524.22

N2176 C17 ballot ISO/IEC 9899:2017

\ DBL_MIN_10_EXP -307 \
\ DBL_MAX_EXP +1024 \
\ DBL_MAX 1.7976931348623157E+308 // decimal constant \
\ DBL_MAX oX1. fffffffffffffP1023 // hex constant \
\ DBL_MAX_10_EXP +308 \

If a type wider than double were supported, then DECIMAL_DIG would be greater than 17. For example, if the widest type
were to use the minimal-width IEC 60559 double-extended format (64 bits of precision), then DECIMAL_DIG would be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic <complex.h> (7.3), ex-
tended multibyte and wide character utilities <wchar.h> (7.29), floating-point environment
<fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h> (7.21), mathematics
<math.h> (7.12).

§524.22 Environment 27

ISO/IEC 9899:2017 C17 ballot N2176

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionop'E }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

Anidentifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function
declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term “identifier” to
refer to some entity (as opposed to the syntactic construct), it refers to the entity in the relevant name
space whose declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in
a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has scope that

28 Language §6.2.1

N2176 C17 ballot ISO/IEC 9899:2017

begins just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.*” There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.>”

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,3V if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit, the
syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any>? of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

)There is no linkage between different identifiers.

30 A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
31 As specified in 6.2.1, the later declaration might hide the prior declaration.

32 There is only one name space for tags even though three are possible.

§6.2.3 Language 29

ISO/IEC 9899:2017 C17 ballot N2176

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage durations: static,
thread, automatic, and allocated. Allocated storage is described in 7.22.3.

The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,*® and retains its last-stored value
throughout its lifetime.3 If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object is created each time. The initial value of
the object is indeterminate. If an initialization is specified for the object, it is performed each time
the declaration or compound literal is reached in the execution of the block; otherwise, the value
becomes indeterminate each time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.®® If the scope is
entered recursively, a new instance of the object is created each time. The initial value of the object is
indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.3® Its lifetime begins
when the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with
temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object need not
have a unique address.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators (6.7.6),
function calls (6.5.2.2), initialization (6.7.9), statements (6.8), effective type (6.5).

33)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address may be different during two different executions of the same program.

3D In the case of a volatile object, the last store need not be explicit in the program.

%)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

36)The address of such an object is taken implicitly when an array member is accessed.

30 Language §6.24

10

11

N2176 C17 ballot ISO/IEC 9899:2017

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).3”)

An object declared as type _Bool is large enough to store the values 0 and 1.

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.’® The
standard and extended signed integer types are collectively called signed integer types.>

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type _Bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. The standard and extended unsigned integer types are collectively called
unsigned integer types.*

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*!) A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

There are three real floating types, designated as float, double, and long double.*” The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

There are three complex types, designated as float _Complex, double _Complex, and long double
—Complex.”¥ (Complex types are a conditional feature that implementations need not support; see

37) A type may be incomplete or complete throughout an entire translation unit, or it may change states at different points
within a translation unit.

38)Implementation-defined keywords shall have the form of an identifier reserved for any use as described in 7.1.3.

3)Therefore, any statement in this Standard about signed integer types also applies to the extended signed integer types.

40)Therefore, any statement in this Standard about unsigned integer types also applies to the extended unsigned integer
types.

4DThe same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

#2)See “future language directions” (6.11.1).

#3) A specification for imaginary types is in annex G.

§6.2.5 Language 31

12

13

14

15

16

17

18

19

20

ISO/IEC 9899:2017 C17 ballot N2176

6.10.8.3.) The real floating and complex types are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
—Complex from the type name.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.*!

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.®®

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types. Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.
The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

44) An implementation may define new keywords that provide alternative ways to designate a basic (or any other) type; this
does not violate the requirement that all basic types be different. Implementation-defined keywords shall have the form of an
identifier reserved for any use as described in 7.1.3.

45) CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

32 Language §6.2.5

21

22

23
24

25

26

27

28

29

30

N2176 C17 ballot ISO/IEC 9899:2017

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.*®

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,47) corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.*®
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this Standard explicitly uses the phrase “atomic,
qualified or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.*® Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alighment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.

The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (*[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General
The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

46)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

47)See 6.7.3 regarding qualified array and function types.

#8)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

§6.2.6.1 Language 33

ISO/IEC 9899:2017 C17 ballot N2176

Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.*”)

Values stored in non-bit-field objects of any other object type consist of n x CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type
unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object representation of
the value. Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.>® Such a representation is called a trap representation.

When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.>"
The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.>? Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types

For unsigned integer types other than unsigned char, the bits of the object representation shall be
divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2V}, so that objects of
that type shall be capable of representing values from 0 to 2 — 1 using a pure binary representation;
this shall be known as the value representation. The values of any padding bits are unspecified.>®

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and NNV in the unsigned type, then M < N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of

#) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2¢HARBIT _ 1,

50)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

5D Thus, for example, structure assignment need not copy any padding bits.

521t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp (&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T may distinguish between them.

53)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

34 Language §6.2.6.2

N2176 C17 ballot ISO/IEC 9899:2017

the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value —(2) (two’s complement);

— the sign bit has the value —(2* — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones” complement), is a
trap representation or a normal value. In the case of sign and magnitude and ones’ complement, if
this representation is a normal value it is called a negative zero.

If the implementation supports negative zeros, they shall be generated only by:

— the & |, ", ~, <<, and >> operators with operands that produce such a value;
— the+,- ,*,/, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior of the &, |, *, ~, <<, and >>
operators with operands that would produce such a value is undefined.

The values of any padding bits are unspecified.”¥ A valid (non-trap) object representation of a
signed integer type where the sign bit is zero is a valid object representation of the corresponding
unsigned type, and shall represent the same value. For any integer type, the object representation
where all the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.”® Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

59Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow. All other combinations of padding bits are alternative object representations of the value
specified by the value bits.

%) Two types need not be identical to be compatible.

§6.2.7 Language 35

ISO/IEC 9899:2017 C17 ballot N2176

— If both types are array types, the following rules are applied:

o If one type is an array of known constant size, the composite type is an array of that size.

o Otherwise, if one type is a variable leng